
39

kappa SQ: A Matlab package for randomized sampling of matrices
with orthonormal columns

Thomas Wentworth, North Carolina State University
Ilse Ipsen, North Carolina State University

The kappa SQ software package is designed to assist researchers working on randomized row sampling. The
package contains a collection of Matlab functions along with a GUI that ties them all together and provides
a platform for the user to perform experiments.

In particular, kappa SQ is designed to do experiments related to the two-norm condition number of
a sampled matrix, κ(SQ), where S is a row sampling matrix and Q is a tall and skinny matrix with
orthonormal columns. Via a simple GUI, kappa SQ can generate test matrices, perform various types of
row sampling, measure κ(SQ), calculate bounds and produce high quality plots of the results. All of the
important codes are written in separate Matlab function files in a standard format which makes it easy for
a user to either use the codes by themselves or incorporate their own codes into the kappa SQ package.
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1. INTRODUCTION
We wrote the kappa SQ software package to assist us with our research on various
algorithms for uniform row sampling [Ipsen and Wentworth 2013]. In our research, a
m × n matrix Q with orthonormal columns and m ≥ n is sampled by a row sampling
matrix S to create the c × n sampled matrix SQ. We then address the question, given
η > 0, what is the probability that rank(SQ) = n and the two-norm condition number
κ(SQ) = ‖SQ‖2‖(SQ)†‖2 ≤ 1 + η? This question is important due to its applications to
randomized least squares solvers such as LSRN [Meng et al. 2011] and, in particular,
the Blendenpik algorithm [Avron et al. 2010].
The Blendenpik algorithm uses randomized sampling to solve an overdetermined
least-squares problem minx ‖Ax − b‖2 faster than LAPACK. It starts by finding the
QR factorization, QsRs = SA, of the randomly sampled matrix SA and then, if SA has
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39:2 T. Wentworth et al.

full colun rank, solves the preconditioned least squares problem minz ‖AR−1s z − b‖2
via LSQR. The solution to the original least squares problem can be found by solving
a much smaller linear system with coefficient matrix Rs. The key to this method is
that if κ(AR−1s ) ≈ 1, then LSQR will converge quickly.

The connection between our work, kappa SQ and the Blendenpik algorithm is that
if SA is full rank, then κ(SQ) = κ(AR−1s ). This means that sampling rows from A is,
conceptually, the same as sampling rows from Q and that κ(AR−1s ) depends only on
the columns space of A (and the sampling matrix). Thus, it suffices to examine the
behavior of κ(SQ).

This code examines κ(SQ) in two main ways. First, it can perform numerical
experiments where κ(SQ) is measured. And second, our code can plot bounds for
κ(SQ). In the literature, these bounds are often expressed in terms of two matrix
properties that have been shown to be related to row sampling, leverage scores, and
coherence.

Leverage scores were first introduced in 1978 by Hoaglin and Welsch [Hoaglin and
Welsch 1978] to detect outliers when computing regression diagnostics. They give a
measurement of the distribution of the elements in an orthonormal basis. The leverage
scores of a matrix A are defined in terms of any orthonormal basis, Q, for the column
space of A.

Definition 1.1. The leverage scores of the real m× n matrix A with m ≥ n are

`j(A) = `j(Q) ≡ ‖eTj Q‖22, 1 ≤ j ≤ m.

Since leverage scores are simply row norms from matrices with orthonormal columns,
the inequality 0 ≤ `i(A) ≤ 1 holds and

∑m
i=1 `i(A) = n. If `i(A) = 1 then the i′th row

contains all of the information for a particular column. On the other hand, if `i(A) = 0,
then the i′th row of A is zero and contains no data. Thus, leverage scores give a
quantification of the importance of each row with respect to sampling. We use leverage
scores as an input to both generate test matrices and to bound the condition number
of a sampled matrix. Our code for computing leverage scores is leverageScores.m.

In our work, coherence is simply the largest leverage score.

Definition 1.2 (Definition 3.1 in [Avron et al. 2010], Definition 1.2 in [Candès and Recht 2009]).
The coherence of A is

µ(A) ≡ max
1≤j≤m

`j(Q) = max
1≤j≤m

‖eTj Q‖22.

Although coherence contains far less information about a matrix than the leverage
scores, it can still be useful in bounding the condition number of a sampled matrix (see
Bound 1) and may be easier to estimate than leverage scores Due to the properties
of leverage scores, the inequality n/m ≤ µ(A) ≤ 1 holds, and if µ(A) ≈ n/m, then
`i(A) ≈ n/m. Our code for computing coherence is coherence.m.

2. KAPPA SQ DESIGN
Kappa SQ was designed to perform all of the computations from [Ipsen and Went-
worth 2013] and output paper-ready plots. It can assist researchers in the following
ways.
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First, the GUI for kappa SQ has been designed to assist the user set-up, perform
and plot experiments on κ(SQ). There are two types of experiments, the computation
of (possibly probabilistic) bounds on κ(SQ) and the computation of κ(SQ) for a given
or generated test matrix Q. The GUI has also been coded to allow a user to easily
incorporate their own codes by simply placing a properly formatted Matlab function in
the “boundsAndAlgorithms” directory.

Second, kappa SQ includes a collection of codes for various algorithms and bounds
pertaining to the field of randomized row sampling. These codes are all written as
Matlab function files that can be used on their own or with the kappa SQ GUI. The
codes include functions for row sampling, test matrix generation, leverage score
distribution generation and functions to compute bounds for κ(SQ). The included
codes are outlined in section 2.2.

The kappa SQ codes can be broken up into two main groups, the GUI and “Algorithm
Codes.” Below, we describe these codes and their functions.

2.1. kappa SQ GUI
The kappa SQ GUI is designed to produce plots of both numerical experiments,
where κ(SQ) is actually measured, and of bounds on κ(SQ). To perform a numerical
experiment, kappa SQ will perform sampling on a matrix and then measure the
condition number of the sampled matrix, κ(SQ). Occasionally, the sampled matrix,
SQ, is not full rank. This event is termed a “failure” event and kappa SQ also keeps
track of these.

When kappa SQ has completed its computations, it will output plots like those
shown in Figures 1 and 2. For the moment, do not worry about the specifics of each
plot other than the following. The triangles in figure 1 show the measured condition
number of the sampled matrix, κ(SQ), and the line plots a bound on κ(SQ). For the
sections of the domain where a line is not plotted, the bound does not apply. All of
the bounds included with κ(SQ) are probabilistic bounds and therefore only hold with
probability at least 1− δ. Therefore, at least 100(1− δ)% of the measured κ(SQ) should
be below the line. In Figure 2, the “failure rate,” the percent of numerical experiments
that resulted in a failure event, is plotted. Despite the fact that for many experiments
the failure rate will be 0% for most values, it is still an important quantity because
figure 1 only plots the the “good” events (where SQ has full column rank).

When a user executes kappaSQ.m, he or she is presented with the kappa SQ GUI
(see Figure 3). It is broken up into sections; the first two correspond to inputs the user
must provide to produce a plot and the last two are for plot editing and and to display
important information. Below we describe these sections and, in the process, how to
use the GUI to produce plots.

“Step 1: Select Bounds and/or Numerical Experiments.” This section allows
the user to select what he or she would like to plot. The first listbox contains possible
bounds that the user can plot. The second listbox contains various sampling methods.
In kappa SQ, numerical experiments are first defined in terms of what sampling algo-
rithm the user would like to use. By selecting a sampling method, the user is telling
kappa SQ that he or she wishes to do a numerical experiment with that sampling
method. Selecting multiple sampling methods will perform multiple experiments.
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Fig. 1. In this plot we show the results of a numerical experiment (triangles) and a bound on kappa SQ
(line) that holds with probability 1− δ.
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Fig. 2. In this plot we show the failure rate of a numerical experiment on kappa SQ.
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“Step 2: Matrix Properties / Parameters.” This section allows the user to
provide the required inputs. Only inputs that are required will be visible. As an
example, if the user chose to plot Bound 1, then this section would ask for the user to
provide values for m,n, µ, δ and c as those values are required to compute Bound 1. In
addition, either c or µ must be a vector and whichever is a vector will be placed on the
x-axis.

Of particular interest in this section are the “Matrix Generation” and “li” (`i) inputs.
When a test matrix is required (ex: when running a numerical experiment), kappa SQ
will generate a matrix using the algorithm specified in this listbox. Similarly, when
a leverage score distribution is required, kappa SQ will generate one by the method
specified in the “li” listbox.

“Plot Button.” Once the user has completed steps 1 and 2, he or she may click the
plot button to run and plot the experiment.

“Help!” This button will open the kappa SQ help file. This file includes a FAQ
section and a list of included functions.

Adv. Features: “Batch Features.” This section can be viewed by clicking on the
“Adv. Features” button. After performing steps 1 and 2, the user can instead add the
current experiment to a batch of jobs to be run later in serial. This is particularly
useful if the chosen experiments require a long time to run, or if the user has many
experiments to run. In addition, if the user keeps all of their experiments defined in a
batch file, they can easily repeat all of the experiments for their work.

Adv. Features: “Other Features.” This section contains a button called “Beautify
Plots” which will open the plot editing window shown in Figure 4. This window as-
sists the user with modifying many of the common plot settings and creating a script
that will apply these settings to future plots. In addition, the plot editing window will
generate a command which will apply these settings without the GUI. KappaSQ can
be set to run this command for all future plots by checking the “beautify command”
checckbox and entering the command. Thus, the user only needs to set up their plots
once. Finally, this section also has an option to plot a standard confidence interval for
the failure probability.

Below we will discuss the various included codes that the kappa SQ GUI uses in the
above sections to produce plots.

2.2. Algorithm Codes
In this section, we describe the various algorithms and bounds that are included in the
kappa SQ package. These algorithms can be broken up into four main groups, bounds,
matrix generation, sampling methods and leverage score distributions.

2.2.1. Sampling methods. We include four different row sampling methods from the
literature, Sampling without Replacement, Sampling with Replacement, Bernoulli
Sampling, and Sampling Proportional to Leverage Scores. In our recent paper [Ipsen
and Wentworth 2013], the first three of these sampling methods are described by con-
structing a sampling matrix S such that SQ is the sampled matrix. In the kappa SQ
package, we instead code these algorithms to compute B =≡ SQ directly. Each
sampling method inputs the initial matrix, Q, and the desired (or desired expected)
number of rows to be sampled, c, and outputs the sampled matrix, SQ.
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Fig. 3. kappaSQ GUI with advanced features shown.

Fig. 4. Beautify Plots GUI.

Sampling Method 1, Sampling Without Replacement. This algorithm samples
exactly the desired number of rows such that no row is sampled more than once by
sampling uniformly from the m!/(m − c)! possible permutations of c rows. We imple-
ment this by first randomly permuting all of the rows and then sampling the first c
rows. In the algorithm below we use the term random permutations. A permutation
π1, . . . , πm of the integers 1, . . . ,m is a random permutation, if it is equally likely to be
one of m! possible permutations [Mitzenmacher and Upfal 2006, pages 41 and 48]. The
matlab command randperm(m) will generate a random permutation of the integers
1, . . . ,m. Our code for this sampling method is Sample randperm.m.
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Sampling Method 1: Sampling Without Replacement, [Gittens and Tropp 2011; Gross and
Nesme 2010]
Input: A m× n matrix Q and an integer c, such that 1 ≤ c ≤ m.
Output: A c×m sampled matrix B.
v = randperm(m);
s = v(1 : c);
B =

√
m/c Q(s, :);

Sampling Method 2, Sampling With Replacement (Exactly(c)). This algo-
rithm samples exactly the desired number of rows with a uniform probability dis-
tribution and with replacement. Our code for implementing this sampling method is
Sample exactlyC.m.

Sampling Method 2: Sampling With Replacement, [Drineas et al. 2006; Drineas et al. 2011]
Input: A m× n matrix Q and an integer c, such that 1 ≤ c ≤ m.
Output: A c×m sampled matrix B.
Let π1, . . . , πc be integers uniformly sampled from{1, . . . ,m} with replacement;
s =

[
π1, . . . , πc

]
;

B =
√
m/c Q(s, :);

Sampling Method 3, Bernoulli Sampling. In this sampling method, each row
is either sampled, with probability c/m, or not sampled with probability 1 − c/m.
Thus, whether or not each row is sampled is an independent Bernoulli trial and the
expected total number of rows sampled is c. Our implementation of this algorithm
differs slightly from [Ipsen and Wentworth 2013]. In our paper, rows that are not
sampled are set to 0, while in our code they are removed. Removing the zero rows is
more memory efficient, avoids unnecessary matrix-matrix multiplications and does
not affect κ(SQ). Our code for this algorithm is Sample bernoulli.m.

Sampling Method 3: Bernoulli Sampling, [Avron et al. 2010; Gittens and Tropp 2011; Gross
and Nesme 2010]
Input: A m× n matrix Q and an integer c, such that 1 ≤ c ≤ m.
Output: A c×m sampled matrix B.
Let π be a m× 1 vector of m independent realizations of a boolean random variable with
success probability c/m;
Let s be a ĉ× 1 vector containing the indices where πi = 1, where 1 ≤ i ≤ m and ĉ = the
number of nonzero entries in π;
B =

√
m/c Q(s, :);

Sampling Method 4, Sampling Proportional to Leverage Scores. In this sam-
pling method, c rows are sampled with probability `i(Q)/n with replacement. Our code
for implementing this sampling method is Sample leverageScores.m
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Sampling Method 4: Sampling Proportional to Leverage Scores
Input: A m× n matrix Q and an integer c, such that 1 ≤ c ≤ m and the leverage scores `(Q).
Output: A c×m sampled matrix B.
Let π1, . . . , πc be integers sampled from {1, . . . ,m} with probabilities {`1(Q)/n, . . . , `m(Q)/n}
and replacement;
s =

[
π1, . . . , πc

]
;

B =
√
m/c Q(s, :);

2.2.2. Bounds. We include codes for the two probabilistic bounds for κ(SQ) from our
recent paper [Ipsen and Wentworth 2013] and four other weaker bounds that were
included in the first virsion of our paper [Ipsen and Wentworth 2012].

Bound 1, Coherence based bound. This bound is expressed in terms of coherence
and comes from a matrix Chernoff concentration inequality [Tropp 2011, Corollary
5.2]. It applies to all of the sampling methods 2.2.1 except for Sampling Proportional
to Leverage Scores (Sampling Method 4). Our code for this bound is Bound muBound.m.

BOUND 1 ([IPSEN AND WENTWORTH 2013, THEOREM 4.1]). Let Q be a real m×n
matrix with QTQ = In and coherence µ. Let SQ be a sampling matrix produced by
Algorithms 1, 2, or 3 with n ≤ c ≤ m. For 0 < ε < 1 and f(x) ≡ ex(1 + x)−(1+x) define

δ ≡ n
(
f(−ε)c/(mµ) + f(ε)c/(mµ)

)
. (1)

If δ < 1, then with probability at least 1− δ we have rank(SQ) = n and

κ(SQ) ≤
√

1 + ε

1− ε
.

Bound 2, Leverage score based bound. This bound is based on leverage scores
and only applies to sampling without replacement (Sampling Method 1). It is based on
a matrix Bernstein concentration inequality [Recht 2011, Theorem 4][Ipsen and Went-
worth 2013, Theorem 8.2]. Our code for this bound is Bound leverageScoresBound.m.

BOUND 2 ([IPSEN AND WENTWORTH 2013, THEOREM 5.2]). Let Q be a m×n real
matrix with QTQ = In, leverage scores `j(Q), 1 ≤ j ≤ m, and coherence µ. Let L be
a diagonal matrix such that Lj,j = `j(Q). Let S be a sampling matrix produced by
Algorithm 2 with n ≤ c ≤ m. For 0 < ε < 1 set

δ ≡ 2n exp

(
− 3

2

cε2

m (3‖QTLQ‖2 + εµ)

)
.

If δ < 1, then with probability at least 1− δ we have rank(SQ) = n and

κ(SQ) ≤
√

1 + ε

1− ε
.

Bound 3, Weaker coherence based bound. This bound is based on a probabilistic
two-norm bound for a Monte Carlo matrix multiplication algorithm that samples
according to Sampling Method 2 [Drineas et al. 2011, Theorem 4]. Our code for this
bound is weakerBound 1.m.

BOUND 3 ([IPSEN AND WENTWORTH 2012, THEOREM 3.2]). Given 0 < ε < 1 and
0 < δ < 1, let Q be a m × n real matrix with QTQ = In and coherence µ. Let c be an
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integer so that

min
{
n, ζ ln

(
ζ/
√
δ
)}
≤ c ≤ m, where ζ ≡ 96mµ

ε2
.

If S is a c×m matrix produced by Sampling Method 2 with uniform probabilities pk =
1/m, 1 ≤ k ≤ m, then with probability at least 1− δ, we have rank(SQ) = rank(Ms) = n
and

κ(SQ) = κ(AR−1s ) ≤
√

1 + ε

1− ε
.

Bound 4, Weaker coherence based bound. This bound is based on a special case
of the noncommutative Bernstein inequality [Recht 2011, Theorem 4] and applies to
sampling Sampling Method 2. Our code for this bound is weakerBound 3.m.

BOUND 4 ([IPSEN AND WENTWORTH 2012, COROLLARY 3.10]). Given c ≥ n and
0 < δ < 1, letQ be am×n real matrix withQTQ = In and coherence µ. Let ρ ≡ 2

3 ln(2n/δ)
and

ε1 ≡
µm

2c

(
ρ+

√
12cρ

mµ
+ ρ2

)
.

Let S be a m × m matrix produced by Algorithm 2. If ε1 < 1 then with probability at
least 1− δ, we have rank(SQ) = n and

κ(SQ) ≤
√

1 + ε1
1− ε1

.

Bound 5, Weaker coherence based bound. This bound is based on a Frobenius
norm bound for a Monte Carlo matrix multiplication algorithm that samples according
to Sampling Method 2 and applies to sampling Sampling Method 2. Our code for this
bound is weakerBound 4.m.

BOUND 5 ([IPSEN AND WENTWORTH 2012, THEOREM 3.5]). Given 0 < δ < 1 and
c ≥ n, let Q be a m× n real matrix with QTQ = In and coherence µ. Let

ε2 ≡
√
mn µ

c
+mµ

√
8 log(1/δ)

c
.

Let S be a c×m matrix produced by Algorithm 2 with uniform probabilities pk = 1/m,
1 ≤ k ≤ m. If ε2 < 1, then with probability at least 1− δ, we have rank(SQ) = n and

κ(SQ) ≤
√

1 + ε2
1− ε2

.

Bound 6, Weaker coherence based bound. This bound is again based on the
noncommutative Bernstein inequality in [Recht 2011, Theorem 4] and applies to
sampling Sampling Method 3. Our code for this bound is weakerBound 6.m.

BOUND 6 ([IPSEN AND WENTWORTH 2012, COROLLARY 4.3]). Given m ≥ n, 0 <
γ < 1 and 0 < δ < 1, let Q be a m × n real matrix with QTQ = In and coherence µ. Let
ρ ≡ 2

3 ln(2n/δ) and

ε̂3 ≡
µ

2

(
φρ+

√
1− γ
γ

12mρ+ φ2ρ2
)
, φ =

{
1 if γ ≥ 1− γ
1−γ
γ if 1− γ > γ
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Let S be a m × m matrix produced by Algorithm 3. If ε̂3 < 1 then with probability at
least 1− δ, we have rank(SQ) = n and

κ(SQ) ≤
√

1 + ε̂3
1− ε̂3

.

2.2.3. Leverage score distribution. We include code for two functions which define
leverage score distributions.

Leverage Score Distribution 1, Good leverage score distribution. The first
function is designed to be an ideal case for row sampling. It outputs a leverage score
distribution with one leverage score is set equal to the coherence and the remaining
leverage scores all identical. Thus, most rows are equally “important” and uniform
row sampling should work well. The code for this algorithm is liDist oneBig.m.

Leverage Score Distribution 1: Good leverage score distribution [Ipsen and Wentworth 2013,
Algorithm 6.2]
Input: Integers m and n such that m ≥ n ≥ 1, and desired coherence µ.
Output: A m× 1 vector, ` of leverage scores such that max ` = µ.
` = [µ; ones(m− 1, 1)(n−mu)/(m− 1)];

Leverage Score Distribution 2, Bad leverage score distribution. The second
function is designed to be a particularly bad case for row sampling. It outputs a
leverage score distribution with the maximal number of entries set equal to the
coherence and at most one additional non-zero entry. Matrices with this leverage score
distribution will have the maximal number of zero rows for the given coherence. Zero
rows are bad for uniform row sampling since zero rows contain no information. The
code for this algorithm is liDist manyBig.m.

Leverage Score Distribution 2: Bad leverage score distribution [Ipsen and Wentworth 2013,
Algorithm 6.3]
Input: Integers m and n such that m ≥ n ≥ 1, and desired coherence µ.
Output: A m× 1 vector, ` of leverage scores such that max ` = µ.
m̃ = bn/µc;
if m̃ < m then

` = [µones(m̃, 1);n− m̃µ, zeros(m− m̃, 1)];
else

` = µones(m̃, 1)
end

2.2.4. Test matrix generation. Included in kappa SQ, we provide code for a deterministic
matrix generation algorithm.

Matrix Generation 1, Deterministic matrix generation algorithm. This algo-
rithm inputs the desired matrix dimensions and leverage scores and outputs a test
matrix, Q, with these properties. To compute Q, the algorithm applies m − 1 Givens
rotations to the matrix Q = [In zeros(n,m− n)]T . Each Givens rotation alters the
leverage scores of two rows such that at least one of the two rows has the desired
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leverage score. The reason that only m − 1 Givens rotations are required is that the
leverage scores sum to n and thus the final leverage sore is determined by the other
m − 1 leverage scores. We note here that this algorithm is a transposed version of
[Dhillon et al. 2005, Algorithm 3] and that the Givens rotations are computed from
numerically stable expressions [Dhillon et al. 2005, section 3.1]. The code for this al-
gorithm is mtxGen li.m.

Matrix Generation Algorithm 1: Matrix Generation 1
Input: Integers m and n such that m ≥ n ≥ 1, and a m× 1 vector l of the desired leverage

scores.
Output: A m× n matrix Q with orthonormal columns and the desired leverage scores.
Q =

[
In zeros(n,m− n)

]T ;
[l, I]=sort(l);% Sort and store original order;
i = m− n;
j = m− n+ 1;
for dummyV ar = 1 : m− 1 do

if
∣∣li − ‖eTi Q‖2∣∣ < ∣∣lj − ‖eTj Q‖2∣∣ then
Rotate rows i and j of Q so that ‖eTi Q‖22 = li;
i = i− 1;

else
Rotate rows i and j of Q so that ‖eTj Q‖22 = lj ;
j = j + 1;

end
end
Q(I, :) = Q;% Undo sorting;

2.3. Other Functions
We also include two simple functions to assist with choosing nice, aesthetically pleas-
ing, ranges for c and µ named logPoints.m and logPointsDouble.m, respectivelly.
These functions produce ranges that are more heavily weighted towards the smaller
end of the desired range. Most of the interesting action in the final plots occurs near
smaller c or µ values and, in addition, larger values of c are more computationally ex-
pensive. We describe these functions in the kappa SQ help file which can be accessed
by pressing the help button in the gui (see Section 2.1).

3. EXAMPLES
Here we show a few examples of some of the ways that the kappa SQ GUI can be
used.

Example 1: In this example, we show how to perform a basic experiment with
the GUI. In this experiment we compare Bound 1 to a numerical experiment with
sampling Sampling Method 2. Since Bound 1 applies to this sampling method, the
results should show that at least 100(1 − δ)% of the measured κ(SQ) are less than
the bound. In order for kappa SQ to run a numerical experiment, it must have a
test matrix to work on. Here, we will chose to generate a test matrix with Sampling
Method 1 and leverage scores defined by Sampling Method 1.

To set up the experiment, start by selecting the desired bound and sampling
method. Then, move on to step 2 and input the following values, m=500, n=4 c=n:m,
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mu=2n/m, runs=10, and delta=.01. For the “Matrix Generation” listbox, select “Matrix
Generation 1” (Sampling Method 1). This will cause the leverage score listbox to
appear since this matrix generation algorithm requires a leverage score distribution.
Select “Leverage Score Distribution 1” (Sampling Method 1) for the leverage score
distribution. In figure 3 we show how the GUI should at this point. When ready, click
the plot button to begin the experiment. We show the resulting plot in figure 5.

50 100 150 200 250 300 350 400 450 500

10

20
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κ
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Q
)

m=500, n=4, c=n:m, µ=2*n/m, δ=.01, runs=200, li = Lev. Score Dist 1,

Matrix = Matrix Gen. 1

 

 

Sampling 2

Bound 1

Fig. 5. Resulting plots produced after clicking on the plot-button shown in Figure ??. The solid line shows
Bound 1 and the triangles show the results of the numerical experiments with sampling Sampling Method
2 and a matrix generated by Sampling Method 1.
Here Q is a matrix generated by Algorithm 1 with orthonormal columns, m = 10, 000, n = 4, coherence
µ = 20n/m, . Left panel: Horizontal coordinate axes represent amounts of sampling n ≤ c ≤ 10, 000.
Vertical coordinate axes represent condition numbers κ(SQ); the maximum is 10. Right panels: Horizontal
coordinate axes represent amounts of sampling that give rise to numerically rank deficient matrices SQ.
Vertical coordinate axes represent percentage of numerically rank deficient matrices.

Example 2: Here we show how to set up a kappa SQ batch to perform multiple
experiments in serial. To create a new batch, first click the “Adv. Features” button to
expand the GUI and then click on the “New Batch” button to start a new batch. Next,
set up an experiment by performing steps 1 and 2 as described in the first example.
Then, instead of clicking the plot button, click the “Add to Batch” button. This will
add the current experiment to the batch. Repeat this process for the remaining
experiments. The user may use the arrow buttons to navigate and the “X” button to
delete previously entered experiments. When ready, click the “Save Batch” button
to save the current experiments to a file and then the “Run Batch” button to have
kappa SQ run all of the experiments. Plot images will be saved automatically with a
file name based on the batch file name and their job number.

Example 3: Here we show how the built in plot editing tools can be used to expedite
plot editing, how to create a script that will apply these settings to future plots and set
up kappa SQ to run that script after every experiment. To start, run an experiment
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as described in example 1. Then, click the ”Adv. Features“ button to expand the GUI
and then click on the “Beautify Plots” button. This will open the plot editing window.
(See figure 4).

This window allows the user to easily edit many different plot settings. While using
this window, any changes will instantly be applied to the plots, so we suggest position-
ing the plots and the GUI window such that they can all be seen. When done editing,
press the button labeled ”Save Commands To .m File“ to create a .m file that will apply
these settings to future plots. To have kappa SQ apply these plot settings automati-
cally to all new plots, write the command for this file in the box labeled ”Enter your
command here“ in the main GUI window and check the ”Beautify Command“ check-
box. (See figure 3).

4. CONCLUSIONS
The kappa SQ package is designed to assist researchers examine the behavior of
κ(SQ). The package includes codes for generating matrices with specific leverage score
distributions, generating a two specific leverage score distributions, four types of row
sampling methods and computing bounds on κ(SQ). These codes can be used on their
own, or with the kappa SQ GUI which is capable of setting up and running numerical
experiments, computing bounds, and producing quality plots with the help of custom
plot-editing tools. In addition, the GUI has been designed to detect properly format-
ted Matlab function files which allows the user to incorporate their own codes into the
GUI.
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5. APPENDIX
5.1. Notation
We use the following notation through out this paper.

—m, c and n are integers such that m ≥ c ≥ n > 0.
— ‖ · ‖2 denotes the standard 2-norm.
—AT denotes the transpose of A.
— ei denotes the canonical vector with a 1 in the ith position and zeros everywhere else.
—A is a m× n full column rank matrix.
—Q is a m× n matrix with orthonormal columns that span the column space of A.
— S is a c× n random row sampling matrix.
— κ(A) ≡ ‖A‖2‖A†‖2 denotes the two-norm condition number of a m × n full column

rank matrix A, where A† is the Moore-Penrose inverse.
— Ik = (e1 . . . ek) denotes the k × k identity matrix.
— ones(m× n) denotes the m× n matrix of all ones.
— zeros(m× n) denotes the m× n matrix of all zeros.
— µ(A) denotes the coherence of A.
— `(A) denotes the m × 1 vector containing the leverage scores of A, and `i(A) denotes

the ith leverage score of A.
—L is a diagonal matrix with the leverage score of Q on the diagonal.
— δ is a number such that 0 < δ < 1 and is referred to as the failure probability.
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