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 The Angle Between
 Complementaxy Subspaces

 Ilse C. F. Ipsen and Carl D. Meyer

 1. INTRODUCTION. Almost all linear algebra courses discuss angles between

 vectors. The angle between two nonzero vectors u and v in Sll is defined as the

 number 0 < 0 < Fr/2 that satisfies

 COS 0 = V u/liv11211u112.

 Usually the discussion stops right there, and extensions to angles between sub-

 spaces of higher dimensions are, more or less tacitly, shoved under the rug.

 Perhaps this is because most instructors feel that such extensions are difficult to

 understand, or that further effort in this direction is not worthwhile. Indeed, this

 makes sense for angles between general subspaces because one would have to

 introduce concepts like gap or distance between subspaces [7, 12], principal (or

 canonical) angles [1, 2, 15, 12], the CS decomposition [11, 4, 10, 6, 12], and so on.

 These topics are better off in a more advanced course.

 However, angles between complementary subspaces are easier to deal with. The

 purpose of our article is to draw attention to some simple, though not very well

 known, expressions for the angle between complementary subspaces which are

 easily derived from the fundamental theorem of linear algebra [14] and elementary

 facts about matrix norms and projectors.

 Angles between complementary subspaces are not just academic. They arise, for

 instance, in the context of controller robustness [9, 16]. Roughly speaking, the

 spaces associated with the controller and the plant (a system described by a set of

 differential equations) are complementary subspaces. The robustness of the con-

 troller is defined by the smallest perturbation that renders the system unstable,

 which means that the associated subspaces are no longer complementary. The

 system remains stable as long as perturbations are smaller than the distance

 between the complementary subspaces. One measure of distance is the sine of the

 angle between the spaces.

 2. WHICH ANGLE? Before proving any theorems, we need to be precise about

 which angle we are talking about. As the dimension grows beyond n > 2, so does

 the wiggle room in All, and there are a host of different angles which can be

 defined between a pair of general subspaces. But since we wish to eventually

 concentrate on complementary spaces, the concept of the minimal angle is the

 most natural one to focus on.
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 Defilnition 2.1. For nonzero subspaces Sf,Xc Stll, the minimal angle between S and

 X is defined to be the number O < 0 < 7r/2 that satisfies

 cos 0= max vTu. (2.1)
 u , v EX

 2= 11V112=

 Notice that 0 = O if and only if Sf nvo o, and 0 - Tr/2 if and only if g LA.

 While (2.1) serves to define 0, it is not easy to use especially if one wants to

 compute the value of 0 for a given pair of subspaces. The trick in making 0 more

 accessible is to first think in terms of projections, and then to shift the emphasis to

 sin 0= (1 - cos2 0)1/2
 The development also requires some elementaty facts concerning the standard

 matrix 2-norm defined by

 ||A||2 = max ilAx112 for A E MIXZI and x E RWIX1.
 IlXil2= 1

 The following properties can be found (often as exercises) in standard texts.

 ATIl2-glAl12 (2.2)

 XAYIg2 = IgAgI2 when X has orthonormal columns and Y has orthonormal rows

 (2.3)

 IIAII2= max yTAx (2.4)
 2<

 2 <

 1

 llXII2_,l1A lxll2 (2.5)

 (oA B) =maxtllAIl2,llBll2}. (2.6)

 The first step in unraveling (2.1) is to express cos 0 in terms of the orthogonal

 projectors onto S and A.

 Theorem 2.1. If Pgf and P.,v are the orthogonalprojectors onto S and A, respectively,

 then

 cos 0= IIP*+PX]|2 = {lP.sgPJ*ll2. (2.7)

 Proof: For vectors x and y such that IIXII2 = IIYII2 = 1, we have PXx ES and
 Pyy EX where IIPXXII2 < IIPXII211XII2 < 1 and IIPPYII2 < IIPRII211YII2 < 1, SO that
 (2.4) can be used to write

 U,VEXF U,VEX" IIXII2<1Y X w 11 X S112.
 IIUII2= IIVII2=1 IIUII2<1, IIVII2<1 IIYII2<-1

 The fact that IIPX PZII2 = IIPQPRII2 is a consequence of the symmetry of orthogonal
 projectors together with (2.2). t

 Theorem 2.1 does not depend on S and X being complementary subspaces it

 is a statement about the minimal angle between any two subspaces of '1. But in

 the special case when S and X are complementary, there is a more natural

 projector which gives rise to a formula which is simpler than (2.7).
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 3. ENTER THE OBLIQUE PROJECTOR.

 Defilnition 3.1. Subspaces ,Xc '1 are said to be complementazy whenever
 g +X= B)1 and Sf nv= o, and this is denoted by writing S @X= '1. The
 associated oblique projector is the unique idempotent matrix P whose range is S and
 whose nullspace is A. As an operator, P projects vectors in t onto g along (or
 parallel to) A, and thus it acts as the identity on S and the zero operator on A.

 The goal is to simplify (2.7) in the case of complementary spaces by somehow
 using the more natural oblique projector P instead of the two orthogonal projec-
 tors PX and P. But to realize a simplification, we must shift the emphasis to sin 0
 rather than cos 0.

 Theorem 3.1. Suppose that gf,Xc RRt are nonzero complementaryspaces, and let P
 be the oblique projector onto Sf along A. The minimal angle 0 between Sf and X
 satisfies

 1
 sin 0 = llpll . (3.1)

 Proof: Decompose P in terms of its four fundamental subspaces by choosing
 orthogonal matrices U = (U1 } U2) and V = (V1 } V2) in which the columns of U1 and
 U2 constitute orthonormal bases for S and S l, respectively, and V1 and V2 are
 orthonormal bases forXl and A, respectively, so that UiTUi = I and ViTVi = I for
 i= 1,2, and

 PX = UlUlT, I - PZ = U2U2T, Pf = V2V2T, I - PP = VlVlT.

 The matrices U and V decompose P in the sense that

 UTPV = ( C ° ) or, equivalently, P = Ue O > )VT = UlCV1T (3.2)

 in which C = UlTPVl is nonsingular. (For instance, one can choose U and V so that
 this is the singular value decomposition of P.) Notice that p2 = p implies C =
 CV1TUlC, which in turn insures C-1 = VlTUl. Consequently, (2.3) together with
 (2.5) implies that

 1 1
 }} }}2 1} 1}2 min }}C-1 x}22 min }}VlTUlx}}2

 jlX112= 1 11X112= 1

 Combining this with the result of Theorem 2.1 produces

 sin2 0 = 1 - cos2 0 = 1 - }}P,vPex}}2 = 1 - }}V2V2TUlUlT}22

 1 ||(I vlvl )U1II2 = 1 max Il(I -V1V1 )U1X||2

 1 llmll ax1 x U1 (I VlVl )Ulx = 1 - max (1 - I§VlTUlx}22)

 = 1- (1- min llVlTU1x112)
 llX112= 1

 = 2. T
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 The ewression sin @= l/llPll2 is not only conceptually simple, but, as illus-
 trated in Figure 1, there is also a particularly nice picture that accompanies it. The
 image of the unit sphere in 3 under P is obtained by projecting all vectors on the
 sphere onto s along lines parallel to A. The result is an ellipse in S.

 NS

 J

 Figure 1

 The norm of a longest vector v on this ellipse equals the norm of P, i.e.

 IIVII2= max IIPXII2= IIPII2.
 IIX112 1

 It is apparent from the right triangle in Figure 1 that

 ilX112 1 1
 sin @= 1l 1l = 1l 1l = lipil .

 4. BACK TO ORTHOGONAL PROJECTORS. For subspaces ,Xc 'l such
 that dim w = dimA, the difference PX - Pt of the associated orthogonal projec-
 tors is of special interest because llPX - P.ll2 is a common measure of the distance
 or separation between S and X. It is therefore natural to inquire about what can
 be said about the minimal angle between complementaly spaces in terms of the
 difference PX - P.s. The following theorem provides some answers.

 Theorem 4.1. For nonzero subspaces Sf,Xc fft'l, let Pg and P., denote the orthogo-
 nal projectors onto Sf and X, respectively, and let @ be the minimal angle between s
 and J<. The following two statements are true.

 * Sf and Xare complementazyspaces if and only if Pgt - Pt is nonsingular. (4.1)

 * If SFandXarecomplementaryspaces, then sin o = l/ll(PX-P)-lll2. (4.2)
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 Proof of (41): The orthogonal matrices U and V which were introduced in the
 proof of Theorem 3.1 to decompose P also decompose Pw - Pz in the sense that

 U (P, P.>)V uT (UlUl -V2V2 )(Vl [V2)

 i 2 (4.3)

 Ul V1 °

 i O -U2T V2 2

 Assume first that S and X are nonzero complementary subspaces. If dim S = r,
 then U1 V1 is r x r and U2TV2 is n - r X n-r, so PX-PP is nonsingular if and
 only if U1 Vl and U2TV2 are each nonsingular. But we already know from the proof
 of Theorem 3.1 that U1 V1 = (C-1)T is nonsingular, so we only need to prove that
 U2TV2 is nonsingular. If P is the oblique projector onto S along A, then

 PUl = U1 and PV2 = O,

 so that

 V2T(I - P)U2U2 V2 = V2 (I - P)(I - U1Ul )V2 = V1TVl = I.

 Thus U2TV2 is nonsingular with (U2TV2)-1 = V2T(I-P)U2, and consequently PZ -
 P., is nonsingular. Conversely, if PZ - Pp. is nonsingular, and if dim S = r > O and
 dimX= k > O, then U1 V1 is r x n-k and U2TV2 is n - r X k, so (4.3) insures
 that the rows as well as the columns in each of these products must be linearly
 independent. In other words, U1 V1 and U2TV2 must both be square and nonsingu-
 lar, so k = n-r. Let

 Q = U1(Vl U1 ) V1,

 and notice that Q = Q2, so that Q is a projector. If R(*) and N(*) denote range
 and nullspace, respectively, then

 R(Q) cR(U1) =R(QU1) CR(Q) R(Q) =gX
 and

 t N(Q) DN(VlT) = \ N(Q) =X

 tdimN(Q) = n-dimR(Q) = n-r = k = dimXJ

 In other words, Q = P is the oblique projector onto S along S. Therefore, since
 the range and nullspace of any projector are complementary spaces, it must be the
 casethatSeX=R'l.. R

 Proof of (4.2): If S and X are complementary, then PX-Pz is nonsingular, and
 (4.3) together with (2.6) can be used to conclude that

 II(PS - PR) 112 = maX{||(Ul V1) 112, |l(U2 V2) 112} (4.4)
 But ll(UlTV1)-1112 = ll(U2TV2)-1112 because we can again use (2.5) to write

 || ( T )-1 ||2 11 Iml in ||UI VlX112 = min x Vl UIUlT Vlx

 = min XTVT(I - U UT)V X

 = mln ( 1 - x V1 U2U2 V1 x)

 1 limilaX llu2 VlX112 1 ||U2 V1112,
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 and a similar argument proves that

 || (U2 V2 ) 112

 Therefore, the results of Theorem 3.1 insure that

 II(PS - PX) 112 = | (U1 V1) 112 = llC 112 = IICII2 = IIPII2 = sin o o

 Theorem 3.1 is not new Gohberg and Kreln [5] attribute it to Ljance [8] but
 it seems to have escaped the notice of many writers and teachers of linear algebra.

 We have not seen Theorem 4.1 in the literature.

 5. CONSEQUENCES. Although the following facts about projectors are often
 proved by separate (and sometimes substantial) arguments, they turn out to be
 immediate consequences of Theorem 3.1 and Theorem 4.1.

 Corollary 5.1. llPll2 2 1 for every non-zero projector P, and IlPll2 = 1 if and only if
 P is an orthogonal projector.

 Corollary 5.2. llI - Pll2 = llPll2 for allprojectors P that are not zero and not equal to
 the identity.

 Corollary 5.3. Let u and v be vectors in St'l with VTU = 1. If 0 is the minimal angle
 between u and v 1 (the space orthogonal to v), then

 ||I - UV 112 = IIUV 112 = . = IIUII2IIVII2
 sln 0

 Proof: The first equality follows from Corollary 5.2 and the second one from
 Theorem 3.1. The fact that ||uvT|12= IIUII211VII2 follows from properties of the

 two-norm because

 l|u11211v112 = ll ll < max ll ll = ||uv 112 < 11U11211V112. v

 Corollary 5.4. If 0 is the minimal angle between complementary spaces SF,Xc St'l,
 and if 0 1 is the minimal angle between SF 1 and X1, then 0 = 0 1

 Proof: This follows from Theorem 3.1 together with Corollary 5.2. The result is
 also a corollary of Theorem 4.1 because

 ll p )-1|| =||((I-P)-(I-P.R)) 112 =II(PG PR) 112
 Corollary 5.5. For complementary spaces SF,Xc St'l, let P be the oblique projector
 onto S along A, and let Q denote the oblique projector onto SF 1 along X1 . If pgf
 and P,, are the orthogonal projectors onto SF and A, respectively, and if 0 is the
 minimal angle between S and A, then each of the following statements is true.

 * (PZ _ P )-1 = P _ Q

 * sin = IIP Qll

 * IIP- Qll2 = IIPII2
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 Proof: The first equation can be derived from (4.3), or it can be verified by direct
 multiplication. The second and third equations follow from the first in conjunction
 with the results of Theorems 3.1 and 4.1. 0

 Corollary 5.6. For complementary spaces Sf,Xc St'l, the oblique projector P onto
 SF along X is given by the pseudoinverse of PglPX where PgF and P,gl are the
 orthogonal projectors onto S and Xl, respectively. That is

 P= (P.,x,lP,)t.

 Furthermore, if 0 is the minimal angle between SF and X1, then

 cos o= IIPt112

 Proof: To obtain the first equality, use (3.2) together with C-1 = V1TUl to write

 pt = Vf ° o ) U = V1C U1 = V1V1 U1Ul = PP l Pg .

 Now take the pseudoinverse of both sides (see [3] for details concerning pseudoin-
 verses). The second equality is a consequence of the first in conjunction with
 Theorem 2.1. g

 ACKNOVVLEDGMENTS. We thank Steve Campbell for insightful discussions as well as the referee for
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 REFERENCES

 [1]. S. N. Afriat, Orthogonal and oblique projectors and the characteristics of pairs of vectorspaces, Proc.
 Cambridge Philos. Soc., 53 (1957), pp. 800-816.

 [2]. A. Bjorck and G. H. Golub, Numerical methods for computing angles between linear subspaces,
 Math. Comp., 27 (1973), pp. 579-594.

 [3]. S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Dover Publica-
 tions (1979 edition by Pitman Pub. Ltd., London), New York, 1991.

 [4]. C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation, III, SIAM J. Numer.
 Anal., 7 (1970), pp. 1-46.

 [5]. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators,
 American Mathematical Society, Translations of Mathematical Monographs, Vol. 18, Providence,
 RI, 1969.

 [6]. G. H. Golub and C. F. Van Loan, Matrix Computations, Second Ed., The Johns Hopkins Press,
 Baltimore, 1989.

 [7]. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
 [8]. V. E. Ljance, Some properties of idempotent operators, Teor. i Prikl. Mat. L'vov, 1 (1959), pp.

 16-22, (Russian).

 [9]. J. M. Schumacher, A pointwise criterion for controller robustness, Systems and Control Letters, 18
 (1992), pp. 1-8.

 [10]. G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue
 problems, SIAM Rev., 15 (1973), pp. 727-764.

 [11]. , On the perturbation of pseudo-inverses, projections, and linear least squares problems, SIAM
 Rev., 19 (1977), pp. 634-662.

 [12]. G. W. Stewart and J. Sun, MatrixPerturbation Theory, Academic Press, Boston, 1990.
 [13]. G. Strang, The fundamental theorem of linear algebra, American Mathematical Monthly, 100

 (1993), pp. 848-855.

 [14]. , Linear Algebra and Its Applications, Third Ed., Harcourt, Brace, and Jovanovich, San
 Diego, 1988.

 910

 THE ANGLE BETWEEN COMPLEMENTARY SUBSPACES  [December

This content downloaded from 152.14.136.96 on Thu, 22 Mar 2018 17:02:30 UTC
All use subject to http://about.jstor.org/terms



 [15]. P. Wedin, On angles between subspaces of a finite dcmensional inner product space, in Matrix

 Pencils, B. Kagstrom and A. Ruhe, eds., Lecture Notes in Mathematics, No. 973, Springer-Verlag,

 Berlin, Heidelberg, New York, 1982, pp. 263-285.

 [16]. S. Q. Zhu, Robust complementarity and its application to robust stabilization, preprint from the

 Automation and Robotics Research Institute, University of Texas at Arlington, Fort Worth,

 Texas.

 Mathematics Department

 North Carolina State University

 Raleigh) NC 27695-8205

 ipsen@math.ncsu.edu

 meyerOmath.ncsu.edu

 WG often hear that mathematics consists mainly of "proving theo-
 rems.' Is a writer's job mainly that of "writing sentences"?

 -Gian-carlo Rota

 In preface to "The MathematicalExperience" Philip J. Davis

 and Reuben Hersh. Boston: Birkhauser, 1981.

 1995]  911 THE ANGLE BETWEEN COMPLEMENTARY SUBSPACES

This content downloaded from 152.14.136.96 on Thu, 22 Mar 2018 17:02:30 UTC
All use subject to http://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8

	Issue Table of Contents
	American Mathematical Monthly, Vol. 102, No. 10 (Dec., 1995), pp. 865-957
	Volume Information [pp. 950-957]
	Front Matter [pp. 865-865]
	Comment [p. 866]
	Polygonal Rooms Not Illuminable from Every Point [pp. 867-879]
	Three Sing-Sing Problems [pp. 880-887]
	Picture Puzzle [pp. 887+892]
	A Nobel Prize in Mathematics [pp. 888-892]
	Some Exact Number Theory Computations via Probability Mechanisms [pp. 893-903]
	The Angle Between Complementary Subspaces [pp. 904-911]
	Notes
	The Four-Vertex Theorem Revisited--Two Variations on the Old Theme [pp. 912-916]
	Entire Functions Which Vanish at Infinity [pp. 916-918]
	A Converse to Cauchy's Inequality [pp. 919-920]

	Unsolved Problems
	Monthly Unsolved Problems, 1969-1995 [pp. 921-926]

	The Authors [pp. 927-928]
	Problems and Solutions
	Problems: 10487-10493 [pp. 929-930]
	Notes
	(10493) [p. 930]

	Solutions
	10201 [pp. 931-932]
	10287 [p. 933]
	10290 [pp. 933-934]
	10373 [pp. 934-935]
	Revivals
	6667 [p. 935]
	E3470 [p. 936]



	Reviews
	Review: untitled [pp. 937-943]

	Telegraphic Reviews [pp. 944-949]
	Back Matter



