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Abstract. Given a function f that depends on m parameters, the problem is to identify an “ac-
tive subspace” of dimension k ≪ m, where f is most sensitive to change, and then to approximate f
by a response surface over this lower-dimensional active subspace.

We present a randomized algorithm for determining k and computing an orthonormal basis for
the active subspace. We also derive a tighter probabilistic bound on the number of samples required
for approximating the active subspace to a user-specified accuracy. The bound does not explicitly
depend on the total number m of parameters, and allows tuning of the failure probability. We
discuss different error measures for response surfaces; and separate errors due to approximation over
a subspace from errors due to construction of the response surface. The accuracy of the construction
method for the response surface is of utmost importance. We design a test problem that makes it
easy to construct active subspaces of any dimension k. Numerical experiments with k = 10 and
a response surface constructed with sparse grid interpolation confirm the effectiveness of our error
measures.
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1. Introduction. A differentiable function f : Rm → R that is expensive to
evaluate can be approximated by a response surface h, which is a function that is
“close” to f in some sense but much cheaper to evaluate. Such response surfaces
can be constructed by evaluating f at a number of training points, and then fitting
a surface at the training points. If m is large, however, a good approximation for f
may require many training points.

One can make the construction of the response surface cheaper by dimension re-
duction, that is, by identifying a lower-dimensional active subspace in the parameter
space R

m [6, 24]. The active subspace represents linear combinations of the m pa-
rameters along which f is most sensitive. An orthogonal basis for an active subspace1

can be computed from k dominant eigenvectors of a Monte Carlo approximation to
the m×m matrix

E =

∫

Rm

∇f(x) (∇f(x))T ρ(x) dx.
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If k ≪ m, then constructing a response surface from this k-dimensional active sub-
space is much cheaper than constructing it from the full parameter space R

m.
The concept of “active subspace” was introduced by Russi [24, Chapter 6], and

formalized by Constantine et al. [6]. Since they rely on the eigendecomposition of a
covariance matrix, active subspaces are related to principal component analysis [17].

Active subspaces have been applied to the solution of mathematical problems,
including stochastic PDEs [6, 9, 30], and reduced-order nonlinear models [2].

Active subspaces have also found applications in engineering. In [4], two functions
related to the manufacturing error of airfoils, both of which depend on twenty vari-
ables, are approximated by a response surface over a one-dimensional active subspace.
In [5], a function related to the wall pressure of combustors, that depends on six vari-
ables, is approximated over an active subspace of three variables. In [3], a model of an
annular combustor in 38 variables is approximated with only three variables. In [10],
an active subspace of one dimension is identified for the power of a photovoltaic cell,
which depends on five variables. In [21], active subspaces are combined with kriging
to construct response surfaces for airfoil design problems.

1.1. Our contributions. The paper contains three major contributions:
1. A tighter bound (Theorem 3.1) for the number of Monte Carlo samples re-

quired to approximate an active subspace to a user-specified error.
The bound does not explicitly depend on the total number m of parameters.

2. Different error measures (Section 4) to quantify the accuracy of a response
surface h.
We carefully distinguish the error due to the construction of h from the error
due to approximating f over an active subspace. We emphasize that if care
is not taken to construct a good response surface h over the active subspace,
then h does a poor job of approximating f everywhere.

3. Design of a simple test problem (Section 5.3) to produce active subspaces of
any dimension k.
Numerical experiments (Section 6) on the test problem demonstrate that a
function of 3495 variables can be approximated over an active subspace of
dimension k = 10 with relative accuracy.

1.2. Outline. Section 2 presents a review of ideal active subspaces and response
surfaces, algorithms for their approximation, along with error bounds. In Section 3,
we derive a tighter bound on the number of samples required to approximate the
active subspace to within a user-specified error, with the proofs relegated to Ap-
pendix A. Section 4 contains a discussion of several error measures for approximate
response surfaces. In Section 5, we extend a test problem with a one-dimensional
active subspace to a class of problems with active subspaces of any dimension. The
numerical experiments in Section 6 apply the error measures from Section 4 to a test
problem from Section 5 with a 10-dimensional active subspace. Section 7 presents a
brief summary, and makes a recommendation for how to compute high-dimensional
active subspaces.

1.3. Assumptions and Notation. Column vectors with m real elements are
represented by lower case bold face letters, such as x ∈ R

m. The Euclidean norm
is ‖x‖2 ≡

√
xTx, where the superscript T denotes the transpose. Upper case roman

letters, such as E, denote real matrices; and I is an identity matrix whose dimension
is clear from the context.

The set N (0, 1) represents normally distributed random variables with mean 0
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and variance 1, while U(a, b) represents uniformly distributed random variables in the
interval [a, b].

Upper case bold face letters, such asX, represent random vectors with probability
density functions ρ(x). The expected value of a function h(X) : Rm → R with respect
to X is

EX [h(X)] ≡
∫

Rm

h(x) ρ(x) dx.

The following assumptions hold throughout the remainder of the paper.
Assumptions 1.1. The vector X ∈ R

m is a random vector with probability
density function ρ(x), which is positive, ρ(x) > 0 and bounded for all x ∈ R

m.
The function f(x) : Rm → R is continuously differentiable. Hence f is Lipschitz

continuous, and there exists L > 0 with ‖∇f(x)‖
2
≤ L for all x ∈ R

m.
The positivity of ρ(x) ensures that the conditional probability density functions

in Sections 2.1 and 2.2 are well-defined, while the boundedness ensures that we can
integrate with respect to ρ(x).

2. Review of active subspace identification and response surface con-

struction. We review results from [6, 7, 8] about identification of active subspaces
and construction of response surfaces.

Section 2.1 introduces ideal active subspaces and response surfaces, while Sec-
tion 2.2 presents sampling-based algorithms for their approximation. Then we review
existing error bounds for: the mean squared error of the approximate response surface
in Section 2.3, and the asymptotic number of samples required to compute an active
subspace to a user-specified accuracy in Section 2.4.

2.1. Ideal active subspaces and response surfaces. We review the defini-
tion of active subspaces from [6] and how to determine ideal active subspaces and
response surfaces.

Ideal active subspaces. The sensitivity of f along a direction v, with ‖v‖
2
= 1,

can be estimated from the expected value of the squared directional derivative of f
along v,

EX

[(
vT ∇f(X)

)2]
=

∫

Rm

(
vT ∇f(x)

)2
ρ(x) dx.

Mean squared derivatives also appear in [26] for measuring sensitivity, but along
coordinate directions. Directional derivatives, in contrast, are not just confined to
coordinate directions but can measure sensitivity in any direction.

The following result associates expected values of squared directional derivatives
along certain directions with eigenvalues and eigenvectors of a matrix.

Lemma 2.1 (Lemma 2.1 in [6]). Let Assumptions 1.1 hold, and define the m×m
matrix

E ≡
∫

Rm

∇f(x) (∇f(x))
T
ρ(x) dx. (2.1)

If Ev = λv for a scalar λ and a vector v with ‖v‖2 = 1, then

EX

[
(vT ∇f(X))2

]
= λ.
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Proof. This follows from EX

[
(vT ∇f(X))2

]
= vTEv = λvTv = λ.

Since the m×m matrix E is symmetric positive semi-definite, it has an eigende-
composition

E = V ΛV T , Λ =



λ1

. . .

λm


 with λ1 ≥ · · · ≥ λm ≥ 0, (2.2)

and V ∈ R
m×m is an orthogonal matrix of eigenvectors.

Lemma 2.1 implies that eigenvectors associated with dominant eigenvalues repre-
sent directions along which f is most sensitive. Dominant eigenvalues can be identified
from large relative eigenvalue gaps [8, Section 4.1].

Definition 2.2 (Ideal active subspace). If E has k dominant eigenvalues with
λk ≫ λk+1, partition the eigendecomposition (2.2) conformally

Λ =

(
Λ1

Λ2

)
, with Λ1 = diag

(
λ1 · · · λk

)
, V =

(
V1 V2

)
. (2.3)

The orthonormal columns of the m× k matrix V1 are the eigenvectors associated with
the k dominant eigenvalues of E.

We call range(V1) the ideal active subspace of dimension k for f .

Ideal response surfaces. Now we construct a response surface over the ideal
active subspace range(V1). To this end set

X = V V TX = V1Y + V2Z, where Y ≡ V T
1 X, Z ≡ V T

2 X.

HereY ∈ R
k represents the coordinates of the projection ofX onto the active subspace

range(V1), while Z ∈ R
m−k represents the coordinates of the projection of X onto the

orthogonal complement. The purpose of this decomposition is to approximate f(X)
by a function that depends on Y only.

The simplest approximation would be2 f(V1Y) = f(V1V
T
1 X). In the special case

λk+1 = · · · = λm = 0, the function f is constant over range(V2) and the approximation
is exact, f(V1y) = f(x) for all x ∈ R

m.
In general, though, λk+1 > 0 and f changes over range(V2). We can improve the

approximation f(V1Y) by averaging over all z ∈ R
m−k.

Definition 2.3 (Ideal response surface). We define the ideal response surface
of f(X) = f(V1Y + V2Z) associated with the ideal active subspace range(V1) as the
conditional expectation of f(X) given Y = y,

g(Y) ≡ EZ [f(V1Y + V2Z) | Y = y] =

∫

Rm−k

f(V1y + V2z) ρZ|Y(z |y) dz. (2.4)

Here g : Rk → R; and ρZ|Y(z |y) is the conditional density of Z given Y = y.
Note that X = V1Y + V2Z. So the joint density of Y and Z is ρ(y, z) = ρ(x);

and the marginal density of Y is ρY(y) ≡
∫
Rm−k ρ(y, z) dz. Thus [23, Section 3.3] the

density in (2.4) can be written as

ρZ|Y(z |y) = ρ(y, z)/ρY(y).

2Since f is defined on all of Rm, the projection V1V T
1
x is automatically in the domain. However,

if the domain of f is a proper subset of R
m, then V1V T

1
x may not be in the domain. See [30,

Section 1.1] and [6, Section 4.1.2] for a discussion of this issue.
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Division by zero does not occur because Assumptions 1.1 guarantee ρ(x) > 0 on R
m.

Remark 2.4. The ideal response surface (2.4) is optimal in the sense of the
mean squared error [13, Section 7.9: Theorem 17].

Specifically, among all functions φ(Y) : R
k → R with EY

[
φ(Y)2

]
< ∞, the

function that minimizes

EZ

[
(f(V1Y + V2Z)− φ(Y))

2 | Y = y
]

is

g(Y) = EZ [f(V1Y + V2Z) | Y = y] = EZ [f(X) | Y = y] .

The mean squared error over all x, which results from approximating f(X) with
the ideal response (2.4), can be bounded by the subdominant eigenvalues of E.

Theorem 2.5 (Theorem 3.1 in [6]). Let Assumptions 1.1 hold. If E in (2.1) has
an eigendecomposition partitioned as in (2.3) with λk > λk+1, then

∫

Rm

(
f(X)−EZ [f(X) | Y = y]

)2
ρ(x) dx ≤ c1(λk+1 + · · ·+ λm),

where c1 is a constant that depends on ρ(x).
Thus, if the subdominant eigenvalues are small, then the ideal response surface

(2.4) is a good approximation to f .

2.2. Approximate active subspaces and response surfaces. Computing
the matrix E in (2.1) and the ideal response surface in (2.4) is expensive because they
involve integrals over high-dimensional spaces.

Approximate active subspaces. We approximateE with a Monte Carlo method
as in [6, (2.16)],

Ê ≡ 1

n1

n1∑

i=1

∇f(xi) (∇f(xi))
T

where the vectors xi ∈ R
m are sampled according to ρ(x), and n1 ≤ m is the number

of samples, determined as in Sections 2.4 and 3. The m ×m matrix Ê is symmetric
positive semi-definite with eigendecomposition

Ê = V̂ Λ̂V̂ T , Λ̂ =



λ̂1

. . .

λ̂m


 where λ̂1 ≥ · · · ≥ λ̂m ≥ 0, (2.5)

and V̂ ∈ R
m×m is an orthogonal matrix of eigenvectors.

We assume that the approximation Ê has preserved the large relative eigenvalue
gaps from E, and use the same k below as in Definition 2.2.

Definition 2.6 (Approximate active subspace). If Ê has k dominant eigenvalues

with λ̂k > λ̂k+1, partition the eigendecomposition (2.5) conformally

Λ̂ =

(
Λ̂1

Λ̂2

)
, with Λ̂1 = diag

(
λ̂1 · · · λ̂k

)
, V̂ =

(
V̂1 V̂2

)
, (2.6)

where the orthonormal columns of the m×k matrix V̂1 are the eigenvectors associated
with the k dominant eigenvalues of Ê.

We call range( V̂1) the approximate active subspace of dimension k for f .
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Algorithm 1 Computing an approximate active subspace of f

Input:

• Functions f(x) and ρ(x) satisfying Assumptions 1.1
• Integer 0 < n1 ≤ m {Number of columns in G}

Output:

• m× k matrix V̂1 with orthonormal columns
{Basis for approximate active subspace}

G = 0m×n1

for i = 1 : n1 do

Sample xi ∈ R
m according to ρ(x)

G(:, i) = ∇f(xi)
end for

Compute the thin SVD G = UΣWT in (2.7)
Choose an integer k with σ2

k ≫ σ2
k+1

V̂1 = U(:, 1 : k)

Computation. One can avoid the explicit computation of Ê by representing it
in factored form, as a Gram matrix,

Ê =
1

n1

GGT , where G ≡
(
∇f(x1) . . . ∇f(xn1

)
)
.

The eigenvalues and eigenvectors of Ê are then computed from a thin singular value
decomposition of the m× n1 matrix G.

Let n1 ≤ m and r ≡ rank (G) = rank
(
Ê
)
. Then G has a thin singular value

decomposition (SVD)

G = UΣWT , Σ =



σ1

. . .

σr


 where σ1 ≥ · · · ≥ σr > 0, (2.7)

and U ∈ R
m×r and W ∈ R

n1×r have orthonormal columns.
The left singular vectors U of G span the column space of Ê, while the singular

values of G are related to the eigenvalues of Ê by 1

n1
σ2
i = λ̂i , 1 ≤ i ≤ r. Algorithm 1

summarizes the computation of the approximate active subspace.

Approximate response surfaces. We start by determining the ideal response
surface for the approximate active subspace. Then we apply two conceptual approx-
imation steps, followed by an interpolation to determine an approximate response
surface.

As for the ideal response surface, start with

X = V̂ V̂ T X = V̂1Ŷ + V̂2Ẑ, where Ŷ ≡ V̂ T
1 X, Ẑ ≡ V̂ T

2 X.

Then the conditional expectation of f(X) = f(V̂1Ŷ + V̂2Ẑ) given Ŷ = ŷ is

ĝ(Ŷ) ≡ E
Ẑ

[
f
(
V̂1Ŷ + V̂2Ẑ

)
| Ŷ = ŷ

]
(2.8)

=

∫

Rm−k

f
(
V̂1ŷ + V̂2ẑ

)
ρ
Ẑ|Ŷ ( ẑ | ŷ) dẑ.
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Algorithm 2 Computing training pairs for the approximate response surface

Input:

• Functions f(x) and ρ(x) satisfying Assumptions 1.1

• m× k matrix V̂1 with orthonormal columns
{Basis for approximate active subspace}

• Integer n2 > 0 {Number of samples for Monte Carlo integration}
• Training points ŷi ∈ R

k, 1 ≤ i ≤ T

Output:

Training pairs (ŷi, t̂i), 1 ≤ i ≤ T

for i = 1 : T do

Sample ẑj ∈ R
m−k according to ρ

Ẑ | Ŷ, 1 ≤ j ≤ n2

t̂i =
∑n2

j=1
f(V̂1ŷi + V̂2ẑj)

end for

is the ideal response surface for the approximate subspace range( V̂1).
Now we go about the approximation. First, replace the high-dimensional integrals

(2.8) with Monte Carlo approximations

g̃(ŷ) ≡ 1

n2

n2∑

j=1

f
(
V̂1ŷ + V̂2ẑj

)
(2.9)

where the vectors ẑj ∈ R
m−k are sampled according to the conditional density func-

tion ρ
Ẑ | Ŷ, and n2 is the number of samples. Second, compute the Monte Carlo

approximations (2.9) only at T training points ŷi,

t̂i ≡ g̃(ŷi), 1 ≤ i ≤ T.

Algorithm 2 summarizes the corresponding computations for user-specified training
points.

Definition 2.7 (Approximate response surface). The approximate response

surface for the approximate active subspace range( V̂1) is a function h : Rk → R that

interpolates f̃ at the T training pairs (ŷi, t̂i),

h(ŷi) = t̂i, 1 ≤ i ≤ T.

In Section 6, we construct h from piecewise multilinear interpolation over a sparse
grid.

2.3. Error of the approximate response surface. We present a bound on
the absolute error of the approximate response surface when the approximate active
subspace is computed by Algorithm 1 and the training pairs by Algorithm 2.

No assumptions are made on the particular interpolation method for h, other
than a bound on the mean squared error between h(ŷ) and g̃(ŷ) for all ŷ ∈ R

k.
Theorem 2.8 is a restatement of [6, Theorem 3.7] and bounds the mean squared

error between h and f .
Theorem 2.8 (Theorem 3.7 in [6], [7]). Suppose that

7



1. f(x) and ρ(x) satisfy Assumptions 1.1.
2. The eigenvalues of E in Lemma 2.1 have a gap λk > λk+1 for some 1 ≤ k <

m.
3. The ideal active subspace V1 is given in Definition 2.2.
4. Algorithm 1 computes a m × k matrix V̂1 with orthonormal columns so that∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
≤ ǫ for some ǫ > 0.

5. Algorithm 2 computes t̂i = g̃(yi) from n2 samples for each 1 ≤ i ≤ T .
6. The approximate response surface h interpolates the T training pairs (ŷi, t̂i)

such that for some c2 > 0 and all ŷ ∈ R
k

EZ

[(
g̃(Ŷ)− h(Ŷ)

)2
| Ŷ = ŷ

]
≤ c2.

Then, with the ρ(x)-dependent constant c1 from Lemma 2.1,

∫

Rm

(f(x)− h(ŷ))
2
ρ(x) dx ≤

[√
c1

(
1 +

1√
n2

)(
ǫ
√
λ1 + · · ·+ λk +

√
λk+1 + · · ·+ λm

)
+
√
c2

]2
.

Remark 2.9. We make the following observations about Theorem 2.8.
1. The mean squared error in item 6 is equal to the integral

EZ

[(
g̃(Ŷ)− h(Ŷ)

)2
| Ŷ = ŷ

]
=

∫

Rm−k

(g̃(ŷ)− h(ŷ))
2
ρ
Ẑ|Ŷ(ẑ | ŷ) dz.

2. The mean squared error in the approximate response surface h is small if:
(a) The eigenvalues λk+1, . . . , λm of E are small;

(b) The approximate active subspace spanned by V̂1 has the same dimension
as and is close to the ideal active subspace spanned by V1, see Section 2.4;

(c) The number of Monte Carlo samples n2 for the training points is suffi-
ciently large;

(d) The interpolation for computing the approximate response surface h is
sufficiently accurate.

3. The accuracy of the interpolation method for h is crucial. For the error in h
to be small, c2 must be small since it appears as an additive term in the error
bound.

4. The number of Monte Carlo samples n2 has only a weak influence on the
error, since 1 ≤ (1 + 1√

n2
) ≤ 2.

2.4. Bounding the angle between approximate and ideal subspaces.

To capture item 3 in Theorem 2.8, we review a probabilistic bound from [8] on the
asymptotic number of samples n1 required to compute an approximate active subspace
to a user-specified accuracy.

Again, we assume that the approximate active subspace has the same dimension
as the ideal active subspace. Since the m × k matrices V1 and V̂1 have orthonormal
columns, the orthogonal projectors onto the ideal and approximate active subspaces
are V1V

T
1 and V̂1V̂

T
1 , respectively. Let θ be the largest principal angle between the ap-

proximate and ideal active subspaces then [12, Sections 2.5.3, 6.4.3] and [28, Corollary
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2.6]

sin θ =
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
. (2.10)

Thus, the sine of the largest principal angle equals the two-norm difference between
the projectors. The probabilistic bound below specifies the asymptotic number of
samples required to limit the angle to a user-specified accuracy.

Theorem 2.10 (Corollary 3.7 in [8]). Suppose that
1. f(x) and ρ(x) satisfy Assumptions 1.1.
2. The eigenvalues of the m×m matrix E in Lemma 2.1 have a gap λk > λk+1

for some 1 ≤ k < m.
3. The ideal active subspace of dimension k is given in Definition 2.2.
4. Algorithm 1 computes a m× k matrix V̂1 with orthonormal columns.
5. The desired accuracy is limited by the relative gap 0 < ǫ < λk−λk+1

5 λ1
.

If the number of samples in Algorithm 1 is

n1 = Ω

(
max

{
L2

λ1 ǫ
,

ν2

λ2
1 ǫ

2

}
ln(2m)

)
,

where ν2 is a measure of variance [8, (3.25)], then with high probability

sin θ =
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4λ1 ǫ

λk − λk+1

.

Theorem 2.10 depends on the dimension m of E, which is also the number of
parameters. We remove this dependence in a tighter non-asymptotic bound in the
next section.

3. A tighter bound on the angle between approximate and ideal active

subspaces. We present a tighter bound on the angle between approximate and ideal
subspaces that does not depend explicitly on the total number m of parameters and
allows tuning of the failure probability.

Theorem 3.1. Suppose that
1. f(x) and ρ(x) satisfy Assumptions 1.1.
2. The eigenvalues of the m×m matrix E in Lemma 2.1 have a gap λk > λk+1

for some 1 ≤ k < m.
3. The ideal active subspace of dimension k is given in Definition 2.2.
4. Algorithm 1 computes a m× k matrix V̂1 with orthonormal columns.
5. The desired accuracy is limited by the relative gap 0 < ǫ <

λk−λk+1

4 λ1
.

6. 0 < δ < 1 is a user-specified failure probability.
If the number of samples in Algorithm 1 is at least

n1 ≥ 8

3

L2

λ1 ǫ2
ln

(
4

δ

λ1 + · · ·+ λm

λ1

)
,

then with probability at least 1− δ,

sin θ =
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4λ1 ǫ

λk − λk+1

.

Proof. See Section A.
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Like Theorem 2.10, Theorem 3.1 is conceptual in the sense that it require knowl-
edge of the eigenvalues of E and a global bound L on ‖∇f(x)‖

2
. Nevertheless, The-

orem 3.1 is informative because it implies that approximating an active subspace is
easier if:

1. The relative eigenvalue gap (λk − λk+1)/λ1 is large.
One can view the inverse of this relative gap as a measure of sensitivity for the
computed subspace V̂1. This measure is invariant under scalar multiplication
of E.

2. The function f is smooth.
3. The matrix E has small intrinsic dimension3

λ1 + · · ·+ λm

λ1

=
trace (E)

‖E‖2
,

meaning E has low numerical rank.

4. Two error measures for the approximate response surface. We dis-
cuss two ways of measuring the error of the approximate response surface h as an
approximation of f .

4.1. Mean squared error. Theorem 2.8 bounds an absolute error that is av-
eraged over the whole R

m. It does not distinguish the error over the active subspace,
which one would expect to be considerably smaller, from the error outside the active
subspace.

4.2. Pointwise relative error. A more precise measure is the relative error
between h and f

∣∣∣∣
h(ŷ)− f(x)

f(x)

∣∣∣∣ , where ŷ = V̂ T
1 x. (4.1)

for different points x. We distinguish errors (4.1) at points x in the approximate

active subspace range( V̂1) from those outside the approximate active subspace.

If h is not sufficiently accurate in the approximate active subspace, i.e. large
errors (4.1) for x ∈ range( V̂1), then h is unlikely to be accurate at other points as
well. it is important to construct a response surface in such a way as to ensure some
degree of accuracy.

Even if h is sufficiently accurate over range( V̂1), the errors (4.1) can still be large
for x outside the active subspace. This can happen if λk+1, . . . , λm are too large, or

if V̂1 is not a good approximation to V1.

5. A specific problem. To demonstrate the effectiveness of our approach in
Section 4.2, we generate active subspaces of higher dimensions by generalizing a prob-
lem from [6, Section 5].

We define Gaussian random fields (Section 5.1) before describing the original
problem (Section 5.2) and our generalization (Section 5.3).

5.1. Gaussian random fields. Since the original problem [6, Section 5] and
our generalization involve log-Gaussian random fields, we present brief definitions,
but limit them strictly to our very specific context.

3See Definition A.1.
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Definition 5.1 (Definition 1.3 in [1]). A Gaussian random field a(s) over R2 is a
scalar function such that, for any integer k > 0, and any k fixed points s1, . . . , sk ∈ R

2,
the vector

[
a(s1) · · · a(sk)

]

has a multivariate Gaussian distribution.
A Gaussian random field over R

2 is described by a mean function, and by a
covariance function C(s, s′).

Definition 5.2. A log-Gaussian random field a(s) over R
2 is a random field

whose natural logarithm ln(a(s)) is a Gaussian random field.
Specifically, for any integer k > 0, and any k fixed points s1, . . . , sk ∈ R

2, the
vector

[
ln(a(s1)) · · · ln(a(sk))

]

has a multivariate Gaussian distribution.
Log-Gaussian fields are described by the mean function and the covariance func-

tion of the underlying Gaussian random field.

5.2. Original problem. As in [6, Section 5], we define the function f in terms
of the numerical solution of a partial differential equation.

The PDE is

−∇s · (a(s)∇su (s, a(s))) = 1, s ∈ S ≡ [0, 1]× [0, 1], (5.1)

with boundary conditions u = 0. The coefficient a(s) is a log-Gaussian random field
with mean zero and covariance function C(s, s′). The desired function f will be an
approximation of

∫
S u (s, a (s)) ds.

This log-Gaussian random field can be represented with a Karhunen-Loéve ex-
pansion [25, (5.5)],

ln(a(s)) =

∞∑

i=1

√
µi φi(s)xi,

where µi are the eigenvalues of the covariance C(s, s′), φi(s) are the associated or-
thonormal eigenfunctions, and the scalars xi are independent N (0, 1) random vari-
ables.

Numerical solution. We solve (5.1) with a finite element discretization from MAT-
LAB’s PDE Toolbox4, and approximate ln(a(s)) at the nodes ni, 1 ≤ i ≤ N . The
eigenvalues and eigenfunctions of the covariance function C(s, s′) are approximated

by the eigenvalues µ̂i and eigenvectors φ̂i of the N × N covariance matrix C with
elements

Cij = C(ni,nj), 1 ≤ i ≤ N, 1 ≤ j ≤ N.

Small eigenvalues |µ̂i| < 10−12 are truncated. With m ≤ N being the number of
sufficiently large eigenvalues remaining, we approximate ln(a(s)) by

â(x) ≡
m∑

i=1

√
µ̂i φ̂ixi, where x ≡

[
x1 · · · xm

]
,

and xi are independent N (0, 1) random variables.

4http://www.mathworks.com/products/pde/
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Well-posedness. If a(s) ≥ αmin > 0 for all s ∈ S, then (5.1) is well-posed [27,
pages 13, 28]. If also 0 < αmin ≤ a(s) ≤ αmax for all s ∈ S, then the error in the
finite element solution can be bounded [11, page 128].

Since the Karhunen-Loéve expansion of ln a(s) depends on Gaussian random vari-
ables xi, it is not possible to bound a(s) from above and below. However, for a given
fixed vector x, one can determine, a posteriori, bounds so that αmin ≤ exp(â(x)) ≤
αmax. The largest such αmax and the smallest αmin are reported in Section 6.2.

Construction of f . The elements of the N -vector u are the solutions of the dis-
cretized PDE at the nodes ni, and we define f via

f(x) ≡ 11T M u,

where M is the N ×N mass matrix of the finite element discretization, and 11 is the
N -vector of all ones.

Since â(x) involves m random N (0, 1) variables, f(x) depends on m parameters.
However the dimension of the active subspace appears to be much lower. It has
been observed [6, Section 5.2] and [8, Section 5.2] that functions closely related to f
are sensitive to change primarily along only a single direction in R

m. Hence, for all
practical purposes, f has an approximate active subspace of dimension k = 1.

5.3. Generalization. We generalize (5.1) to obtain functions f that are sensi-
tive to change along several directions and give rise to approximate active subspaces
of higher dimension.

To that end, consider the family of PDEs

−∇s · (a(s, w)∇su(s, a(s, w)) = 1, s ∈ S = [0, 1]× [0, 1], 1 ≤ w ≤ W, (5.2)

with boundary conditions u = 0 for each PDE. The wth coefficient a(s, w) is a log-
Gaussian random field with mean zero and covariance function Cw(s, s′). The desired

function f will be an approximation of
∑W

w=1

∫
S
u (s, a(s, w)) ds.

Numerical solution. As in Section 5.2, we compute a finite element discretization
of (5.1) at N nodes ni, and express each ln a(s, w) in terms of a Karhunen-Loéve
expansion, which gives a N × N covariance matrix with mw ≤ N sufficiently large
eigenvalues, 1 ≤ w ≤ W .

The resulting approximation âw(xw) of ln a(s, w) depends on a vector xw, whose
mw elements are independent random N (0, 1) variables, 1 ≤ w ≤ W .

Construction of f . The elements of the N -vector uw are the solutions of the wth
discretized PDE at the nodes ni, and define f via

f(x1, . . . ,xW ) ≡ 11T M

W∑

w=1

uw,

where M is the N ×N mass matrix from Section 5.2.

The function f depends on a total of m =
∑W

w=1 mw parameters. If the W
covariance functions Cw(s, s′) are sufficiently different, then f should vary along W
directions and have an approximate active subspace of dimension k = W . The identi-
fication of this subspace in Algorithm 1 requires computing gradients∇f(x1, . . . ,xW ).
This is done by extending the method in [6, Section 5] from W = 1 to W > 1.

12
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Fig. 6.1. Twenty largest eigenvalue ratios λ̂j/λ̂1 of the 3495 × 3495 matrix Ê versus index j,
computed by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot: n1 = 1000.

6. Numerical experiments. We evaluate the quality of the approximate re-
sponse surfaces on the problem (5.2) with W = 10, by means of the error measures
in Section 4.2

The covariance functions are based on two families, exponentials and rational
quadratics see [22, page 86] and [1, Sections 4.2.3 and 4.2.4]),

C(s, s′) = exp(−‖s− s′‖α
2
) and C(s, s′) =

(
1 +

‖s− s′‖2
2

2α

)α

for α ∈ {2/5, 4/5, 6/5, 8/5, 10/5}.
We solve the system (5.2) of 10 PDEs with MATLAB’s PDE Toolbox, on a finite

element mesh with N = 712 nodes. Due to the number of sufficiently large eigenvalues
in the covariance matrices, f(x1, . . . ,x10) depends on a total ofm =

∑10

w=1
mw = 3495

parameters.
In the following we discuss: Identifying an approximate active subspace with Al-

gorithm 1 (Section 6.1); computing training pairs with Algorithm 2 and constructing
an approximate response surface (Section 6.2); and assessing the error between f and
the approximate response surface (Section 6.3).

6.1. Identifying an approximate active subspace. We confirm that the
function f(x1, . . . ,x10) is indeed sensitive to change along 10 directions in R

3495. To
this end, we compute the gaps between the dominant eigenvalues of the 3495× 3495
matrix Ê in (2.5).

Algorithm 1 represents Ê in factored form as a Gram product Ê = 1

n1
GGT , where

G is a 3495× n1 matrix, and computes the singular values of σj of G. The properly

normalized squared singular values of G are eigenvalues of Ê, that is λ̂j = σ2
j /n1.

Figure 6.1 shows the 20 largest eigenvalue ratios λ̂j/λ̂1 of Ê, computed by Al-
gorithm 1 with two sampling amounts: n1 = 100 and n1 = 1000. Both amounts
clearly produce a large relative gap (λ̂10 − λ̂11)/λ̂1 ≈ 100. Thus f(x1, . . . ,x10) has an
approximate active subspace of dimension k = 10 in its parameter space R

3495.

6.2. Computation of training pairs, and construction of approximate

response surface. We use MATLAB’s Sparse Grid Interpolation Toolbox [18, 19],
which implements piecewise multilinear interpolation, to select training points and
construct an approximate response surface.

Gaussian processes [6, Section 5] would have been an alternative option. They
have the advantage of added “confidence intervals” around the constructed surfaces.
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However, we decided in favour of sparse grid interpolation due to the availability of
robust software, appropriateness for high-dimensional problems, and simplicity.

Though the goal is a response surface h over a subspace of dimension k = 10,
we also construct surfaces over spaces of dimensions 1 ≤ k ≤ 14, to get a sense for
how the accuracy of h changes with increasing k. For efficiency, we replace the full
space Rk by a k-dimensional hypercube [−3, 3]k = [−3, 3]×· · ·×[−3, 3], which covers 3
standard deviations of N (0, 1) random variables. The relative tolerance of the toolbox
is set to 10−1.

The toolbox constructs a sparse grid over [−3, 3]k. The resulting sparse grid
points are the training points ŷi and inputs for Algorithm 2. Table 6.1 displays the
number of training points for subspaces of dimension 1 ≤ k ≤ 14.

We make two simplifications in Algorithm 2.

1. Set n2 = 1.
This can be done, see also [6, Section 4.2], since the sampling amount n2 has
only a weak effect on the mean square error bound of h in Theorem 2.8.

2. Set ẑ1 = 0.
With only a single sample, it is not necessary to draw from the conditional
distribution.

Regarding the boundedness discussed at the end of Section 5.2, the largest ob-
served αmax and the smallest observed αmin values are 933 and 0.001, respectively.

6.3. Error of the approximate response surface. We evaluate the error of
the approximate response surface h with the two measures discussed in Section 4.

Mean squared error. Theorem 2.8 bounds the averages of the absolute errors
(f(x)− h(V̂ T

1 x))2 at all x ∈ R
3495. Our numerical approximation

1

105

10
5∑

i=1

(
f(xi)− h(V̂ T

1 xi)
)2

(6.1)

is based on 105 points xi ∈ R
3495 whose elements are independent random N (0, 1)

variables.

Figure 6.2 shows the error (6.1) for approximate response surfaces h over active
subspaces of dimension 1 ≤ k ≤ 14. The error (6.1) decreases with increasing di-
mension, but starts to stagnate at k = 10, confirming that the approximate active
subspace has dimension 10. Furthermore, (6.1) does not change substantially when
the sampling amount of Algorithm 1 increases from n1 = 100 to n1 = 1000.

Pointwise relative error. First we examine the errors at testing points inside
the approximate active subspace, and then at points outside.

k 1 2 3 4 5 6 7
Training points 5 29 177 1105 6993 15121 30241

k 8 9 10 11 12 13 14
Training points 56737 100897 171425 280017 442001 677041 1009905

Table 6.1
Number of sparse grid points in [−3, 3]k versus k, for 1 ≤ k ≤ 14. The points serve as the

training points for Algorithm 2.
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Fig. 6.2. Approximate MSE (6.1) versus dimension k, for 1 ≤ k ≤ 14. Approximate active
subspaces for h are computed by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot:
n1 = 1000.
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Fig. 6.3. Response surface accuracy inside approximate active subspaces: Maximum and mean
relative errors (6.2) versus dimension k for 1 ≤ k ≤ 14. Approximate active subspaces are computed
by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot: n1 = 1000.

Testing points in the approximate active subspace. We determine the relative er-
rors (4.1) at testing points in xi ∈ range( V̂1),

∣∣∣∣∣
h(V̂ T

1 xi)− f(xi)

f(xi)

∣∣∣∣∣ for xi ∈ range( V̂1) ⊂ [−3, 3]k, 1 ≤ i ≤ 1000k. (6.2)

A testing point is computed as xi = V̂1z, where the elements of z ∈ R
k are independent

random U(−3, 3) variables.
Figure 6.3 displays the maximum and mean relative errors (6.2). For sampling

amounts n1 = 100 in Algorithm 1, the mean is about 10−2. With larger amounts n1 =
1000, there is a slight decrease in the maximum and mean relative errors associated
with the larger dimensions 8 ≤ k ≤ 14. We were disappointed, though, to see relative
errors exceeding the relative interpolation tolerance of 10−1.

To understand the distribution of errors for the dimension of interest, k = 10, we
plot all 10000 relative errors in Figure 6.4. For both sampling amounts, most errors
are below 10−1. Furthermore, for n1 = 100, about 60% of the relative errors are below
10−2, and for n1 = 1000 this increases to about 80%.

Testing points outside the approximate active subspace.. We determine the rela-
tive errors (4.1) at testing points outside xi ∈ range( V̂1),

∣∣∣∣∣
h(V̂ T

1 xi)− f(xi)

f(xi)

∣∣∣∣∣ for xi 6∈ range( V̂1), 1 ≤ i ≤ 1000k. (6.3)
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Fig. 6.4. Response surface accuracy inside the approximate active subspace of dimension k =
10: Sorted relative errors (6.2) versus testing point index i. Approximate active subspaces are
computed by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot: n1 = 1000.
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Fig. 6.5. Response surface accuracy outside approximate active subspaces: Maximum and mean
relative errors (6.3) versus dimension k for 1 ≤ k ≤ 14. Approximate active subspace are computed
by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot: n1 = 1000.

A testing point is computed as xi = V̂1z1 + (I − V̂1V̂
T
1 ) z2, where the elements of

z1 ∈ R
k are independent random U(−3, 3) variables, and the elements of z2 ∈ R

m−k

are independent random N (0, 1) variables.
Figure 6.5 displays the maximum and mean relative errors (6.3). For sampling

amounts n1 = 100 in Algorithm 1, the mean error decreases with increasing dimension,
until it stagnates at about 10−2 for dimension k = 10. With larger amounts n1 = 1000,
there is a slight decrease in the mean. The maximum relative errors exceed 10−1 for
all dimensions 1 ≤ k ≤ 14 and both sampling amounts n1.

To understand the distribution of relative errors for the dimension of interest,
k = 10, we plot all relative errors. The maximum does exceed 10−1 for both sampling
amounts n1, but most errors are below 10−1. Overall, larger smaller sampling amounts
result in slightly smaller relative errors.

7. Conclusions. The numerical experiments, as illustrated in Figures 6.2 – 6.6,
suggest that approximate response surfaces over subspaces of dimension k = 10 can
be approximated, without too much effort, to an absolute accuracy of at least 10−3

and a relative accuracy of at least 10−1.
Note, though, that the experiments in Section 6 were computationally feasible

because the active subspace has the small dimension k = 10. For problems with
high-dimensional active subspaces, however, say k = 105 or k = 106, the SVD-based
subspace computation in Algorithm 1 is too expensive. We believe there is a lot more
potential for randomized algorithms [14, 20], in particular when it comes to replacing
the SVD in Algorithm 1 by a randomized iterative method for approximation of
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Fig. 6.6. Response surface accuracy outside the approximate active subspaces of dimension
k = 10: Sorted relative errors (6.3) versus testing point index i. Approximate active subspace are
computed by Algorithm 1 with n1 samples. Left plot: n1 = 100. Right plot: n1 = 1000.

dominant subspaces.
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Appendix A. Auxiliary results and proof of Theorem 3.1. We present a
number of auxiliary results in Section A.1 that are required for the proof of Theo-
rem 3.1 in Section A.2.

A.1. Auxiliary results. We start with a matrix concentration inequality (The-
orem A.2), which provides the basis for a probabilistic bound (Theorem A.3) on the

relative error ǫ = ‖Ê − E‖2/‖E‖2 in terms of the number of samples n1 used by Al-
gorithm 1. This can be rearranged (Corollary A.4) into a lower bound on the number
of samples n1 in terms of ǫ. At last, a ”structural” linear algebra result makes the
transition from ǫ to the angle between the approximate and ideal active subspaces.

The concentration inequality depends on the following version of ”rank”.

Definition A.1 (Definition 7.1.1 in [31]). If the m × m matrix P is real sym-
metric positive semi-definite, then its intrinsic dimension is

intdim (P ) ≡ trace (P ) / ‖P‖
2
,

where 1 ≤ intdim (P ) ≤ rank (P ) ≤ m.

The following matrix concentration inequality bounds a sum of independent ran-
dom matrices. In this specialization of the matrix Bernstein inequality [31, Theorem
7.3.1] to symmetric matrices, the ”random matrices” are matrix-valued random vari-
ables that are bounded with zero mean, and whose ”variance” is bounded, in the sense
of the Löwner partial order5, by a symmetric positive semi-definite matrix P . Below
is a specialization

Theorem A.2 (Theorem 7.3.1 in [31]). Suppose that

1. Xj are n1 independent real symmetric random matrices,
2. E[Xj ] = 0 and ‖Xj‖2 ≤ p1 for 1 ≤ j ≤ n1,
3. P is a real symmetric positive semi-definite matrix so that P −∑n1

j=1
E[X2

j ]
is positive semi-definite.

5If P1 and P2 are real symmetric matrices, then P1 � P2 means that P2 − P1 is positive semi-
definite [16, Definition 7.7.1].
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If ǫ ≥ ‖P‖1/2
2

+ p1/3, then

Prob



∥∥∥∥∥∥

n1∑

j=1

Xj

∥∥∥∥∥∥
2

≥ ǫ


 ≤ 4 intdim (P ) exp

( −ǫ2/2

‖P‖
2
+ p1ǫ/3

)
.

Since E
[∑n1

j=1
Xj

]
= 0, Theorem A.2 bounds the deviation of the sum from its

mean. The bound for the probability does not depend on the dimension of the random
variables. Theorem A.2 is now applied to the matrices in Sections 2.1 and 2.2.

Theorem A.3. Let

E ≡
∫

Rm

∇f(x) (∇f(x))T ρ(x) dx and Ê ≡ 1

n1

n1∑

j=1

∇f(xj)(∇f(xj))
T ,

where xj are sampled independently according to ρ(x), as in Algorithm 1. If 0 < δ < 1,
then with probability at least 1− δ,

∥∥∥Ê − E
∥∥∥
2

‖E‖
2

≤ γ̂ +
√
γ̂(γ̂ + 6) where γ̂ ≡ L2

3n1 ‖E‖
2

ln

(
4

δ
intdim (E)

)
.

Proof. The proof is similar to the one of [15, Theorem 7.8].

Write Ê − E =
∑n1

j=1
Xj, where

Xj ≡
1

n1

∇f(xj)(∇f(xj))
T − 1

n1

E, 1 ≤ j ≤ n1.

In order to apply Theorem A.2 to the above sum, we need to verify the assumptions.
Zero mean. From the definition of E and the fact that ρ is a probability density

function follows

E[Xj ] =
1

n1

∫
(∇f(x)(∇f(x))T − E)ρ(x) dx

=
1

n1

∫
∇f(x)(∇f(x))T ρ(x) dx− E

n1

∫
ρ(x) dx = 0.

Boundedness. The Lipschitz continuity of f implies

‖Xj‖2 ≤ 1

n1

max
{∥∥∇f(xj)(∇f(xj))

T
∥∥
2
, ‖E‖

2

}
≤ 1

n1

max{L2, ‖E‖
2
}.

Assumptions 1.1 ensure that the second term in the maximum can be bounded by

‖E‖
2
=

∥∥∥∥
∫

∇f(x))(∇f(x))T ρ(x) dx

∥∥∥∥
2

≤
∫ ∥∥∇f(x)(∇f(x))T

∥∥ ρ(x) dx ≤ L2.

Thus

‖Xj‖2 ≤ p1 ≡ L2

n1

, 1 ≤ j ≤ n1. (A.1)

18



”Variance”. Multiply out the integrand and apply the definition of E,

E[X2
j ] =

1

n2
1

∫ (
∇f(x)(∇f(x))T − E

)2
ρ(x) dx

=
1

n2
1

[∫
(∇f(x)(∇f(x))T )2ρ(x) dx − E2 − E2 + E2

]

=
1

n2
1

[∫
(∇f(x)(∇f(x))T )2ρ(x) dx − E2

]
.

The positive semi-definiteness of E2 implies 0 � E2, hence

E[X2
j ] �

1

n2
1

∫
(∇f(x)(∇f(x))T )2ρ(x) dx. (A.2)

Bounding the ”variance”. Since ∇f(x) is a column vector, the squared outer
product contains an inner product,

∫
(∇f(x)(∇f(x))T )2ρ(x) dx =

∫
‖∇f(x)‖2

2
∇f(x)(∇f(x))T ρ(x) dx.

From (A.2) follows that this matrix is positive semi-definite. This, together with
Assumptions 1.1 and the Lipschitz continuity of f implies

1

n2
1

∫
‖∇f(x)‖22 ∇f(x)(∇f(x))T ρ(x) dx � L2

n2
1

E.

Combine this with (A.2) to conclude E
[
X2

j

]
� L2

n2
1

E � L2

n1
E, and set P ≡ L2

n1
E.

The linearity of trace and norm implies

‖P‖2 =
L2

n1

‖E‖2, intdim (P ) =
trace (E)

‖E‖2
. (A.3)

Application of Theorem A.2. Substituting (A.1) and (A.3) into the bound of
Theorem A.2 gives

Prob
[∥∥∥Ê − E

∥∥∥
2
≥ ǫ̂
]
≤ 4 intdim (E) exp

( −ǫ̂2/2

L2/n1 ‖E‖
2
+ L2 ǫ̂/(3n1)

)
.

Setting the above right hand side equal to δ and solving for ǫ̂ gives

ǫ̂ = γ +
√
γ(γ + 6 ‖E‖

2
)

where

γ ≡ L2

3n1

ln

(
4

δ
intdim (E)

)
.

Check lower bound for ǫ̂. We need to verify that the quantities above satisfy

ǫ̂ ≥ p1/3 + ‖P‖1/2
2

. From 0 < δ < 1 and intdim (E) ≥ 1 follows e < 4

δ ≤ 4

δ intdim (E),
hence ln(4δ intdim (E)) ≥ 1. This implies

p1
3

=
L2

3n1

≤ L2

3n1

ln

(
4

δ
intdim (E)

)
= γ

and

‖P‖1/22 =

√
‖E‖2
n1

L ≤
√
6γ ‖E‖2 ≤

√
γ(γ + 6 ‖E‖

2
).

Adding the two inequalities gives the lower bound for ǫ̂.

19



Relative Error. Dividing both sides of
∥∥∥Ê − E

∥∥∥
2
≤ ǫ̂ by ‖E‖

2
gives

∥∥∥Ê − E
∥∥∥
2

‖E‖
2

≤ ǫ̂

‖E‖
2

= γ̂ +
√
γ̂(γ̂ + 6) where γ̂ = γ/ ‖E‖

2
.

The previous result implies a lower bound on the number of samples n1 required
for a user-specified relative error.

Corollary A.4. If, in addition to the conditions of Theorem A.3, also 0 < ǫ < 1
and

n1 ≥ 8

3

L2

ǫ2 ‖E‖
2

ln

(
4

δ
intdim (E)

)
,

then with probability at least 1− δ

‖Ê − E‖2
‖E‖

2

≤ ǫ.

Proof. We want to determine n1 such that γ̂ in Theorem A.3 satisfies

γ̂ +
√
γ̂(γ̂ + 6) ≤ ǫ. (A.4)

Set t ≡ L2

‖E‖2
ln
(
4

δ intdim (E)
)
, so that γ̂ = t/(3n1) and n1 = α t/ǫ2 for some α.

Then (A.4) is equivalent to determining α such that

ǫ2

3α
+

√
ǫ2

3α

(
ǫ2

3α
+ 6

)
≤ ǫ.

This inequality is satisfied by α ≥ 8

3
≥ 2 + 2

3
ǫ. Now substitute this bound for α into

the above expression for n1.
The final auxiliary result relates the absolute error ‖Ê − E‖2 to the distance

between approximate and ideal active subspaces, provided ‖Ê − E‖2 is sufficiently
small compared to the relevant eigenvalue gap. The bound below can viewed as a
2-norm version of [12, Corollary 8.1.11].

Theorem A.5. Let E and Ê be m×m real symmetric matrices with respective
eigenvalue decompositions (2.2) and (2.5) and partitioned as in (2.3) and (2.6). If
λk − λk+1 > 0 and

‖Ê − E‖2 ≤ λk − λk+1

4
,

then

∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4

‖Ê − E‖2
λk − λk+1

.

Proof. As in (2.2) partition

(
V1 V2

)T
E
(
V1 V2

)
=

(
Λ1

Λ2

)
,

20



and set gap ≡ mini,j |(Λ1)ii − (Λ2)jj | = λk − λk+1. Also,

F =

(
F11 F12

FT
12 F22

)
≡
(
V1 V2

)T
(Ê − E)

(
V1 V2

)
,

so that ‖F‖2 = ‖Ê − E‖2. When specialized to real symmetric matrices and the
two-norm, [28, Theorems 2.7 and 4.11] or [29, page 232 and Theorem V.2.7] imply
the following: If

δ̂ ≡ gap− ‖F11‖2 − ‖F22‖2 > 0
‖F12‖2
gap

< 1

2
(A.5)

then

‖V1V
T
1 − V̂1V̂

T
1 ‖2 ≤ 2 ‖F12‖2/δ̂. (A.6)

Now let ‖F‖2 < gap/4. With δ ≡ gap − 2‖F‖2 conditions (A.5) hold, that is,

δ̂ ≥ δ > 1

2
gap > 0 and

‖F12‖2
δ̂

≤ ‖F‖2
δ

≤ 2
‖F‖2
gap

< 1

2
.

The conclusion (A.6) holds with

‖V1V
T
1 − V̂1V̂

T
1 ‖2 ≤ 2

‖F12‖2
δ̂

≤ 4
‖F‖2
gap

.

At last we have all the ingredients to prove the desired result.

A.2. Proof of Theorem 3.1. From Corollary A.4 and the assumption 0 < ǫ ≤
λk−λk+1

5λ1
follows with ‖E‖2 = λ1: If

n1 ≥ 8

3

L2

λ1 ǫ2
ln

(
4

δ
intdim (E)

)
,

then with probability at least 1− δ

‖Ê − E‖2 ≤ ‖E‖
2
ǫ ≤ λk − λk+1

4
.

Hence the assumptions of Theorem A.5 are satisfied, and with probability at least
1− δ

∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4

‖Ê − E‖2
λk − λk+1

≤ 4λ1 ǫ

λk − λk+1

.
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