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S1 Proof of Theoretical Results

Proof of Proposition 1. Note that the joint distribution of x and ym is given by[
x
ym

]
∼ N

([
x0

S>mAx0

]
,

[
Σ0 Σ0A

>Sm
S>mAΣ0 S>mAΣ0A

>Sm

])
from which the stated conditional distribution is deduced.

Proof of Proposition 2. Consider an arbitrary vector ` ∈ Rd. Now

`>xm − `>x∗ = `>(x0 − x∗) + `>Σ0A
>SmΛ−1

m S>mA(x∗ − x0) (from Eq. 5)

= `>(Σ0 − Σ0A
>SmΛ−1

m S>mAΣ0)Σ−1
0 (x0 − x∗)

= 〈Σm`,x0 − x∗〉Σ−1
0

(from Eq. 6)

and so:

|`>xm − `>x∗| =
∣∣∣〈Σm`,x0 − x∗〉Σ−1

0

∣∣∣
≤ ‖x0 − x∗‖Σ−1

0
‖Σm`‖Σ−1

0︸ ︷︷ ︸
(∗)

. (S1)
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where the last line follow from Cauchy–Schwarz. Now, by expanding the term (∗) and
simplifying, we see that

‖Σm`‖2Σ−1
0

= `>(Σ0 − Σ0A
>SmΛ−1

m S>mAΣ0)>Σ−1
0 (Σ0 − Σ0A

>SmΛ−1
m S>mAΣ0)`

= `>
(
Σ0 − 2Σ0A

>SmΛ−1
m S>mAΣ0

+ Σ0A
>SmΛ−1

m S>mAΣ0A
>Sm︸ ︷︷ ︸

=Λm

Λ−1
m S>mAΣ0

)
`

= `>(Σ0 − Σ0A
>SmΛ−1

m S>mAΣ0)` (S2)

= `>Σm`

which follows from Eq. 6
Finally let ei denote the vector whose jth entry is δij and note that

‖xm − x∗‖Σ−1
0

= ‖Σ−
1
2

0 (xm − x∗)‖2

=

(
d∑
i=1

∣∣∣∣e>i Σ
− 1

2
0 xm − e>i Σ

− 1
2

0 x∗
∣∣∣∣2
) 1

2

≤ ‖x0 − x∗‖Σ−1
0

(
d∑
i=1

e>i Σ
− 1

2
0 ΣmΣ

− 1
2

0 ei

) 1
2

(from Eq. S1, S2)

= ‖x0 − x∗‖Σ−1
0

√
tr

(
Σ
− 1

2
0 ΣmΣ

− 1
2

0

)
= ‖x0 − x∗‖Σ−1

0

√
tr(ΣmΣ−1

0 )

where the last line uses the fact that the trace is invariant under cyclic permutation of
the argument.

Proof of Proposition 3. Note that

tr(ΣmΣ−1
0 ) = tr(I − Σ0A

>SmΛ−1
m S>mA)

= tr(I)− tr(Σ0A
>SmΛ−1

m S>mA)

= tr(I)− tr(S>mAΣ0A
>Sm︸ ︷︷ ︸

=Λm

Λ−1
m )

= d−m

where the third line uses the fact that the trace is invariant under cyclic permutation of
the argument.

Proof of Proposition 4. First, note that

Λm = (SCG
m )>AΣ0A

>SCG
m = (SCG

m )>ASCG
m = I
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since the columns of SCG
m are A-orthonormal. Then, from Proposition 1 we have

xm = x0 + Σ0A
>SCG

m Λ−1
m (SCG

m )>r0

= SCG
m (SCG

m )>r0

≡ xCG
m

as required.

Proof of Proposition 5. We first introduce the concept of an average-case optimal algo-
rithm and average-case optimal information. The information space B and the solution
space X are, informally, the spaces in which the right-hand-side and the solution of
the system live, respectively. We wish to computationally approximate an intractable
solution operator A(b), based upon a finite amount of information provided by the infor-
mation operator Sm : B → Rm. This is accomplished by an algorithm ψ(Sm(b)), which
we hope approximates A(b) well in a way which will now be made formal.

For a reference measure ν on B, denote the average-case error of an algorithm ψ with
information Sm as

eavg
M (Sm, ψ) :=

[∫
Rd

‖A(b)− ψ(Sm(b))‖2M µ(dx)

] 1
2

.

An algorithm ψ∗ which minimises eavg(·, ψ) for arbitrary Sm is said to be average-
case-optimal. An S∗m which minimises eavg(Sm, ψ

∗) is said to be average-case optimal
information.

By Theorem 3.3 of Cockayne et al. [2017], in the present setting optimal information
for the average risk in Eq. (10) is identical to average-case optimal information. This is
by virtue of the fact that, for any symmetric positive-definite M , (Rd, 〈·, ·〉M ) forms an
inner-product space.

Now recall two relevant theorems from Novak and Woźniakowski [2008]. For measur-
able spaces (B,FB) and (X,FB), an operator A : B → X and a measure µ on B, let
A#µ denote the pushforward of µ through A, a measure on X defined as

[A#µ](C) = µ(A−1(C))

for each C ∈ FX .

Theorem S1 (Theorem 4.28 of Novak and Woźniakowski [2008]). Let B be a separa-
ble real Banach space equipped with a zero-mean Gaussian measure ν with covariance
operator Cν . Let the solution operator A : B → X be a bounded linear operator into a
separable real Hilbert space X with inner product 〈·, ·〉X . Let η = A#ν be a Gaussian
measure on solution elements. Consider linear information Sm = [s1, . . . , sm] where
si : B → R and si(Cνsj) = δij, and consider information yi = si(b). Then the algorithm

ψ(b) =

m∑
i=1

yiA(Cνsi)

is average-case optimal.
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Denote by Cη the covariance operator of η, and let {(γ∗i , φ∗i ) : i ∈ I} for I ⊆ N denote
its eigensystem, ordered so that γ∗1 ≥ γ∗2 ≥ . . . . Note that if X is finite-dimensional with
dimension d then I = {1, . . . , d}, while otherwise I = N.

Theorem S2 (Theorem 4.30 of Novak and Woźniakowski [2008]). Under the assump-
tions of Theorem S1, for b ∈ B the optimal information S∗m is given by

S∗m(b) = [L∗1(b), . . . , L∗m(b)]

where

L∗i (b) :=
〈A(b), φ∗i 〉X

(γ∗i )
1
2

.

We will first establish that the posterior mean from Proposition 1 represents an
average-case optimal algorithm, by applying Theorem S1. In the notation of that the-
orem, B = X = Rd, which satisfies the required assumptions as Rd is separable. The
measure ν is given by ν = A#µ ∼ N (0, AΣ0A

>), so that Cν = AΣ0A
>. Furthermore the

information operator Sm is simply a matrix in Rd×m, which is subject to the restriction
from Theorem S1 that Λm = S>mAΣ0A

>Sm = I. Note that this is markedly similar to
the conjugacy requirement in Section 2.2.

Now we seek the optimal algorithm ψ(b) which minimises∫
Rd

‖A−1b− ψ(S>mb)‖2M ν(db) =

∫
Rd

‖M 1
2A−1b−M 1

2ψ(S>mb)‖22 ν(db)

=

∫
Rd

‖M 1
2A−1b− ψ̄(S>mb)‖22 ν(db) (S3)

where ψ̄ = M
1
2ψ. Eq. (S3) is of the form required by Theorem S1, with the solution

operator A = M
1
2A−1, which is a bounded linear operator as required. For any Sm

conjugate to AΣ0A
>, the optimal algorithm is therefore given by

ψ̄(b) =

m∑
i=1

(s>i b)M
1
2A−1AΣ0A

>si

= M
1
2 Σ0A

>SmS
>
mb

=⇒ ψ(b) = Σ0A
>SmS

>
mb.

In this conjugate setting with x0 = 0, this is identical to the expression for xm in
Proposition 1.

Theorem S2 can now be applied to determine the optimal information S∗m. Note that

since A is a bijection, η = [M
1
2A−1]#[A#µ] = M

1
2

#µ, so the required eigensystem is that

of M
1
2 Σ0M

>
2 . As before, denote this (ordered) eigensystem by {(γ∗i ,φ∗i )}di=1, with the

eigenvectors normalised so that (φ∗i )
>φ∗i = 1. It then holds from Theorem S2 that the

optimal search directions are given by

s∗i = (γ∗i )−
1
2A−>M

>
2 φ∗i .
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Lastly, noting that the scaling by (γ∗i )−
1
2 does not affect the output yields the result

that the optimal information is given by

Sm = A−>M
>
2 Φm.

Proof of Proposition 6. First, note that Λm = I as the search directions {si}, i =
1, . . . ,m are Q-orthonormal, where Q = AΣ0A

>. Then, from Eq. 5:

xm = x0 + Σ0A
>SmS

>
mr0

= x0 + Σ0A
> [Sm−1 sm

] [S>m−1

s>m

]
r0

= x0 + Σ0A
>Sm−1S

>
m−1r0︸ ︷︷ ︸

=xm−1

+Σ0A
>sms

>
mr0.

It therefore remains to show that s>mr0 = s>mrm−1. To this end, from Eq. 5 we have

s>mrm−1 = s>mb− s>mAxm−1

= s>mb− s>mx0 − s>mAΣ0A
>S>m−1︸ ︷︷ ︸

=0

r0

= s>mr0

which completes the proof.

Lemma S3. Assume that the search directions {si} are AΣ0A
>-orthogonal. At iteration

m, the residual rm = b−Axm satisfies r>msi = 0 for i = 1, . . . ,m.

Proof of Lemma S3. By definition of rm and xm

s>i rm = s>i b− s>i Axm
= s>i b− s>i Ax0 − s>i AΣ0A

>SmΛ−1
m S>mr0

Note that s>i AΣ0A
>SmΛ−1

m = e>i , the vector with [ei]j = δij , since s>i AΣ0A
>Sm is the

ith row of Λm, whenever i ≤ m. Thus, s>i rm = s>i r0 − e>i S>mr0 = 0, as required.

Proof of Proposition 7. Let t̃1 := r0, and for each m > 1, define t̃m as

t̃m := rm−1 −
m−1∑
i=1

(
r>m−1Qti

)
ti. (S4)

where Q = AΣ0A
>. Let tm = t̃m/‖t̃m‖Q. We will show, inductively, that for each m

the set of search directions {ti}mi=1 is Q-orthonormal, and further that each ti = si, as
defined in the proposition statement.
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For m = 1 the set {t1} is trivially Q-orthonormal and t1 = s1. For m > 1 suppose
{ti}m−1

i=1 is Q-orthonormal and such that ti = si, for i = 1, . . . ,m− 1. Then, for j < m

t>j Qt̃m = t>j Qrm−1 −
m−1∑
i=1

r>m−1Qti · t>j Qti︸ ︷︷ ︸
=δij

(by the inductive assumption)

= t>j Qrm−1 − t>j Qrm−1 = 0 (S5)

which shows that the set {ti}mi=1 is Q-orthonormal.
As a result we can apply Proposition 6 to show that

rj = b−Axj
= b−Axj−1 −Qtj(t>j rj−1)

=⇒ Qtj =
rj−1 − rj
t>j rj−1

=⇒ r>m−1Qtj =
r>m−1rj−1 − r>m−1rj

t>j rj−1
. (S6)

Since the set {ti}mi=1 is Q-orthonormal, we have from Lemma S3 that for each j ≤ m,
r>mtj = 0. Thus, from Eq. (S5) for each j ≤ m:

0 = r>mt̃j := r>mrj−1 −
m−1∑
i=1

r>m−1Qti · r>mti︸︷︷︸
=0

. (S7)

from which we conclude that r>mrj = 0 whenever j < m. It follows that Eq. (S6) is zero
for all j < m − 1. Thus, all terms in the summation in Eq. (S4) vanish apart from the
last, and we are left with

t̃m = rm−1 − (r>m−1Qtm−1)tm−1

which is equal to s̃m for each m > 1, completing the proof.

Proof of Proposition 11. First the posterior marginal for ν is computed. Note that

p(ν|y) ∝ p(y|ν)p(ν)

where

y|ν ∼ N (S>mAx0, νΛm)

=⇒ p(ν|y) ∝ ν−m
2
−1 exp

(
− 1

2ν
r>0 SmΛ−1

m S>mr0

)
which is IG

(
m
2 ,

1
2r
>
0 SmΛ−1

m S>mr0

)
. Now to determine the posterior marginal for x

p(x|y) =

∫ ∞
0

p(x|ν,y)p(ν|y) dν

∝
∫ ∞

0
ν−1−(m+d)/2 exp

(
−ν−1K(x)

)
dν (S8)
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where

K(x) :=
1

2

[
r>0 SmΛ−1

m S>mr0 + (x− xm)>Σ−1
m (x− xm)

]
Eq. S8 is recognised as the integral of an unnormalised inverse-Gamma density, so that

p(x|y) ∝ Γ(m+ d)K(x)−
1
2

(m+d)

∝
[

1 +
1

m
(x− xm)>

{
r>0 SmΛ−1

m S>mr0

m
Σm

}−1

(x− xm)

]− 1
2

(m+d)

and therefore

p(x|y) = MVTm

(
xm,

r>0 SmΛ−1
m S>mr0

m
Σm

)

Proposition S4. It holds that xm ∈ x0 +Km−1(Σ0A
>A,Σ0A

>r0).

Proof of Proposition S4. Let K̄m = Km(Σ0A
>A,Σ0A

>r0). Proof is by induction, with
the additional inductive claims that

Σ0A
>sm ∈ K̄m−1 (S9)

Σ0A
>rm ∈ K̄m. (S10)

Note that Eq. (S9) implies the required result by Proposition 1. Let Q = AΣ0A
>. For

m = 1, the first search direction is given by

s1 =
r0

‖r0‖Q
from which Eq. (S9) is clear. Further,

r1 = b−Ax1

= b−Ax0 −
AΣ0A

>r0(r>0 r0)

‖r0‖2Q

= r0 −
AΣ0A

>r0(r>0 r0)

‖r0‖2Q

=⇒ Σ0A
>r1 = Σ0A

>r0 −
(Σ0A

>A)Σ0A
>r0(r>0 r0)

‖r0‖2Q
from which it is clear that Σ0A

>r1 ∈ K̄1.
Now for the inductive step. Assume that Equations (S9) and (S10) hold true up to

m− 1. From Proposition 7 we have that

s̃m = rm−1 − (r>m−1Qsm−1)sm−1

=⇒ Σ0A
>s̃m = Σ0A

>rm−1︸ ︷︷ ︸
∈K̄m−1

−(r>m−1Qsm−1) Σ0A
>sm−1︸ ︷︷ ︸

∈K̄m−2

7



where inclusion in the Krylov subspaces is by the inductive assumption. It follows that
Σ0A

>sm ∈ K̄m−1. Lastly, observe that

rm = b−Axm
= rm−1 −AΣ0A

>sm(s>mrm)

=⇒ Σ0A
>rm = Σ0A

>rm−1︸ ︷︷ ︸
∈K̄m−1

− (Σ0A
>A)Σ0A

>sm︸ ︷︷ ︸
∈K̄m

(s>mrm)

which by the inductive assumption is in K̄m, as required.

Proof of Proposition 9. Let Q = AΣ0A
>. Begin with m = 1. Any x ∈ K∗0 can be

represented as x0 + α1Σ0A
>r0 for some α1. Thus, when x ∈ K∗1 :

‖x− x∗‖2
Σ−1

0
= ‖x0 + α1Σ0A

>r0 − x∗‖2Σ−1
0

= x>0 Σ−1
0 x0 + 2α1x

>
0 A
>r0 − 2x>0 Σ−1

0 x∗

+ α2
1r
>
0 AΣ0A

>r0 − 2α1r
>
0 Ax

∗

+ (x∗)>Σ−1
0 x∗

=⇒ d

dα1
‖x− x∗‖2

Σ−1
0

= 2x>0 A
>r0 + 2α1r

>
0 AΣ0A

>r0 − 2r>0 Ax
∗.

Setting this to zero, we obtain:

α1 =
r>0 (b−Ax0)

‖r0‖2Q
=
r>0 r0

‖r0‖2Q
.

From Proposition 6, this corresponds to x = x1. It is further clear that

d2

dα2
1

‖x− x∗‖2
Σ−1

0
= 2‖r0‖2Q > 0

so that x1 is optimal in K∗0 .
Now observe that Σ0A

>sm is orthogonal to xm−1 − x0 in the Σ−1
0 -inner-product:〈

Σ0A
>sm,xm−1 − x0

〉
Σ−1

0

= s>mAx0 + s>mAΣ0A
>Sm−1︸ ︷︷ ︸

=0

(S>m−1r0)− s>mAx0

= 0

As a result, for m > 1 it suffices to determine αm in

x = x0 + (xm−1 − x0) + αmΣ0A
>sm

= xm−1 + αmΣ0A
>sm

8



where x ∈ K∗m−1. Again, αm is determined directly, much as above:

‖x− x∗‖2
Σ−1

0
= ‖xm−1 + αmΣ0A

>sm − x∗‖2Σ−1
0

=⇒ d

dαm
‖x− x∗‖2

Σ−1
0

= 2x>m−1A
>sm + 2αms

>
mAΣ0A

>sm − 2s>mAx
∗.

=⇒ αm =
s>m(b−Axm−1)

‖sm‖2Q
= s>mrm−1

which is also a minimum. Thus, we have that

arg min
x∈K∗m−1

‖x− x∗‖2
Σ−1

0
= xm−1 + Σ0A

>sm(s>mrm) ≡ xm

from Proposition 6, which completes the proof.

Proof of Proposition 10. We begin by introducing the operator norm induced by the
energy norm ‖ · ‖A, which is a norm on matrices M ∈ Rd×d

‖M‖op
A = sup {‖Mv‖A : ‖v‖A = 1} .

From Proposition S4 it holds that there exists a polynomial P̃m−1 of degree m − 1
such that

em := xm − x∗ = x0 − x∗ + P̃m−1(Σ0A
>A)Σ0A

>r0

= e0 + P̃m−1(Σ0A
>A)Σ0A

>Ae0

= Pm(Σ0A
>A)e0

where Pm is some polynomial of degree m. Thus

‖em‖Σ−1
0
≤ ‖Pm(Σ0A

>A)‖op

Σ−1
0

· ‖e0‖Σ−1
0

= ‖Σ−
1
2

0 Pm(Σ0A
>A)Σ

1
2
0 ‖op

I · ‖e0‖Σ−1
0

= ‖Pm(Σ
1
2
0A
>AΣ

1
2
0 )‖op

I · ‖e0‖Σ−1
0

Now, note that Σ
1
2
0A
>AΣ

1
2
0 is symmetric, and can thus be represented as Σ

1
2
0A
>AΣ

1
2
0 =

V ΓV >, where Γ is the matrix with the eigenvalues of Σ
1
2
0A
>AΣ

1
2
0 on its diagonal, and

V is the orthonormal matrix of its eigenvectors. Furthermore note that Σ0A
>A =

Σ
1
2
0 [Σ

1
2
0A
>AΣ

1
2
0 ]Σ

− 1
2

0 . Hence, Σ0A
>A is similar to Σ

1
2
0A
>AΣ

1
2
0 , and so the matrices share

the same eigenvalues.
Now, clearly Pm(V ΓV >) = V Pm(Γ)V > since V is orthonormal. Thus

‖em‖I ≤ ‖V ‖op
I ‖V >‖

op
I︸ ︷︷ ︸

=1

‖Pm(Γ)‖op
I · ‖e0‖Σ−1

0

= ‖Pm(Γ)‖op
I · ‖e0‖Σ−1

0
(S11)
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where ‖V ‖op
I ‖V >‖

op
I = 1 follows since V is unitary. Let Pm denote the set of all polyno-

mials of order m with the property that P (0) = 1 for each P ∈ Pm. This requirement
ensures that if A is singular, ‖em‖Σ−1

0
= ‖e0‖Σ−1

0
for all m. Now, from Proposition 9

we have that Pm ∈ Pm is constructed to minimise the error em. Let Γ̄ denote the set of

eigenvalues of Σ
1
2
0A
>AΣ

1
2
0 . Then

‖Pm(Γ)‖op
I = min

P∈Pm

max
γ∈Γ̄

sup
‖v‖2=1

‖P (γ)v‖2

= min
P∈Pm

max
γ∈Γ̄
|P (γ)|

≤ min
P∈Pm

max
γ∈[γmin,γmax]

|P (γ)| (S12)

Lemma S5, proven below, establishes that the polynomial minimising this expression is

P (γ) =
Tm

(
γmax+γmin−2γ
γmax−γmin

)
Tm

(
γmax+γmin
γmax−γmin

)
where Tm(·) is the mth Chebyshev polynomial of the first kind.

Let κ = γmax/γmin. Now, Tm(z) ∈ [−1, 1] for all m and all z ∈ [−1, 1]; thus the
numerator takes maximum value 1. Therefore

‖Pm(Γ)‖op

Σ−1
0

≤
∣∣∣∣Tm(κ+ 1

κ− 1

)∣∣∣∣−1

.

Lastly, note that by definition

Tm(z) =
1

2

[(
z +

√
z2 − 1

)m
+
(
z −

√
z2 − 1

)m]
so that

‖Pm(Γ)‖op
2 ≤ 2

[(√
κ+ 1√
κ− 1

)m
+

(√
κ− 1√
κ+ 1

)m]−1

≤ 2

(√
κ− 1√
κ+ 1

)m
.

Inserting this into Eq. (S11) and recalling that since Σ
1
2
0A
>AΣ

1
2
0 has the same eigenvalues

as Σ0A
>A, it also has the same condition number, completes the proof.

Lemma S5 (Appendix S3 of Shewchuk [1994]). Eq. (S12) is minimised by

P (γ) =
Tm

(
γmax+γmin−2γ
γmax−γmin

)
Tm

(
γmax+γmin
γmax−γmin

)
where Tm is the mth Chebyshev polynomial of the first kind.
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Proof. For convenience let

γ0 :=
γmax + γmin

γmax − γmin

and note that γ0 > 1. Further, observe that

γ ∈ [γmin, γmax] =⇒ γmax + γmin − 2γ

γmax − γmin
∈ [−1, 1].

Now recall the following properties of Chebyshev polynomials:

C1 Tm(z) ∈ [−1, 1] for all z ∈ [−1, 1].

C2 Tm(1) = 1, and Tm(−1) = (−1)m.

C3 Let Z = {zi} , i = 1, . . . ,m denote the ordered zeros of Tm(z). Then, Z ⊂ [−1, 1].

C4 Tm(z) attains the value (−1)m+i in the range [zi, zi+1] for i = 1, . . . ,m− 1.

First, note that clearly P (0) = 1 as Tm(γ0) 6= 0. This is because γ0 > 1 and so
Tm(γ0) > 1 by C2 and C3. Thus, P (γ) ∈ Pm as required. Further, note that

max
γ∈[γmin,γmax]

|P (γ)| = Tm(γ0)−1

by C1. Proof that P (γ) minimizes Eq. (S12) is by contradiction. Suppose there is a
Q(γ) ∈ Pm with

max
γ∈[γmin,γmax]

|Q(γ)| < Tm(γ0)−1 (S13)

Consider the polynomial P (γ) − Q(γ). From C1, P (γ) ∈ [−Tm(γ0)−1, Tm(γ0)−1], and
P (γ) has m zeros in [γmin, γmax]. From Eq. S13 it is clear that P (γ)−Q(γ) also has m
zeros in [γmin, γmax], as to prevent P (γ) from crossing zero between its extrema in this
range would require |Q(γ)| > Tm(γ0)−1 (by C4).

However, since P (0) = Q(0) = 1, P − Q has an additional zero outside [γmin, γmax].
Therefore, P − Q is a polynomial of degree m with at least m + 1 zeros, which is a
contradiction. Thus P (γ) minimises Eq. S12.

S2 Further Simplication of BayesCG

In this section, the simplifications mentioned in Section 5 and exploited in Algorithm 1
are described in detail. First, two coefficients must be calculated, one to update xm and
one to update s̃m. Note that for stability reasons we work with un-normalized rather
than normalized search directions where possible. As usual let Q = AΣ0A

>, and express
these quantities as

xm = xm−1 + αmΣ0A
>s̃m

s̃m = rm−1 + βm−1s̃m−1

11



where

αm =
s̃>mrm−1

‖s̃m‖2Q
βm = −rmQs̃m‖s̃m‖2Q

Now, using the expression for s̃m, note that

αm =
r>m−1(rm−1 − βms̃m−1)

‖s̃m‖2Q

=
r>m−1rm−1

‖s̃m‖2Q

since, from Lemma S3, s̃>mrm = 0. Furthermore, from the proof of Proposition 7, we
have

r>mQsm =
r>mrm−1 − r>mrm

s>mrm−1

= − r>mrm
s>mrm−1

= − r>mrm

r>m−1rm−1
‖s̃m‖2Q

so that

βm =
r>mrm

r>m−1rm−1

These two simplifications allow rearranging the expressions in Proposition 6 into Algo-
rithm 1.

S3 Additional Numerical Results for Simulation Study

In this section we discuss an empirical procedure for calibrating the scale of the posterior
covariance, in an attempt to compensate for the fact that search directions depend upon
x∗, and show that this results in better calibrated UQ. The proposed approach is to
construct an error indicator over the course of the algorithm, and then use this to adjust
an appropriate measure of spread of the posterior to match that error prediction.

1. Constructing the Error Indicator The aim here is to construct a proxy for the true
error by measuring the convergence of the BayesCG mean. Let

zi := ‖xi − xi−1‖2 .

12
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Figure S1: Uncertainty quantification provided in the new proposal. This should be
compared against Fig. 3 in the main text.

The idea is to perform a simple regression on the values {zi}mi=1 and use the fitted model
ν(i) to extrapolate the error forward. Justified by the exponential convergence rate of
BayesCG, as well as its simplicity, a log-linear function ν(i) = exp(a+bi) has been used.

To derive our error indicator we use the following triangle inequality bound:

‖xm − x∗‖2 ≤
d∑

i=m+1

‖xi − xi−1‖2

≈
d∑

i=m+1

ν(i) =: αm.

Thus αm provides an approximate upper-bound for ‖xm − x∗‖2.

2. Fitting the Posterior Next we adjust the spread of the posterior, in a somewhat
ad-hoc manner, based on the approximate upper-bound αm on the true error. This
requires the posterior spread to be quantified, and for the ease of computability we used
trace(νmΣm). Thus, to be concrete, we would like to select νm so that the spread

trace(νmΣm) = αm

=⇒ νm =
αm

trace(Σm)
.

Note that, since αm appears in the numerator and provides an approximate upper bound
for the true error, the UQ provided will still be conservative in general.

3. Results The UQ computed in the main text, Fig. 3, can be compared with the
UQ under this proposal shown in Fig. S1. The UQ under this proposal is substantially
better calibrated than when the Jeffrey’s prior is used in all cases apart from the case
when Σ0 = A−1. However since this performs well for all the practical choices of prior
covariance suggested, the results indicate that approaches based on heuristic calibration
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of posterior spread could be used to compensate for the fact that the search directions
have been constructed in a data-driven manner.

S4 Experimental Results for Higher-Dimensional Systems

In this section additional experimental results are reported for higher-dimensional sys-
tems than those considered in Section 6.1. The experimental protocol adopted in that
section is challenging to adapt to higher-dimensional systems, as the method for generat-
ing sparse positive-definite matrices has empirically been found to produce numerically
singular matrices when d is increased. As a result, in this section we will adopt a more
structured approach to generating random systems, based on discretisation of a simple
elliptic PDE.

Specifically, the PDE considered is the following PDE with random boundary condi-
tions:

−∇u(z) = 0 z ∈ (0, 1)2

∂u

∂z2
(z) = 0 z1 ∈ (0, 1), z2 ∈ {0, 1}

u(z) = f(z) z1 ∈ {0, 1}, z2 ∈ [0, 1] (S14)

where log f(z) ∼ GP(0, k(z, z′; ρ)) and k(z, z′; ρ) is a Matérn covariance function:

k(z, z′; ρ) =

(
1 +

√
3

ρ

)
exp

(
−
√

3‖z − z′‖2
ρ

)
.

For the purposes of this experiment the length-scale was fixed to ρ = 0.1.
Eq. (S14) was discretised with the finite-element method using standard piecewise

linear basis functions as implemented in FEniCS, as in Section 6.2. The domain was dis-
cretised using a simple regular triangular mesh over the domain resulting in d elements.
To investigate the performance of BayesCG as a function of the dimension of the system,
three different discretisation levels were used: d = 121, d = 1089 and d = 10201.

A subset of the priors from Section 6.1 were considered. The prior Σ0 = A−1 was not
used, as for d = 10201 computing this is impractical. Similarly, the procedure we have
used for calculating the Krylov subspace prior in that section requires knowledge of κ(A),
which is also impractical. As a result we have focussed on the prior Σ0 = (P>P )−1 where
P is, as in Section 6.1, a preconditioner based on an incomplete Cholesky factorisation
of A. Results for Σ0 = I are also included.

Results for convergence of the posterior mean are reported in Fig. S2. Note that the
number of iterations required for both CG and BCG with the preconditioner prior seems
to increase sub-linearly with dimension, while with Σ0 = I there is qualitatively little
difference as a function of dimension. Furthermore note that the rate of convergence
of CG appears to overtake that of the preconditioner prior as the dimension increases,
suggesting that the quality of the incomplete Cholesky preconditioner decays with di-
mension. However, we note that this is only one choice of preconditioner, and others
preconditioners may behave better.
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The quality of the UQ as a function of dimension is displayed in Fig. S3, with the
statistic Z as described in Section 6.1. The UQ after b d10c iterations was considered.
The quality of UQ provided is seen to decrease as a function of dimension d.

S5 Experimental Set-Up for EIT

The results presented in this paper used experimental data provided by EIDORS1 and
due to Isaacson et al. [2004]. In the experiment, depicted in Figure 8a, three targets
were placed into a tank filled with saline, two of which are lung-shaped and one of which
is heart-shaped. The lung-shaped targets have lower conductivity than the surrounding
saline, while the heart-shaped target has higher conductivity. A total of 32 electrodes
were placed around the boundary of the domain, and stimulated with 31 distinct stim-
ulation patterns as described in Isaacson et al. [2004]. For each stimulation, the voltage
induced at every electrode was recorded, and there are thus 32 × 31 distinct measure-
ments on which the prior must be conditioned. The inducing currents and measured
voltages were each supplied in the referenced dataset.

In the simulations the circular tank was modelled as a unit circular domain, and
the electrodes were assumed to occupy precisely 1/64th of the boundary. Thus, each
electrode had length π/32 and there was a distance of π/32 between each neighbouring
pair of electrodes on the boundary. Since no information is known on the quality of the
electrode contact, we set the contact impedances to an arbitrary value, ζl = 1 for each l.

The trangulations required to discretise the PDE were generated using the Python
package meshpy, configured to ensure that there were Nd equally sized elements on the
boundary. Nd was chosen to be a multiple of the number of boundary electrodes, so
that each electrode corresponds to the same number of boundary elements, and other
boundary elements are disjoint from all electrodes. Figure S4 shows an illustration of a
triangulation of the domain used to discretise the PDE, with Nd = 64.

S6 Additional Numerical Results for EIT

Figure S5 shows the posterior distribution obtained from BayesCG for different values
of ε. The linear system solved was generated for Nd = 128 and with the conductivity
field σ̂(z). Plotted is the posterior mean from BayesCG, along with samples from the
posterior distribution, over the spatial domain of the PDE. That is, the voltage field v(z)
has been plotted rather than the conductivity field from the inverse problem. The top
row has the largest value of ε, and here clearly the posterior mean deviates far from the
true solution, depicted in the bottom row. However by ε = 5 the mean from BayesCG
appears close to the truth. The second, third and fourth column show samples from the
posterior distribution, and while there is significantly more noise in these columns the
main characteristics of the true solution are visible even at ε = 20, suggesting that the
use of BayesCG within a Bayesian approach to EIT can be qualitatively justified.

1At time of writing this data can be found at the EIDORS website.
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Fig. S6 shows the behavior of the posterior distribution when a standard CG forward
solver is used but withm held fixed. Atm = 40 the computed mean bears no resemblance
to the actual posterior mean. Moreover, the computed distribution is over-confident, as
reflected by the uniformly lower computed standard deviation, compared to the actual
posterior. At m = 60 the qualitative features of the posterior mean have been recovered,
though the recovery still differs noticeably from that of the actual posterior, and the
computed standard deviation remains lower. This provides further motivation for the
use of BayesCG, as a means to constrain the solver to fewer iterations while still obtaining
estimates that are statistically meaningful.

Fig. S7 repeats this experiment for the BayesCG forward solver when the precondi-
tioner prior is used. Again, as m is increased the posterior mean exhibits clear structure
in the conductivity field. While the posterior variance does not visibly appear to de-
crease in the bottom row, the integrated standard deviation is nevertheless decreasing,
starting at 0.0586 at m = 40, decreasing to 0.0459 at m = 60 and 0.0365 at m = 80.
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