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Abstract. We analyze the uncertainties in the minimum norm solution of full-rank regression problems, aris-5
ing from Gaussian linear models, computed by randomized (row-wise sampling and, more generally,6
sketching) algorithms. From a deterministic perspective our structural perturbation bounds imply7
that least squares problems are less sensitive to multiplicative perturbations than to additive per-8
turbations. From a probabilistic perspective, our expressions for the total expectation and variance9
with regard to both, model- and algorithm-induced uncertainties, are exact, hold for general sketch-10
ing matrices, and make no assumptions on the rank of the sketched matrix. The relative differences11
between the total bias and variance on the one hand, and the model bias and variance on the other12
hand, are governed by two factors: (i) the expected rank deficiency of the sketched matrix, and (ii)13
the expected difference between projectors associated with the original and the sketched problems.14
A simple example, based on uniform sampling with replacement, illustrates the statistical quantities.15
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1. Introduction. We consider regression problems arising from the Gaussian linear model19

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2In),(1.1)20

where X ∈ R
n×p is a given design matrix with rank(X) = p, β0 ∈ R

p is the true but unknown21

parameter vector, and the noise vector ǫ ∈ R
n has a multivariate normal distribution. For22

a fixed response vector y ∈ R
n, one can determine a unique maximum likelihood estimator23

of β0 by computing the unique solution β̂ of the least squares problem24

min
β∈Rp

‖Xβ− y‖2.(1.2)25

Statistical quality measures include expectation and variance of β̂, and residual sum of squares26

‖y − Xβ̂‖22 [13, Section 7.2]; while roundoff errors from a numerically stable method are27

bounded in terms of the condition number of X with respect to (left) inversion, and the least28

squares residual Xβ̂− y [7, Chapter 5], [8, Chapter 20].29

Randomized algorithms try to reduce the time complexity by first “compressing” or “pre-30

conditioning” the least squares problem. They can be classified according to [23, Section 1]:31

Compression of rows [2, 5, 6, 12, 15, 16, 21]; or columns [1]; or both [17]. We consider row32

compression33

min
β∈Rp

‖S(Xβ − y)‖2,(1.3)34
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2 JOCELYN T. CHI AND ILSE C.F. IPSEN

where S ∈ R
r×n is a random sampling or, more generally, sketching matrix with r ≤ n,35

and the minimum norm solution is β̃. Matrix concentration inequalities are used to derive36

probabilistic bounds for the error due to randomization [1, 6], and for the condition number37

of SX [12]. From a practical perspective, bootstrapping can deliverfast error estimates [14].38

The pioneering work [15, 16] was the first to combine the uncertainties from the Gaussian39

linear model with the algorithm-induced uncertainties from random sampling of rows. Here40

we extend the first-order expansions in [15, 16] in a number of ways.41

1.1. Contributions.42

1. Our main result presents exact expressions for the total expectation and variance of β̃43

with regard to both, model- and algorithm-induced uncertainties (Theorem 4.5).44

2. Our expressions hold for general random matrices S, including sketching matrices that45

perform projections prior to sampling. Furthermore, our expressions also hold for rank46

deficient matrices SX.47

3. To compare least squares problems of different dimensions, we introduce the compari-48

son hat matrix P = X(SX)†S, which reduces to the traditional hat matrix XX† when49

S is the identity (Lemma 3.1, Remark 3.2).50

4. We quantify the relative change in the total uncertainty of β̃ compared to that of the51

model problem (Corollary 4.6):52

(a) The total bias increases, in the relative sense, with the expected deviation of53

the random variable SX from having full column rank.54

(b) The relative difference between total variance and model variance increases55

with two terms: the expected deviation of SX from having full rank, plus the56

expected deviation of the random variable P being an orthogonal projector57

onto range(X).58

5. We quantify the model-induced uncertainty of β̃, conditioned on S, compared to that59

of the model problem (Theorem 4.3, Corollary 4.4):60

(a) The bias increases, in the relative sense, with the deviation of SX from having61

full column rank.62

(b) The variance changes, in the relative sense, with the deviation of P from being63

an orthogonal projector onto range(X).64

Thus, unbiasedness is easier to achieve because it only requires SX to have full column65

rank. In contrast, recovering the model variance requires reproducing all of range(X).66

6. Our structural bounds improve existing bounds, and imply that the minimum norm67

solution β̃ and its residual are less sensitive to multiplicative perturbations than to68

additive perturbations (Corollary 3.5).69

1.2. Overview. After reviewing the computational models for least squares regression70

(Section 2), we take adopt two perspectives:71

1. Deterministic: The matrix S is fixed and the sketched problem (1.3) is a multiplicative72

perturbation of the deterministic problem (1.2), and we present structural perturbation73

bounds (Section 3).74

2. Probabilistic: The matrix S is a matrix-valued random variable (1.3) and (1.3) is a75

randomized algorithm for solving the linear model (1.1), and we derive expressions for76

expectation and variance with regard to the model- and algorithm-induced uncertain-77
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RANDOMIZED LEAST SQUARES REGRESSION 3

ties (Section 4).78

This is followed by a brief review of sketching matrices used in randomized least squares79

solvers (Section 5); a simple example, designed to illustrate the bounds in a way that is easy80

for readers to reproduce (Section 6); and finally the proofs (Appendix A).81

2. Models for Least squares Regression. Given is a fixed design matrix X ∈ R
n×p with82

rank(X) = p. Since X has full column rank, the Moore-Penrose inverse is a left inverse with83

X† = (XTX)−1XT and X†X = Ip.(2.1)84

We review the different incarnations of least squares regression: the Gaussian linear model85

(Section 2.1), the traditional computation (Section 2.2), and the randomized algorithm (Sec-86

tion 2.3).87

2.1. Gaussian linear model. Let β0 ∈ R
p denote the true but generally unknown param-88

eter vector, and let the response vector y ∈ R
n satisfy the Gauss-Markov assumptions,89

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2In).(2.2)90

The noise vector ǫ ∈ R
n has a multivariate normal distribution whose mean is the vector of91

all zeros, 0 ∈ R
n, and whose covariance is a multiple σ2 > 0 of the identity matrix In ∈ R

n×n.92

2.2. Traditional algorithm for least squares solution. For a given y solve93

min
β∈Rp

‖Xβ− y‖2,(2.3)94

where ‖x‖2 =
√
xTx represents the two-norm and the superscript T the transpose.95

Since X has full column rank, (2.3) is well posed and has the unique solution96

β̂ ≡ X†y.(2.4)97

The prediction vector and the least squares residual vector are, respectively98

ŷ ≡ Xβ̂ and ê ≡ y−Xβ̂ = y − ỹ.99

In terms of the so-called hat matrix [3, 9, 24],100

Px ≡ XX† = X(XTX)−1XT ∈ R
n×n,(2.5)101

which is the orthogonal projector onto range(X) along null(XT ), we can write102

ŷ = Pxy and ê = (I −Px)y.(2.6)103

2.3. Randomized algorithm for least squares solution. A randomized algorithm based on104

sketching, projecting or sampling of rows, is advantageous when X contains many redundant105

observations for a small set of variables, that is, n ≫ p. From a deterministic perspective,106

this can be considered an extension of weighted least squares [7, Section 6.1] to rectangular107

weighting matrices.108
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4 JOCELYN T. CHI AND ILSE C.F. IPSEN

Given a sketching matrix S ∈ R
r×n with r ≤ n, solve109

min
β∈Rp

‖S(Xβ − y)‖2,(2.7)110

which has the minimum norm solution111

β̃ ≡ (SX)† Sy.(2.8)112

Even if S has r > p rows, rank(S) < p is possible; and even if S does have full column rank,113

rank(SX) < p is still possible. Thus (2.7) can have infinitely many solutions, and one way to114

force uniqueness is to compute the solution of minimal two norm.115

By design, S has fewer rows than X. Hence the corresponding predictions ŷ = Xβ̂ and116

SXβ̃ have different dimensions and cannot be directly compared; neither can their residuals.117

To remedy this, we follow previous work [5, 6, 20], and compare the predictions with regard118

to the original matrix,119

ỹ ≡ Xβ̃ and ẽ ≡ y−Xβ̃ = y − ỹ.(2.9)120

3. Structural (deterministic perturbation) bounds. Here S is a given, general matrix;121

and SX is interpreted as a perturbation of X. After deriving expressions for the solution,122

prediction and least squares residual of the perturbed problem (Section 3.1), we derive mul-123

tiplicative perturbation bounds (Section 3.2), and discuss comparisons to existing work (Sec-124

tion 3.3).125

3.1. The perturbed problem. In analogy to the hat matrix Px in (2.5) for the original126

problem (2.3) we introduce a comparison hat matrix P for the perturbed problem (2.7), which127

allows a clean comparison between two least squares problems of different dimensions.128

Lemma 3.1 (Comparison hat matrix). With the assumptions in Section 2,

P ≡ X(SX)†S

is an oblique projector where
1. PxP = P.
2. P−Px reflects the difference between the spaces null(P) and null(Px).
3. PX = X if rank(SX) = p.

129

Proof. See Section A.1.130

The name comparison hat matrix will become clear in Theorem 3.3, where P assumes the131

duties of the hat matrix Px in (2.9).132

If S = In, then P = Px. In general,133

rank(P) = rank(SX) ≤ rank(X) = rank(Px) = p.134

If rank(SX) = rank(X), then P is an oblique version of Px with range(P) = range(Px), and135

the only difference is in their nullspaces. If rank(SX) < p then rank(P) = rank(SX) < p, and136

P projects onto only a subspace of range(X). The example in Section 6.1 illustrates this.137
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Remark 3.2. The comparison hat matrix P generalizes the oblique projector Pu in [20,138

(11)], which was introduced to quantify prediction efficiency and residual efficiency of sketch-139

ing algorithms in the statistical setting (2.2). This projector Pu is defined if rank(SX) = p,140

and equals Pu ≡ U(SU)†S, where U is an orthonormal basis for range(X). In this case we141

have Pu = P. However, if rank(SX) < rank(X), then Pu is not sufficient in our context.142

Theorem 3.3 (Perturbed least squares problem). With the assumptions in Section 2, the
solution of (2.7) satisfies

β̃ = X†Py = β̂+X†(P−Px)y.

The prediction ỹ = Xβ̃ and least squares residual ẽ = y−Xβ̃ satisfy

ỹ = Py = ŷ + (P−Px)y,

ẽ = (I−P)y = ê+ (Px −P)y.
143

Proof. See Section A.2.144

Theorem 3.3 shows that the relations between perturbed and original least squares prob-145

lems are governed by P − Px, which reflects the difference between null(P) and null(Px).146

Motivated by the ground breaking result [16, Lemma 1], reproduced in the lemma below,147

Theorem 3.3 strengthens it with explicit expressions for β̃ that hold for general matrices S148

and do not require assumptions on rank(SX).149

Lemma 3.4 (Lemma 1 in [15] and [16]). If, in addition to the assumptions in Section 2,150

the matrix S in (2.7) has a single nonzero entry per row, the vector1 w ≡ diag(STS) ∈ R
n has151

a scaled multinomial distribution with expected value E[w] = 11, rank(SX) = rank(X), and a152

Taylor series expansion around w0 = 11 of the solution β̃(w) of (2.7) exists with β̃(w0) = β̂,153

then154

β̃(w) = β̂+X† diag(ê)(w − 11) +R(w),155

where R(w) is the remainder of the Taylor series expansion. The Taylor series expansion is156

valid if R(w) = o(‖w −w0‖2) with high probability.157

3.2. Multiplicative perturbation bounds. We consider the problem (2.7) as a multiplica-158

tive perturbation, and derive norm-wise relative error bounds for the solution, prediction, and159

least squares residual; and compare them to existing bounds.160

The vector two-norm induces the matrix norm ‖X‖2, and the two-norm condition number161

of the full column-rank matrix X with regard to (left) inversion is162

κ2(X) ≡ ‖X‖2‖X†‖2 ≥ 1.163

1For a matrix M, diag(M) represents the vector of diagonal elements.
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6 JOCELYN T. CHI AND ILSE C.F. IPSEN

Corollary 3.5. With the assumptions in Section 2, let 0 < θ < π/2 be the angle between
y and range(X).
The solution of (2.7) satisfies

‖β̃ − β̂‖2
‖β̂‖2

≤ κ2(X)
‖y‖2

‖X‖2‖β̂‖2
‖P−Px‖2.

The least squares residual ẽ = y −Xβ̃ satisfies

‖ẽ− ê‖2
‖ê‖2

≤ ‖P−Px‖2
sin θ

.

164

Proof. See Section A.3165

For S = In, the bounds in Corollary 3.5 are zero and tight since P = Px.166

Remark 3.6 (Sensitivity to multiplicative perturbations). Corollary 3.5 implies that least167

squares solutions β̃ are insensitive to multiplicative perturbations if X is well conditioned with168

regard to inversion, and if y is close to range(X). The bound for β̃ consists of two parts:169

1. The perturbation ‖P−Px‖2 reflects the distance between the null spaces null(P) and170

null(Px). It is an absolute as well as a relative perturbation since ‖Px‖2 = 1.171

2. The amplifier can be bounded by [7, (5.3.16)]172

κ2(X)
‖y‖2

‖X‖2‖β̂‖2
≤ κ2(X)

‖y‖2
‖Xβ̂‖2

=
κ2(X)

cos θ
.173

3.3. Comparison to existing work. In contrast to multiplicative perturbation bounds for174

eigenvalue and singular value problems [10, 11], we do not require S to be nonsingular or175

square. Weighted least squares problems [7, Section 6.1] employ nonsingular diagonal matri-176

ces S for regularization or scaling of discrepancies, and do not view them as a perturbation.177

Remark 3.7 (Comparison to additive perturbations). Corollary 3.5 also implies that the178

minimum norm solution of (2.7) and its residual are less sensitive to multiplicative perturba-179

tions than to additive perturbations, which are reviewed below in Lemma 3.8.180

In contrast to additive bounds [7, (5.3.12)], [8, (20.12)], the bound for the least squares181

residual ẽ is not affected by κ2(X). Note that the sin θ term in the denominator is also occurs182

in additive bounds [7, (5.3.12)] if the relative error is normalized by ê rather than y.183

In contrast to additive bounds [7, Section 5.3.6], [8, Section 20.1], [22, (3.4)], the bound184

for β̂ does not square the condition number and does not require rank(SX) = rank(X). This185

can be seen from Lemma 3.8 below, where the first summand corresponds to the bound for β̃186

in Corollary 3.5.187

Lemma 3.8 (Theorem 5.3.1 in [7]). With the assumptions in Section 2, let X + E have188

rank(X+E) = rank(X) and η ≡ ‖E‖2/‖X‖2.189

The solution β̄ to minβ ‖(X+E)β− y‖2 satisfies190

‖β̄− β̂‖2
‖β̂‖2

≤ κ2(X)

(

‖y‖2
‖X‖2‖β̂‖2

+ 1

)

η + κ(X)2
‖ê‖2

‖X‖2‖β̂‖2
η +O(η2).191
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Compared to existing structural bounds for randomized least squares algorithms, which192

are reproduced in Lemma 3.9, the bound for β̃ in Corollary 3.5 is more general and tighter in193

the sense that it does not exhibit nonlinear dependences on the perturbations.194

Lemma 3.9 (Theorem 1 in [6]). In addition to Section 2, also assume that ‖Pxy‖2 ≥ γ‖y‖2195

for some 0 < γ ≤ 1 and ‖ẽ‖2 ≤ (1 + η)‖ê‖2. Then196

‖β̃ − β̂‖2
‖β̂‖2

≤ κ2(X)
√

γ−2 − 1
√
η.197

4. Model-induced and randomized algorithm-induced uncertainty. Under the linear198

model (2.2), the computed solution β̂ has nice statistical properties [19, Chapter 6], as it199

is an unbiased estimator of β0 and it has minimal variance among all linear unbiased estima-200

tors. We show how this changes with the addition of algorithm-induced uncertainty.201

After briefly reviewing the uncertainty induced by the linear model (Section 4.1); we202

derive the expectation and variance of β̃, conditioned on the algorithm-induced uncertainty203

(Section 4.2). From that we derive the total expectation and variance (Section 4.3).204

4.1. Model-induced uncertainty. We view the model-induced randomness in (2.2) as a205

property of the response vector y. That is, the noise vector ǫ in (2.2) has mean and covariance206

Ey[ǫ] = 0, Vary[ǫ] = σ2 In.207

The well-known statistical properties of (2.3) are reviewed below.208

Lemma 4.1 (Model-induced uncertainty for (2.3)). With the assumptions in Section 2, the209

response vector (2.2), and the least squares prediction (2.6) and solution (2.4) satisfy210

Ey[y] = Xβ0, Vary[y] = σ2In211

Ey[ŷ] = Xβ0, Vary[ŷ] = σ2Px ∈ R
n×n

212

Ey[β̂] = β0, Vary[β̂] = σ2(XTX)−1 ∈ R
p×p.213

Proof. See Section A.4.214

Lemma 4.1 asserts that the computed solution β̂ is an unbiased estimator for β0, and215

points to the well known dependence of the variance on the conditioning of X [22, Section 5].216

The difficulty in analyzing the sketched problem (2.7), coupled with general concern about217

the first-order expansions like the ones in [15, 16], is that there are instances of S for which218

rank(SX) < rank(X). In this case (SX)† cannot be expressed in terms of SX as in (2.1), and219

the least squares problem (2.7) is ill-posed.220

One can derive bounds [1, Theorem 3.2], [12, Theorems 4.1and 5.2] on the probability221

that rank(SX) = rank(X) for matrices S that perform uniform sampling and leverage score222

sampling. However, such bounds are not useful here, because expected values run over all223

instances of SX.224

We introduce a quantity that signals the deviation of the columns of SX from linear225

independence.226
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Lemma 4.2 (Bias projector). With the assumptions in Section 2,

P0 ≡ (SX)†(SX) ∈ R
p×p

is an orthogonal projector where
1. PX = XP0

2. P0 = Ip if rank(SX) = p.
3. I−P0 represents the deviation of SX from full-rank.

227

Proof. See Section A.5.228

The name bias projector will become apparent in Theorem 4.3, where P0 represents the229

bias in β̃.230

If S = In, then P0 = Px. If rank(SX) = p, then Lemma 4.2 recovers PX = X from231

Lemma 3.1, confirming that P is a projector onto range(X). However, if rank(SX) < p,232

then P0 characterizes the subspace of range(X) onto which P projects.233

4.2. Model-induced uncertainty, conditioned on algorithm-induced uncertainty. We234

determine the expectation and variance for the solution of (2.7) conditioned on S. That is, we235

assume that the random sketching matrix S is fixed at a specific value S0 and use Ey

[

·
∣
∣
∣S
]

236

as an abbreviation for the conditional expectation Ey

[

·
∣
∣
∣S = S0

]

.237

Theorem 4.3 (Model-induced uncertainty in (2.7), conditioned on S). With the assump-
tions in Section 2, the solution of (2.7) satisfies

Ey

[

β̃

∣
∣
∣S
]

= P0β0 = β0 + (I−P0)β0

Vary

[

β̃

∣
∣
∣S
]

= σ2 X†PPT (X†)T ∈ R
p×p,

= Vary[β̂] + σ2X†
(
PPT −Px

)
(X†)T ,

where PPT−Px is the deviation of P from being an orthogonal projector onto range(X).

Furthermore Ey

[

β̃

∣
∣
∣ rank(SX) = p

]

= β0.

238

Proof. See Section A.6.239

The exact expressions for general sketching matrices S in Theorem 4.3 extend the first-240

order expressions for specific sampling matrices in [16, Lemmas 2-6]. The examples in Sec-241

tion 6.1 illustrate the effect of rank deficiency of SX on the quantities in Theorem 4.3.242

Theorem 4.3 shows that the bias of β̃ is proportional to the deviation I − P0 of SX243

from having full column rank. In other words, the bias becomes worse as the rank deficiency244

increases. If rank(SX) = rank(X), then β̃ is an unbiased estimator of β0. Theorem 4.3 also245

implies that the conditional variance is close to the model variance if P is close to being an246

orthogonal projector onto range(X).247

The relevance of I−P0 and PPT −Px becomes clear in the relative differences below.248
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Corollary 4.4 (Relative difference between conditional and model quantities). With the
assumptions in Theorem 4.3,

‖Vary
[

β̃ |S
]

− Vary[β̂]‖2
‖Vary[β̂]‖2

≤ ‖PPT −Px‖2.

If also β0 6= 0, then

‖Ey

[

β̃ |S
]

− β0‖2
‖β0‖2

≤ ‖I−P0‖2.
249

Proof. See Section A.7.250

Corollary 4.4 implies that the relative differences to unbiasedness and model variance251

are solely governed by the quantities I − P0 and PPT − Px, respectively. Both of them252

are absolute as well as relative measures since ‖I‖2 = ‖Px‖2 = 1. Specifically, the relative253

difference between conditional and model variance increases with the deviation of P from254

being an orthogonal projector onto range(X); and the bias of β̃ increases, in the relative255

sense, with the deviation of SX from full column rank.256

Thus, unbiasedness is easier to achieve because it only requires SX to have full column257

rank. In contrast, recovering the model variance requires reproducing all of range(X).258

4.3. Combined algorithm-induced and model-induced uncertainty. We determine the259

total expectation and variance for the solution in (2.7) when S is a random sketching matrix,260

that is, S is a matrix-valued random variable.261

The algorithm-induced uncertainty of the random matrix S is represented by the expecta-262

tion Es[·] and the variance Vars[·]. The total mean and variance of the combined uncertainty263

are denoted by E[·] and Var[·], and computed by conditioning on the algorithm-induced ran-264

domness,265

E [·] = Es

[

Ey

[

·
∣
∣
∣S
]]

.(4.1)266

Since S is a matrix-valued random variable, so are the projectors P and P0. Examples of S267

can be found in Sections 5 and 6.268
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Theorem 4.5 (Total mean and variance for (2.7)). With the assumptions in Section 2,
let S be a random sketching matrix. The solution of (2.7) satisfies

E[β̃] = Es[P0]β0 = β0 + Es[P0 − I]β0

Var[β̃] = σ2 X†
Es

[
PPT

]
(X†)T + Vars[P0β0]

= Vary[β̂] + σ2X†
Es[PPT −Px] (X

†)T + Vars[(P0 − I)β0].

where

Vars[P0β0] = Es

[

(P0β0) (P0β0)
T
]

− (Es[P0]β0) (Es[P0]β0)
T

= Vars[(P0 − I)β0].
269

Proof. See Section A.8.270

Theorem 4.5 presents exact expressions for general random matrices S, thereby extending271

the first order approximations for specific sampling matrices in [16, Lemmas 2-6], and shows:272

1. The total bias of β̃ is proportional to the expected deviation of the matrix-valued273

random variable SX from having full column rank.274

The expectation Es[P0] of a projector P0 is not a projector, in general, as the example275

in Section 6.3 illustrates.276

2. The total variance of β̃ is proportional to the expected deviation of SX from full277

column rank, plus the expected deviation of the matrix-valued random variable P278

from being an orthogonal projector onto range(X).279

The importance of the expected deviations of the projectors appears in the analog of280

Corollary 4.4 below.281

Corollary 4.6. With the assumptions in Theorem 4.5,

‖Var[β̃]− Vary[β̂]‖2
‖Vary[β̂]‖2

≤ ‖Es[PPT −Px]‖2 +
‖Vars[(P0 − I)β0]‖2

‖Vary[β̂]‖2
.

If also β0 6= 0, then

‖Es[β̃]− β0‖2
‖β0‖2

≤ ‖Es[I−P0]‖2.
282

Corollary 4.6 implies that the bias of β̃ increases, in the relative sense, with the ex-283

pected deviation of SX from full rank; and that the relative difference from total variance to284

model variance increases with (i) the expected deviation of P being an orthogonal projector285

onto range(X), plus (ii) the expected deviation of SX from full rank.286

5. Random sketching matrices in least squares. We present a few examples of sketching287

matrices from the randomized least squares solvers [1, 2, 5, 6, 14, 15, 16, 17, 21].288
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Uniform sampling with replacement. This is the EXACTLY(c) algorithm [6, Algorithm 3]289

with uniform probabilities, which is used for row-wise compression of direct methods for the290

solution of full column rank least squares in [6, Algorithm 3], see also the BasicMatrixMul-291

tiplication Algorithm [4, Fig. 2], [12, Algorithm 3.2], [14, Algorithms 1 and 2], and [16,292

UNIF].293

Algorithm 5.1 Uniform sampling with replacement

Input: Integers n ≥ 1 and 1 ≤ r ≤ n
Output: Sampling matrix S ∈ R

r×n with Es[S
TS] = In

for t = 1 : r do

Sample kt from { 1, . . . , n } with probability 1/n,
independently and with replacement

end for

S =
√

n
r

(
ek1 . . . ekr

)T

The probability of a particular instance of diag(STS), and therefore S is given by a scaled294

multinomial distribution [16, Section 3.1].295

Random orthogonal sketching. This is used in Blendenpik [1, Algorithm 1] to compute ran-296

domized preconditioners for the iterative solution of full column rank least squares problems.297

Here S = BTD ∈ R
n×n, where D ∈ R

n×n is a diagonal matrix whose diagonal elements298

are independent Rademacher random variables, equaling ±1 with equal probability; T ∈ R
n×n299

is a unitary matrix, such as a Walsh-Hadamard, discrete cosine, or discrete Hartley transform;300

and B is a diagonal matrix whose diagonal elements are Bernoulli variables, equaling 1 with301

probability γp/n for some γ > 0, and 0 otherwise.302

Gaussian sketching. This is used in to compute randomized preconditioners for the iterative303

solution of general least squares problems [17, Algorithms 1 and 2].304

Here the elements of S ∈ R
r×n are independent N (0, 1) random variables. In Matlab:305

S = randn(r, n).306

6. Example. We illustrate the projectors in Corollary 3.5, Theorem 4.3, Corollary 4.4.307

Theorem 4.5, and Corollary 4.6 in a way that is easy for readers to reproduce. For a small308

example matrix, we illustrate the effects of rank deficiency SX (Section 6.1); perform uniform309

sampling with replacement (Section 6.2); compute the expectations for P0 (Section 6.3) and310

PPT (Section 6.4); and put this into context with two matrices at opposite ends of sampling311

performance (Section 6.5).312

Consider the full column rank matrix313

X =







1 0
0 1
1 0
0 0







∈ R
4×2 with X† =

(
1
2 0 1

2 0
0 1 0 0

)

,314
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rank(X) = 2,315

Px = XX† =







1
2 0 1

2 0
0 1 0 0
1
2 0 1

2 0
0 0 0 0







, Vary[β̃] = σ2(XTX)−1 = σ2

(
1
2 0
0 1

)

,(6.1)316

and317

null(Px) = range(I−Px) = range







1 0
0 0
−1 0
0 1







.318

6.1. Effects of rank deficiency. We illustrate the effect of rank deficiency on the quantities319

in Corollary 3.5, Theorem 4.3 and Corollary 4.4 by choosing two different matrices S with320

rank(S) = 2.321

Full column rank SX. Here322

S =

(
1 0 0 0
0 1 0 0

)

where SX =

(
1 0
0 1

)

= (SX)† = I2,323

rank(SX) = rank(X) = 2, and range(P) = range(X). This gives the projectors324

P0 = (SX)†(SX) = I2, P = X(SX)†S =







1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0







,325

with326

null(P) = range(I−P) = range







0 0
0 0
1 0
0 1







.327

This shows:328

• P is not an orthogonal projector, since it is not symmetric.329

• The solution β̃ in Theorem 4.3 is an unbiased estimator.330

• The conditional variance in Theorem 4.3 has increased compared to (6.1), since331

Vary

[

β̃

∣
∣
∣S
]

= σ2 X†PPT (X†)T = σ2(SX)†SST ((SX)†)T = σ2 I2.332

Rank deficient SX. Here333

S =

(
1 0 0 0
0 0 0 1

)

where SX =

(
1 0
0 0

)

= (SX)†,334
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rank(SX) = 1 < rank(X), and range(P) ⊂ range(X). This gives the projectors335

P0 = (SX)†(SX) =

(
1 0
0 0

)

, P =







1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0







,336

with337

null(P) = range(I−P) = range







0 0 0
1 0 0
0 1 0
0 0 1







.338

This shows:339

• The rank deficiency of SX causes the dimension of null(P) to increase.340

• The solution β̃ in Theorem 4.3 is a biased estimator since P0 6= I2.341

• The conditional variance in Theorem 4.3 has become singular, since342

Vary

[

β̃

∣
∣
∣S
]

= σ2 X†PPT (X†)T = σ2(SX)†SST ((SX)†)T = σ2

(
1 0
0 0

)†

.343

6.2. Uniform sampling with replacement. Algorithm 5.1 with n = 4 and r = 2 produces344

a sampling matrix S ∈ R
2×4, which has n2 = 16 instances345

Sij =
√
2

(
eTi
eTj

)

, 1 ≤ i, j ≤ n,346

each occurring with probability 1/n2. For instance,347

S11 =
√
2

(
1 0 0 0
1 0 0 0

)

, S42 =
√
2

(
0 0 0 1
0 1 0 0

)

.348

The expectation of the Gram product is an unbiased estimator of the identity,349

Es[S
TS] =

4∑

i=1

4∑

j=1

1
16S

T
ijSij =

4∑

i=1

4∑

j=1

1
16 (eie

T
i + eje

T
j ) = I4.350

6.3. Expected deviation of SX from rank deficiency. We compute the expectation of351

P0 ∈ R
2×2 in Theorem 4.5 and Corollary 4.6,352

Es[P0] =
4∑

i=1

4∑

j=1

1
16(SijX)†(SijX) = Es[P0] =

1
16

(
12 0
0 7

)

.353
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Representative summands include354

(S13X)† =
√

1
2

(
1 0
1 0

)†

=
√

1
2

(
1/2 1/2
0 0

)

, (S13X)†(S13X) =

(
1 0
0 0

)

355

(S32X)† =
√

1
2

(
1 0
0 1

)†

=
√

1
2

(
1 0
0 0

)

=
√

1
2 I2, (S32X)†(S32X) = I2356

(S44X)† =
√

1
2

(
0 0
0 0

)†

= 0, (S44X)†(S44X) = 0.357

Among the sketched matrices, 75 percent are rank deficient. The ones with full column rank358

are S12X, S21X, S23X, and S32X. This shows359

• Es[P0] is not a projector, since it is not idempotent.360

• The solution β̃ in Theorem 4.5 is a biased estimator, since Es[P0] 6= I2.361

• The relative difference of β̃ from unbiasedness in Corollary 4.6 can exceed 50 percent,362

since it is bounded by ‖Es[I−P0]‖2 = 9
16 , where363

Es[I−P0] =
1
16

(
4 0
0 9

)

.364

6.4. Expected deviation of P from being an orthogonal projector. We compute the365

expectation of PPT ∈ R
4×4 in Theorem 4.5 and Corollary 4.6. Since the trailing column of366

X is zero, and367

PPT = X(SX)†SST ((SX)†)TXT ,368

the trailing row and columns of all instances of PPT and Es[PPT ] are, too. Thus369

Es[PPT ] =
4∑

i=1

4∑

j=1

1
16 X(SijX)†SijS

T
ij

(

(SijX)†
)T

XT = 1
16







11 0 11 0
0 7 0 0
11 0 11 0
0 0 0 0







.370

This shows371

• Es[PPT ] is not a projector since it is not idempotent.372

• The expected deviation of P from being an orthogonal projector onto range(X) in373

Corollary 4.6 can exceed 50 percent, since it is bounded by
∥
∥Es[PPT −Px]

∥
∥
2
= 9

16 ,374

where with the hat matrix Px in (6.1)375

Es[PPT −Px] =
1
16







3 0 3 0
0 −9 0 0
3 0 3 0
0 0 0 0







.376

6.5. Extreme examples. We consider two more 4 × 2 matrices, both with orthogonal377

columns, but at the opposite ends in terms of the performance for uniform sampling in Sec-378

tion 6.2.379
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Columns of the Hadamard matrix. With its mass spread uniformly spread, which is380

quantified by minimal coherence and uniform leverage scores [12, 16], this matrix is optimal381

for uniform sampling,382

X =







1 1
1 −1
1 1
1 −1







∈ R
4×2, Px = XX† = 1

2







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1







.383

Half of the sketched matrices SX have full column rank. The expectations for the projectors384

are385

Es[P0] =
12
16I2, Es[PPT ] = 11

16







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1







.386

The expected deviations of SX from full column rank and of P from being an orthogonal387

projector are clearly lower, thus better, than the respective ones in Sections 6.3 and 6.4,388

‖Es[I−P0]‖2 = 4
16 ,

∥
∥Es[PPT −Px]

∥
∥
2
= 3

16 .389

Columns of the identity matrix. With its concentrated mass spread, which is quantified390

by maximal coherence and widely differing leverage scores [12, 16], this matrix presents a391

worst case for a 4× 2 matrix of full column rank.392

X =







1 0
0 1
0 0
0 0







∈ R
4×2, Px = XX† = 1

2







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







.393

Only two among the 16 sketched matrices SX have full column rank, S12X and S21X. The394

expectations for the projectors are395

Es[P0] =
7
16I2, Es[PPT ] = 7

16







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







.396

The expected deviations of SX from full column rank and of P from being an orthogonal397

projector are398

‖Es[I−P0]‖2 = 9
16 ,

∥
∥Es[PPT −Px]

∥
∥
2
= 9

16 ,399

thus clearly worse than those for the Hadamard matrix.400
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Appendix A. Proofs. We present the proofs for Sections 3.1 and 4.401

Our results depend on projectors constructed from the possibly rank-deficient matrix402

SX. In this case, the Moore-Penrose inverse cannot be expressed in terms of the matrix SX403

proper, so we rely on the four conditions [7, Section 5.5.2] that uniquely characterize the404

Moore-Penrose inverse,405

(SX)(SX)†(SX) = SX,
(

(SX)(SX)†
)T

= (SX)(SX)†(A.1)406

(SX)†(SX)(SX)† = (SX)†,
(

(SX)†(SX)
)T

= (SX)†(SX).407

A.1. Proof of Lemma 3.1. The Moore-Penrose conditions (A.1) imply408

P2 = X (SX)†SX(SX)†
︸ ︷︷ ︸

(SX)†

S = X(SX)†S = P.409

Since P2 = P, but P is not symmetric in general, it is an oblique projector.410

1. From (2.1) follows411

PxP = XX†P = XX†X
︸ ︷︷ ︸

X

(SX)†S = X(SX)†S = P.412

2. Use the fact [18, Problem 5.9.12] that null(P) = null(Px) if and only if PPx −P = 0413

and PxP−Px = 0. For the latter, the above implies PxP−Px = P−Px. Thus we414

can interpret P−Px as a measure for the distance between null(P) and null(Px).415

3. If rank(SX) = p then we can express the Moore-Penrose inverse as in (2.1),416

PX = X
(
(SX)TSX

)−1
(SX)T

︸ ︷︷ ︸

(SX)†

SX = X.417

A.2. Proof of Theorem 3.3. The first expression for the least squares solution follows418

from (2.1), (2.8), Lemma 3.1, and419

β̃ = X†Xβ̃ = X† X(SX)†Sy = X†Py.420

Adding β̂−X†y = 0 from (2.4) to the above gives the second expression421

β̃ = β̂+X†Py −X†y = β̂+X†(P−Px)y,422

where the last equality is due to (A.1) and423

X† = X†XX† = X†Px.424

Regarding the least squares residual, from (2.9), the first expression for β̃, (2.5) and Lemma 3.1425

follows426

ỹ = Xβ̃ = XX†Py = PxPy = Py.427
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Adding ŷ −Pxy = 0 from (2.6) gives428

ỹ = ŷ +Py −Pxy = ŷ + (P−Px)y.429

As for the predictor, (2.9) and the above expression for ỹ imply430

ẽ = y − ỹ = (I−P)y.431

Adding and subtracting ê− (I−Px)y = 0 from (2.6) gives432

ẽ = ê+ (I−P)y − (I −Px)y = ê+ (Px −P)y.433

A.3. Proof of Corollary 3.5. The bounds are a direct consequence of Theorem 3.3.434

From [7, Theorem 5.3.1] follows that ‖ê‖2/‖y‖2 = sin θ. The assumption θ < π/2 implies435

sin θ < 1, hence ‖ê‖2 < ‖y‖2 and therefore β̂ 6= 0. The assumption θ > 0 implies y 6∈436

range(X), thus ê 6= 0. Therefore we can divide by the appropriate quantities. In the bound437

for ẽ, write [7, Theorem 5.3.1]438

‖y‖2/‖ê‖2 = 1/ sin θ.439

A.4. Proof of Lemma 4.1. The linearity of the mean and (2.2) imply440

Ey[y] = Ey[Xβ0] + Ey[ǫ] = Xβ0 + 0 = Xβ0441

Vary[y] = Vary [Xβ0 + ǫ] = Vary[ǫ] = σ2In.442

From (2.6), the above, and (Px)
2 = Px follows443

Ey[ŷ] = Ey[Pxy] = Px Ey[y] = PxXβ0 = Xβ0444

Vary[ŷ] = Vary [Pxy] = PxVary[y]Px = σ2Px.445

From the above, (2.4), and (2.1) follows446

Ey[β̂] = Ey[X
†y] = X†

Ey[y] = X†Xβ0 = β0447

Vary[β̂] = Vary

[

X†y
]

= X†
Vary[y](X

†)T = σ2(XTX)−1.448

A.5. Proof of Lemma 4.2. The Moore-Penrose conditions (A.1) imply449

(P0)
2 = (SX)† (SX)(SX)†(SX)

︸ ︷︷ ︸

SX

= (SX)†(SX) = P0,450

and (P0)
T = P0, confirming that P0 is an orthogonal projector.451

1. Lemma 3.1 implies PX = X(SX)†SX = XP0.452

2. If rank(SX) = p, then (SX)† is a left-inverse, see (2.1), so that P0 = Ip.453
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A.6. Proof of Theorem 4.3. The expectation follows from Theorem 3.3, Lemma 4.1,454

Lemma 4.2, and (2.1),455

Ey[β̃
∣
∣
∣S] = X†P Ey[y] = X† PX

︸︷︷︸

XP0

β0 = X†XP0β0 = P0β0.(A.2)456

From the definition of variance, Theorem 3.3, and the above follows457

Vary[β̃
∣
∣
∣S] = Ey[β̃β̃

T
∣
∣
∣S]− Ey[β̃β̃

T
∣
∣
∣S] Ey[β̃β̃

T
∣
∣
∣S]T458

= X†PEy[yy
T ]
(

X†P
)T

− (P0β0)(P0β0)
T .459

For the middle term in first summand, Lemma 4.1 implies460

Ey[yy
T ] = (Xβ0)(Xβ0)

T +Xβ0 Ey[ǫ]
T + Ey[ǫ](Xβ0)

T + Ey[ǫǫ
T ]461

= (Xβ0)(Xβ0)
T + σ2In,(A.3)462

and when inserting this into the leading half of the first summand, one obtains as in (A.2)463

that464

X†PXβ0 = P0β0.(A.4)465

This gives the first expression for the conditional variance,466

Vary[β̃
∣
∣
∣S] = (P0β0)(P0β0)

T + σ2 X†PPT (X†)T − (P0β0)(P0β0)
T467

= σ2 X†PPT (X†)T .468

To obtain the second expression, multiply the model variance from Lemma 4.1 by I =469

(XTX)(XTX)−1,470

Vary[β̂] = σ2 (XTX)−1 = σ2 (XTX)−1 (XTX) (XTX)−1
471

= σ2 (XTX)−1 XTPxX (XTX)−1 = σ2 X†Px(X
†)T ,472

where the remaining equalities follow from X = PxX in (2.5) and from (2.1). Now add473

Vary[β̂]− σ2 X†Px(X
†)T = 0 in the first expression for the variance.474

If P were an orthogonal projector onto range(X), then PTP = P = Px. Thus, P
TP−Px475

represents the deviation of P from being an orthogonal projector onto range(Px).476

A.7. Proof of Corollary 4.4. The second expression for the variance in Theorem 4.3 and477

submultiplicativity imply478

‖Vary[β̃
∣
∣
∣S]− Vary[β̂]‖2 ≤ σ2 ‖X†‖2 ‖PPT −Px‖2‖(X†)T ‖2479

= ‖PPT −Px‖2‖Vary[β̂]‖2,480

where the equality follows from ‖M‖2‖MT ‖2 = ‖MMT ‖2, and for any full-column rank481

matrix M,482

M†(M†)T = (MTM)−1 MTM (MTM)−1 = (MTM)−1.483

The second expression for the expectation in Theorem 4.3 and submultiplicativity imply484

‖Ey[β̃ |S]− β0‖2 ≤ ‖I−P0‖2‖β0‖2.485
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A.8. Proof of Theorem 4.5. The expectation follows from sequential conditioning (4.1)486

and Lemma 4.3,487

E[β̃] = Es

[

Ey

[

β̃

∣
∣
∣S
]]

= Es[P0β0] = Es[P0]β0.488

Insert this expression for the mean into the definition of the variance, and apply sequential489

conditioning (4.1),490

Var[β̃] = E[β̃β̃
T
]− E[β̃]E[β̃]T491

= Es

[

Ey

[

β̃β̃
T
∣
∣
∣S
]]

− (Es[P0]β0) (Es[P0]β0)
T .492

From Theorem 3.3, (A.3) and (A.3) follows493

Ey

[

β̃β̃
T
∣
∣
∣S
]

= X†PEy[yy
T ]PT (X†)T494

= X†P
(
σ2In + (Xβ0)(Xβ0)

T
)
PT (X†)T495

= σ2X†PPT (X†)T + (P0β0)(P0β0)
T .496

Conditioning this on S gives497

Es

[

Ey

[

β̃β̃
T
∣
∣
∣S
]]

= σ2X†
Es

[
PPT

]
(X†)T + Es

[

(P0β0) (P0β0)
T
]

.498

Put everything together to obtain the first expression for the variance,499

Var[β̃] = σ2X†
Es

[
PPT

]
(X†)T500

+Es

[

(P0β0) (P0β0)
T
]

− (Es[P0]β0) (Es[P0]β0)
T

︸ ︷︷ ︸

Vars[P0β0]

.501

The second expression for Vars[P0β0] follows from adding and subtracting502

β0β
T
0 − β0(Es[P0]β0)

T − Es[P0]β0 Es[β0]
T .503
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