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Randomized Least Squares Regression:
Combining Model- and Algorithm-Induced Uncertainties*

Jocelyn T. Chif and llse C. F. Ipsent

Abstract. We analyze the uncertainties in the minimum norm solution of full-rank regression problems, aris-
ing from Gaussian linear models, computed by randomized (row-wise sampling and, more generally,
sketching) algorithms. From a deterministic perspective our structural perturbation bounds imply
that least squares problems are less sensitive to multiplicative perturbations than to additive per-
turbations. From a probabilistic perspective, our expressions for the total expectation and variance
with regard to both, model- and algorithm-induced uncertainties, are exact, hold for general sketch-
ing matrices, and make no assumptions on the rank of the sketched matrix. The relative differences
between the total bias and variance on the one hand, and the model bias and variance on the other
hand, are governed by two factors: (i) the expected rank deficiency of the sketched matrix, and (ii)
the expected difference between projectors associated with the original and the sketched problems.
A simple example, based on uniform sampling with replacement, illustrates the statistical quantities.

Key words. Condition number with respect to inversion, projector, multiplicative perturbations, Moore Penrose
inverse, expectation, variance, matrix valued random variable

AMS subject classification. 62J05, 62J10, 65F20, 65F22, 65F35, 68W20

1. Introduction. We consider regression problems arising from the Gaussian linear model
(1.1) y =XBg + €, €~ N(Oa Uzln)a

where X € R™*P is a given design matrix with rank(X) = p, B, € R? is the true but unknown
parameter vector, and the noise vector ¢ € R™ has a multivariate normal distribution. For
a fixed response vector y € R", one can determine a unique maximum likelihood estimator
of By by computing the unique solution B of the least squares problem

(1.2) min [XB —yll2.

Statistical quality measures include expectation and variance of G, and residual sum of squares
ly — XBH% [13, Section 7.2]; while roundoff errors from a numerically stable method are
bounded in terms of the condition number of X with respect to (left) inversion, and the least
squares residual X — y [7, Chapter 5], [8, Chapter 20].

Randomized algorithms try to reduce the time complexity by first “compressing” or “pre-
conditioning” the least squares problem. They can be classified according to [23, Section 1]:
Compression of rows [2, 5, 6, 12, 15, 16, 21]; or columns [1]; or both [17]. We consider row
compression

(1.3 i [S(XB — )]l

*The work was supported in part by NSF grants DGE-1633587 and DMS-1760374.
tDepartment of Statistics, North Carolina State University, Raleigh, NC, jtchi@ncsu.edu
tDepartment of Mathematics, North Carolina State University, Raleigh, NC, ipsen@ncsu.edu

1

This manuscript is for review purposes only.



40

42
13
44

46

=R
O © o0

SR R =

ot Ot Ot Ot Ot Ot Ut ot Ot (ot
o N O

60
61
62
63
64
65
66
67
68

69

T = W N =

a

I EN BEEN BEEN BTN BEES BEES BEN

~J

2 JOCELYN T. CHI AND ILSE C.F. IPSEN

where S € R"™™" is a random sampling or, more generally, sketching matrix with r < n,
and the minimum norm solution is [~3 Matrix concentration inequalities are used to derive
probabilistic bounds for the error due to randomization [1, 6], and for the condition number
of SX [12]. From a practical perspective, bootstrapping can deliverfast error estimates [14].

The pioneering work [15, 16] was the first to combine the uncertainties from the Gaussian
linear model with the algorithm-induced uncertainties from random sampling of rows. Here
we extend the first-order expansions in [15, 16] in a number of ways.

1.1. Contributions.

1. Our main result presents exact expressions for the total expectation and variance of [~3
with regard to both, model- and algorithm-induced uncertainties (Theorem 4.5).

2. Our expressions hold for general random matrices S, including sketching matrices that
perform projections prior to sampling. Furthermore, our expressions also hold for rank
deficient matrices SX.

3. To compare least squares problems of different dimensions, we introduce the compari-
son hat matriz P = X(SX)S, which reduces to the traditional hat matriz XX when
S is the identity (Lemma 3.1, Remark 3.2).

4. We quantify the relative change in the total uncertainty of [§ compared to that of the
model problem (Corollary 4.6):

(a) The total bias increases, in the relative sense, with the expected deviation of
the random variable SX from having full column rank.

(b) The relative difference between total variance and model variance increases
with two terms: the expected deviation of SX from having full rank, plus the
expected deviation of the random variable P being an orthogonal projector
onto range(X).

5. We quantify the model-induced uncertainty of [~5, conditioned on S, compared to that
of the model problem (Theorem 4.3, Corollary 4.4):

(a) The bias increases, in the relative sense, with the deviation of SX from having
full column rank.

(b) The variance changes, in the relative sense, with the deviation of P from being
an orthogonal projector onto range(X).

Thus, unbiasedness is easier to achieve because it only requires SX to have full column
rank. In contrast, recovering the model variance requires reproducing all of range(X).

6. Our structural bounds improve existing bounds, and imply that the minimum norm
solution [~3 and its residual are less sensitive to multiplicative perturbations than to
additive perturbations (Corollary 3.5).

1.2. Overview. After reviewing the computational models for least squares regression
(Section 2), we take adopt two perspectives:

1. Deterministic: The matrix S is fixed and the sketched problem (1.3) is a multiplicative
perturbation of the deterministic problem (1.2), and we present structural perturbation
bounds (Section 3).

2. Probabilistic: The matrix S is a matrix-valued random variable (1.3) and (1.3) is a
randomized algorithm for solving the linear model (1.1), and we derive expressions for
expectation and variance with regard to the model- and algorithm-induced uncertain-
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RANDOMIZED LEAST SQUARES REGRESSION 3

ties (Section 4).
This is followed by a brief review of sketching matrices used in randomized least squares
solvers (Section 5); a simple example, designed to illustrate the bounds in a way that is easy
for readers to reproduce (Section 6); and finally the proofs (Appendix A).

2. Models for Least squares Regression. Given is a fixed design matrix X € R™*P with
rank(X) = p. Since X has full column rank, the Moore-Penrose inverse is a left inverse with

(2.1) X' =X'X)"'X" and XX =1I,

We review the different incarnations of least squares regression: the Gaussian linear model
(Section 2.1), the traditional computation (Section 2.2), and the randomized algorithm (Sec-
tion 2.3).

2.1. Gaussian linear model. Let 3, € RP denote the true but generally unknown param-
eter vector, and let the response vector y € R” satisfy the Gauss-Markov assumptions,

(2.2) y=XBy+e  e~N(0,0,).

The noise vector € € R™ has a multivariate normal distribution whose mean is the vector of
all zeros, 0 € R"™, and whose covariance is a multiple o2 > 0 of the identity matrix I,, € R"*™.

2.2. Traditional algorithm for least squares solution. For a given y solve

2.3 in |Xp —
(2.3) grélell B—ylo,

where ||x|l2 = VxTx represents the two-norm and the superscript 7' the transpose.
Since X has full column rank, (2.3) is well posed and has the unique solution

(2.4) B =XTy.

The prediction vector and the least squares residual vector are, respectively

y=XB and é=y-XB=y-7.

In terms of the so-called hat matriz [3, 9, 24],

(2.5) P, = XX = X(XTX)"1XT ¢ R™",

which is the orthogonal projector onto range(X) along null(X”), we can write

(2.6) vy =Pxy and é=(I-Py)y.

2.3. Randomized algorithm for least squares solution. A randomized algorithm based on
sketching, projecting or sampling of rows, is advantageous when X contains many redundant
observations for a small set of variables, that is, n > p. From a deterministic perspective,
this can be considered an extension of weighted least squares [7, Section 6.1] to rectangular
weighting matrices.
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4 JOCELYN T. CHI AND ILSE C.F. IPSEN

Given a sketching matrix S € R"*" with r < n, solve
2. in [|S(XB —
(2.7) &@H( B~y
which has the minimum norm solution
(2.8) B = (SX)tsy.

Even if S has r > p rows, rank(S) < p is possible; and even if S does have full column rank,
rank(SX) < p is still possible. Thus (2.7) can have infinitely many solutions, and one way to
force uniqueness is to compute the solution of minimal two norm.

By design, S has fewer rows than X. Hence the corresponding predictions § = X and
SXB have different dimensions and cannot be directly compared; neither can their residuals.
To remedy this, we follow previous work [5, 6, 20], and compare the predictions with regard
to the original matrix,

(2.9) y=XB and é=y-XB=y-7.

3. Structural (deterministic perturbation) bounds. Here S is a given, general matrix;
and SX is interpreted as a perturbation of X. After deriving expressions for the solution,
prediction and least squares residual of the perturbed problem (Section 3.1), we derive mul-
tiplicative perturbation bounds (Section 3.2), and discuss comparisons to existing work (Sec-
tion 3.3).

3.1. The perturbed problem. In analogy to the hat matriz Py in (2.5) for the original
problem (2.3) we introduce a comparison hat matriz P for the perturbed problem (2.7), which
allows a clean comparison between two least squares problems of different dimensions.

Lemma 3.1 (Comparison hat matrix). With the assumptions in Section 2,
P = X(SX)'s

s an oblique projector where
1. PxP=P.
2. P — Py reflects the difference between the spaces null(P) and null(Py).
3. PX = X if rank(SX) = p.

Proof. See Section A.1. |

The name comparison hat matriz will become clear in Theorem 3.3, where P assumes the
duties of the hat matriz Py in (2.9).
If S =1, then P = P. In general,

rank(P) = rank(SX) < rank(X) = rank(Px) = p.

If rank(SX) = rank(X), then P is an oblique version of Py with range(P) = range(Py), and
the only difference is in their nullspaces. If rank(SX) < p then rank(P) = rank(SX) < p, and
P projects onto only a subspace of range(X). The example in Section 6.1 illustrates this.
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RANDOMIZED LEAST SQUARES REGRESSION 5

Remark 3.2. The comparison hat matrix P generalizes the oblique projector Py in [20,
(11)], which was introduced to quantify prediction efficiency and residual efficiency of sketch-
ing algorithms in the statistical setting (2.2). This projector Py is defined if rank(SX) = p,
and equals P, = U(SU)'S, where U is an orthonormal basis for range(X). In this case we
have Py, = P. However, if rank(SX) < rank(X), then Py, is not sufficient in our context.

Theorem 3.3 (Perturbed least squares problem). With the assumptions in Section 2, the
solution of (2.7) satisfies

B =XPy=p+X(P-P,y.

The prediction ¥ = X[g and least squares residual € =y — X[g satisfy

Py =3+ (P — Py)y,
I-P)y=¢é+ (Px—P)y.

y
é

Proof. See Section A.2. |

Theorem 3.3 shows that the relations between perturbed and original least squares prob-
lems are governed by P — Py, which reflects the difference between null(P) and null(Py).
Motivated by the ground breaking result [16, Lemma 1],~ reproduced in the lemma below,

Theorem 3.3 strengthens it with explicit expressions for 3 that hold for general matrices S
and do not require assumptions on rank(SX).

Lemma 3.4 (Lemma 1 in [15] and [16]). If, in addition to the assumptions in Section 2,
the matriz S in (2.7) has a single nonzero entry per row, the vector' w = diag(STS) € R™ has
a scaled multinomial distribution with expected value E[w| = 1, rank(SX) = rank(X), and a
Taylor series expansion around wo = 1l of the solution B(w) of (2.7) exists with B(wq) = B,
then

B(w) =B + X' diag(&)(w — 1) + R(w),

where R(w) is the remainder of the Taylor series expansion. The Taylor series expansion is
valid if R(w) = o(||lw — wyq||2) with high probability.

3.2. Multiplicative perturbation bounds. We consider the problem (2.7) as a multiplica-
tive perturbation, and derive norm-wise relative error bounds for the solution, prediction, and
least squares residual; and compare them to existing bounds.

The vector two-norm induces the matrix norm || X||2, and the two-norm condition number
of the full column-rank matrix X with regard to (left) inversion is

o (X) = [|X 2] X2 > L.

'For a matrix M, diag(M) represents the vector of diagonal elements.
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6 JOCELYN T. CHI AND ILSE C.F. IPSEN

Corollary 3.5. With the assumptions in Section 2, let 0 < 0 < w/2 be the angle between
y and range(X).
The solution of (2.7) satisfies

1B~ Bl _ o) ¥l |

_ . |IP — Py».
[1B1]2 X2 B]]2

The least squares residual € =y — X[g satisfies

e —@ll2 _ [P —Pxll2
<
ez —  sinf

Proof. See Section A.3 u
For S = 1,,, the bounds in Corollary 3.5 are zero and tight since P = Py.

Remark 3.6 (Sensitivity to multiplicative perturbations). Corollary 3.5 implies that least
squares solutions B are insensitive to multiplicative perturbations if X is well conditioned with
regard to inversion, and if y is close to range(X). The bound for B consists of two parts:

1. The perturbation |P — P||2 reflects the distance between the null spaces null(P) and
null(Py). It is an absolute as well as a relative perturbation since ||Pxl|j2 = 1.
2. The amplifier can be bounded by [7, (5.3.16)]

llyll2 Iyl #2(X)
Fal )H3§H2HBH2 r2(X)

IXBl2  cosf

3.3. Comparison to existing work. In contrast to multiplicative perturbation bounds for
eigenvalue and singular value problems [10, 11], we do not require S to be nonsingular or
square. Weighted least squares problems [7, Section 6.1] employ nonsingular diagonal matri-
ces S for regularization or scaling of discrepancies, and do not view them as a perturbation.

Remark 3.7 (Comparison to additive perturbations). Corollary 3.5 also implies that the
minimum norm solution of (2.7) and its residual are less sensitive to multiplicative perturba-
tions than to additive perturbations, which are reviewed below in Lemma 3.8.

In contrast to additive bounds [7, (5.3.12)], [8, (20.12)], the bound for the least squares
residual € is not affected by k2(X). Note that the sin # term in the denominator is also occurs
in additive bounds [7, (5.3.12)] if the relative error is normalized by & rather than y.

In contrast to additive bounds [7, Section 5.3.6], [8, Section 20.1], [22, (3.4)], the bound
for  does not square the condition number and does not require rank(SX) = rank(X). This
can be seen from Lemma 3.8 below, where the first summand corresponds to the bound for [3
in Corollary 3.5.

Lemma 3.8 (Theorem 5.3.1 in [7]). With the assumptions in Section 2, let X + E have
rank(X + E) = rank(X) and n = ||E||2/||X]|2.
The solution B to ming [[(X + E)B — y||2 satisfies

1B~ Bll: _ X( B +1> > |l )
— < — n+ k(X)) ————n+ O0(n°).
AT T AR
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Compared to existing structural bounds for randomized least squares algorithms, which
are reproduced in Lemma 3.9, the bound for 3 in Corollary 3.5 is more general and tighter in
the sense that it does not exhibit nonlinear dependences on the perturbations.

Lemma 3.9 (Theorem 1in [6]). In addition to Section 2, also assume that |Pxyll2 > v|ly|l2
for some 0 < v <1 and ||€]l2 < (1 +n)|&|l2. Then

W < ko(X)Vy 2 =11
2

4. Model-induced and randomized algorithm-induced uncertainty. Under the linear
model (2.2), the computed solution B has nice statistical properties [19, Chapter 6], as it
is an unbiased estimator of B, and it has minimal variance among all linear unbiased estima-
tors. We show how this changes with the addition of algorithm-induced uncertainty.

After briefly reviewing the uncertainty induced by the linear model (Section 4.1); we
derive the expectation and variance of [~3, conditioned on the algorithm-induced uncertainty
(Section 4.2). From that we derive the total expectation and variance (Section 4.3).

4.1. Model-induced uncertainty. We view the model-induced randomness in (2.2) as a
property of the response vector y. That is, the noise vector € in (2.2) has mean and covariance

Eyle] =0,  Vary[e] = o*1L,.

The well-known statistical properties of (2.3) are reviewed below.

Lemma 4.1 (Model-induced uncertainty for (2.3)). With the assumptions in Section 2, the
response vector (2.2), and the least squares prediction (2.6) and solution (2.4) satisfy

Eyly] = XBy, Vary[y] = 0?1,
Ey[9] = XBy,  Vary[§] = 0°Px € R™*"
Ey[ﬁ] = BO, Vary[ﬁ] = 0-2(XTX)—1 c Rpxp‘
Proof. See Section A.4. -

Lemma 4.1 asserts that the computed solution [3 is an unbiased estimator for B, and
points to the well known dependence of the variance on the conditioning of X [22, Section 5.

The difficulty in analyzing the sketched problem (2.7), coupled with general concern about
the first-order expansions like the ones in [15, 16], is that there are instances of S for which
rank(SX) < rank(X). In this case (SX)' cannot be expressed in terms of SX as in (2.1), and
the least squares problem (2.7) is ill-posed.

One can derive bounds [1, Theorem 3.2], [12, Theorems 4.1land 5.2] on the probability
that rank(SX) = rank(X) for matrices S that perform uniform sampling and leverage score
sampling. However, such bounds are not useful here, because expected values run over all
instances of SX.

We introduce a quantity that signals the deviation of the columns of SX from linear
independence.

This manuscript is for review purposes only.
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Lemma 4.2 (Bias projector). With the assumptions in Section 2,
Po = (SX)T(SX) € RP*?

18 an orthogonal projector where
1. PX =XPy
2. Po =1, if rank(SX) = p.
3. I — Py represents the deviation of SX from full-rank.

Proof. See Section A.5. |

The name bias projector will become apparent in Theorem 4.3, where Pg represents the
bias in [3

If S =1,, then Pg = Px. If rank(SX) = p, then Lemma 4.2 recovers PX = X from
Lemma 3.1, confirming that P is a projector onto range(X). However, if rank(SX) < p,
then Pg characterizes the subspace of range(X) onto which P projects.

4.2. Model-induced uncertainty, conditioned on algorithm-induced uncertainty. We
determine the expectation and variance for the solution of (2.7) conditioned on S. That is, we

assume that the random sketching matrix S is fixed at a specific value Sg and use Ey [ ‘ S}

as an abbreviation for the conditional expectation Ey [ ‘ S = SO].

Theorem 4.3 (Model-induced uncertainty in (2.7), conditioned on S). With the assump-
tions in Section 2, the solution of (2.7) satisfies

Ey [B[S] = PoBy = By + (1—Po)By
Vary [B ‘ S] = o* XPPT (XN e RV,
— Vary [f] + o> X (PPT — Py) (X1)7,

where PPT —Py is the deviation of P from being an orthogonal projector onto range(X).
Furthermore Ey, {B rank(SX) = p} = By-

Proof. See Section A.6. |

The exact expressions for general sketching matrices S in Theorem 4.3 extend the first-
order expressions for specific sampling matrices in [16, Lemmas 2-6]. The examples in Sec-
tion 6.1 illustrate the effect of rank deficiency of SX on the quantities in Theorem 4.3.

Theorem 4.3 shows that the bias of [3 is proportional to the deviation I — Py of SX
from having full column rank. In other words, the bias becomes worse as the rank deficiency
increases. If rank(SX) = rank(X), then @ is an unbiased estimator of B,. Theorem 4.3 also
implies that the conditional variance is close to the model variance if P is close to being an
orthogonal projector onto range(X).

The relevance of I — Py and PPT — Py becomes clear in the relative differences below.

This manuscript is for review purposes only.
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Corollary 4.4 (Relative difference between conditional and model quantities). With the
assumptions in Theorem 4.3,

| Vary |B1S] - Vary [B]]l

X < |PPT — Py
| Vary [B]]|2
If also By # 0, then
IEy [B1S] - Bolz -
< [ = Poll2
1Boll2
Proof. See Section A.7. |

Corollary 4.4 implies that the relative differences to unbiasedness and model variance
are solely governed by the quantities I — Py and PP” — Py, respectively. Both of them
are absolute as well as relative measures since ||I||s = |Px||2 = 1. Specifically, the relative
difference between conditional and model variance increases with the deviation of P from
being an orthogonal projector onto range(X); and the bias of B increases, in the relative
sense, with the deviation of SX from full column rank.

Thus, unbiasedness is easier to achieve because it only requires SX to have full column
rank. In contrast, recovering the model variance requires reproducing all of range(X).

4.3. Combined algorithm-induced and model-induced uncertainty. We determine the
total expectation and variance for the solution in (2.7) when S is a random sketching matrix,
that is, S is a matrix-valued random variable.

The algorithm-induced uncertainty of the random matrix S is represented by the expecta-
tion Es[-] and the variance Varg[-]. The total mean and variance of the combined uncertainty
are denoted by E[-] and Var[-], and computed by conditioning on the algorithm-induced ran-
domness,

(4.1) E[] = E, [Ey [ ‘ SH .

Since S is a matrix-valued random variable, so are the projectors P and Pg. Examples of S
can be found in Sections 5 and 6.

This manuscript is for review purposes only.
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10 JOCELYN T. CHI AND ILSE C.F. IPSEN

Theorem 4.5 (Total mean and variance for (2.7)). With the assumptions in Section 2,
let S be a random sketching matriz. The solution of (2.7) satisfies

E[B] = Es[Po]B, = By + Es[Po — 1B,
Var[B] = o? X' Eg [PPT] (X")T + Varg[Po ]

= Vary [B] + 02 X E[PPT — P, ] (XN + Varg[(Po — I)By].
where

Var[PoBo] = Es [(PoBo) (PoBy)” | — (Es[Po] Bo) (Es[PolBy)”
= Varg[(Po — I)Bg.

Proof. See Section A.8. u

Theorem 4.5 presents exact expressions for general random matrices S, thereby extending
the first order approximations for specific sampling matrices in [16, Lemmas 2-6], and shows:
1. The total bias of [§ is proportional to the expected deviation of the matrix-valued
random variable SX from having full column rank.
The expectation Eg[Pg] of a projector Py is not a projector, in general, as the example
in Section 6.3 illustrates.

2. The total variance of [§ is proportional to the expected deviation of SX from full
column rank, plus the expected deviation of the matrix-valued random variable P
from being an orthogonal projector onto range(X).

The importance of the expected deviations of the projectors appears in the analog of

Corollary 4.4 below.

Corollary 4.6. With the assumptions in Theorem /.5,

| Var(3) — Vary (8]
|| Vary [B]|2
If also By # 0, then

| Vars[(Po — Dol

ll2 T
< || Es[PP — Pyll2 + -
| Vary [B]]]2

< || Es[I — Po||2.
1Boll2 °

Corollary 4.6 implies that the bias of é increases, in the relative sense, with the ex-
pected deviation of SX from full rank; and that the relative difference from total variance to
model variance increases with (i) the expected deviation of P being an orthogonal projector
onto range(X), plus (ii) the expected deviation of SX from full rank.

5. Random sketching matrices in least squares. We present a few examples of sketching
matrices from the randomized least squares solvers [1, 2, 5, 6, 14, 15, 16, 17, 21].
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Uniform sampling with replacement. This is the EXACTLY (¢) algorithm [6, Algorithm 3]
with uniform probabilities, which is used for row-wise compression of direct methods for the
solution of full column rank least squares in [6, Algorithm 3|, see also the BasicMatrixMul-
tiplication Algorithm [4, Fig. 2], [12, Algorithm 3.2], [14, Algorithms 1 and 2], and [16,
UNIF].

Algorithm 5.1 Uniform sampling with replacement
Input: Integersn >1land 1 <r <n
Output: Sampling matrix S € R™*" with E¢[S”S] =1,
fort=1:r do
Sample k; from {1,...,n} with probability 1/n,
independently and with replacement
end for

S: %(ekl ekT)T

The probability of a particular instance of diag(S”'S), and therefore S is given by a scaled
multinomial distribution [16, Section 3.1].

Random orthogonal sketching. This is used in Blendenpik [1, Algorithm 1] to compute ran-
domized preconditioners for the iterative solution of full column rank least squares problems.

Here S = BTD € R™ ", where D € R™*"™ is a diagonal matrix whose diagonal elements
are independent Rademacher random variables, equaling +1 with equal probability; T € R™*"
is a unitary matrix, such as a Walsh-Hadamard, discrete cosine, or discrete Hartley transform;
and B is a diagonal matrix whose diagonal elements are Bernoulli variables, equaling 1 with
probability yp/n for some v > 0, and 0 otherwise.

Gaussian sketching. This is used in to compute randomized preconditioners for the iterative
solution of general least squares problems [17, Algorithms 1 and 2].

Here the elements of S € R™*™ are independent A/(0,1) random variables. In Matlab:
S = randn(r, n).

6. Example. We illustrate the projectors in Corollary 3.5, Theorem 4.3, Corollary 4.4.
Theorem 4.5, and Corollary 4.6 in a way that is easy for readers to reproduce. For a small
example matrix, we illustrate the effects of rank deficiency SX (Section 6.1); perform uniform
sampling with replacement (Section 6.2); compute the expectations for Pg (Section 6.3) and
PPT (Section 6.4); and put this into context with two matrices at opposite ends of sampling
performance (Section 6.5).

Consider the full column rank matrix

Ol

€ R¥*2 with XT—<

e
|
O = O =
S O = O
]
O Nl
S

This manuscript is for review purposes only.
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12 JOCELYN T. CHI AND ILSE C.F. IPSEN

rank(X) = 2,
1 1
3 03 0 )
6 Pe=xxi= | DY 0l v Bt =0 (3 1),
2 2
0 0 0O
and
1 0
0 O
null(Pyx) = range(I — Px) = range 1 0
0 1

6.1. Effects of rank deficiency. We illustrate the effect of rank deficiency on the quantities
in Corollary 3.5, Theorem 4.3 and Corollary 4.4 by choosing two different matrices S with
rank(S) = 2.

Full column rank SX. Here

(1.0 00 (1 0\ _ t_
S_<0 1o 0> where SX-(0 1>—(SX) = Iy,

rank(SX) = rank(X) = 2, and range(P) = range(X). This gives the projectors

1 0 00
0100
— T — — q —
Py = (SX)'(SX) =1, P =X(SX)'Ss = 100 ol
0 00O
with
00
00
null(P) = range(I — P) = range 1 o
01
This shows:

e P is not an orthogonal projector, since it is not symmetric.
e The solution $ in Theorem 4.3 is an unbiased estimator.
e The conditional variance in Theorem 4.3 has increased compared to (6.1), since

Vary [é ‘ S} — 2 XIPPT (XN = 62(8X)TSST((SX)1) = 02 L.
Rank deficient SX. Here

(1000 10\ et
S(O 00 1) where SX(O 0>(SX)7
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rank(SX) = 1 < rank(X), and range(P) C range(X). This gives the projectors

Po = (SX)T(SX) = (é 8) P=

O = O =
o O O O
o O O O
o O O O

with

null(P) = range(I — P) = range

O O = O
o = O O
— o O O

This shows:
e The rank deficiency of SX causes the dimension of null(P) to increase.
e The solution B in Theorem 4.3 is a biased estimator since Pg # Is.
e The conditional variance in Theorem 4.3 has become singular, since

Vary [B| 8] = o? XTPPT(X1) = o?(8X)1SST(8X)1) = o7 <(1) 8>T .

6.2. Uniform sampling with replacement Algorithm 5.1 with n = 4 and r = 2 produces
a sampling matrix S € R?*4, which has n? = 16 instances

T

J

each occurring with probability 1/n2. For instance,

1000 0001
Sll_ﬁ(l 0 0 0)’ 542_*/§<0 10 0)'

The expectation of the Gram product is an unbiased estimator of the identity,

4 4
E[STS] = > 5SS =D D tsleie] +ejej) =L

6.3. Expected deviation of SX from rank deficiency. We compute the expectation of
Py € R?*? in Theorem 4.5 and Corollary 4.6,

S, L (12 0
Es[Pol =) > 15(S5X)"(8X) =Es[Po] = 55 5 -

=1 j=1
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w
ot

354  Representative summands include

T
10 1/2 1/2 10
355 (S15%)" = /4 <1 o) N %<0 0 ) (Slgx)T(S”X)_(o 0>
T
10 1 0
356 (SgQX)T = \/g <0 1> = % (0 O) = \/%IQ, (SgQX.)T(S?,QX) =1
i 1o oy f
357 (S44X) = 5 <0 0) =0, (S44X) (S44X) = 0.

358 Among the sketched matrices, 75 percent are rank deficient. The ones with full column rank
359 are S19X, S91X, S93X, and S35 X. This shows

360 e Es[Po] is not a projector, since it is not idempotent.
361 e The solution B in Theorerp 4.5 is a biased estimator, since Eg[Pg] # I5.
362 e The relative difference of 3 from unbiasedness in Corollary 4.6 can exceed 50 percent,
363 since it is bounded by || Es[I — Pql||2 = &, where
4 0
. _ 1
364 Es[I —Po] = 15 <0 9> .
365 6.4. Expected deviation of P from being an orthogonal projector. We compute the

366 expectation of PPT € R** in Theorem 4.5 and Corollary 4.6. Since the trailing column of
367 X is zero, and

368 PPT = X(SX)TssT((sX)")TXT,

369 the trailing row and columns of all instances of PPT" and Es[PP”] are, too. Thus

. 1 0 11 0
T 0 7 0 O
. T T T
370 E[PPT] = 33 5 X(S,,X)'s;;8]] ((sin)T> X"=5 100 0 1o
= 00 0 0
371 This shows
372 e Es[PPT] is not a projector since it is not idempotent.
373 e The expected deviation of P from being an orthogonal projector onto range(X) in
374 Corollary 4.6 can exceed 50 percent, since it is bounded by HES[PPT — Px]H2 = 1%,
375 where with the hat matrix Py in (6.1)
3 0 30
o T 110 =9 0 O
376 Es[PP —Pyx] = 35 30 3 0
0 0 00
377 6.5. Extreme examples. We consider two more 4 x 2 matrices, both with orthogonal

378 columns, but at the opposite ends in terms of the performance for uniform sampling in Sec-
379 tion 6.2.
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Columns of the Hadamard matrix. With its mass spread uniformly spread, which is
quantified by minimal coherence and uniform leverage scores [12, 16], this matrix is optimal
for uniform sampling,

11 1010
R Ix2 gt 1 |01 01
X=11 1 RT5L D Pe=XX"=311 010

1 -1 0101

Half of the sketched matrices SX have full column rank. The expectations for the projectors
are

Es[Po] = 21, E{PPT] =1

S = O =
_ o = O
S = O =
_= o = O

The expected deviations of SX from full column rank and of P from being an orthogonal
projector are clearly lower, thus better, than the respective ones in Sections 6.3 and 6.4,

=3

IES[I—Polll, = &, ||Es[PPT —Py]||, = 3.

Columns of the identity matrix. With its concentrated mass spread, which is quantified
by maximal coherence and widely differing leverage scores [12, 16], this matrix presents a
worst case for a 4 x 2 matrix of full column rank.

10 1000
o1 42 Ceei_ 1|01 00
X=1, ol €RY Pe=XXT=3 | o

0 0 0000

Only two among the 16 sketched matrices SX have full column rank, S;5X and S9;X. The
expectations for the projectors are

1000
0100
Es[Po] = (5l Es[PPT]=g5 | o
0000

The expected deviations of SX from full column rank and of P from being an orthogonal
projector are
IEs[I - Polll, = 55, ||Es[PPT —Py]||, = 3,

thus clearly worse than those for the Hadamard matrix.
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101 Appendix A. Proofs. We present the proofs for Sections 3.1 and 4.

402 Our results depend on projectors constructed from the possibly rank-deficient matrix
103 SX. In this case, the Moore-Penrose inverse cannot be expressed in terms of the matrix SX
404 proper, so we rely on the four conditions [7, Section 5.5.2] that uniquely characterize the
105 Moore-Penrose inverse,

T
106 (A1) (SX)(SX)T(SX) = SX, ((SX)(SX)T) = (SX)(SX)'
T
407 (SX)T(SX)(SX)T = (SX)T, <(SX)T (SX)) = (SX)f(SX).
408 A.1. Proof of Lemma 3.1. The Moore-Penrose conditions (A.1) imply
109 P? = X (SX)'S X(SX)'S = X(SX)'S = P.
(%)

110 Since P2 = P, but P is not symmetric in general, it is an oblique projector.
411 1. From (2.1) follows

112 PP = XX'P = XX'X(SX)'S = X(SX)'S = P.
—
X
413 2. Use the fact [18, Problem 5.9.12] that null(P) = null(Py) if and only if PPy — P =0
114 and PxP — Py = 0. For the latter, the above implies PyP — Py = P — Px. Thus we
415 can interpret P — Py as a measure for the distance between null(P) and null(Py).
116 3. If rank(SX) = p then we can express the Moore-Penrose inverse as in (2.1),
417 PX = X ((SX)7SX) ' (SX)TSX = X.
(8X)1
418 A.2. Proof of Theorem 3.3. The first expression for the least squares solution follows

419 from (2.1), (2.8), Lemma 3.1, and

120 B =XXp =X X(SX)'Sy = X'Py.

121 Adding B — X'y = 0 from (2.4) to the above gives the second expression
122 B=p+XPy—Xly=p+X(P-Pyy,

423 where the last equality is due to (A.1) and

124 X =XIXX" = XTP,.

125  Regarding the least squares residual, from (2.9), the first expression for [g, (2.5) and Lemma 3.1
126 follows

427 y = Xp = XX'Py = P,Py = Py.
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Adding § — Pxy = 0 from (2.6) gives
y=3+Py-Pxy=3+ (P -Pyy.
As for the predictor, (2.9) and the above expression for y imply
e=y-y=(1-P)y.
Adding and subtracting & — (I — Px)y = 0 from (2.6) gives
é=e+(I-P)y—(I-Py)ly=¢é+ (Px—P)y.

A.3. Proof of Corollary 3.5. The bounds are a direct consequence of Theorem 3.3.

From [7, Theorem 5.3.1] follows that [|&|[2/]|y||2 = sin@. The assumption § < /2 implies
sinf < 1, hence ||&||2 < |ly|l2 and therefore B # 0. The assumption § > 0 implies y ¢

range(X), thus & # 0. Therefore we can divide by the appropriate quantities. In the bound
for €, write [7, Theorem 5.3.1]

[yll2/[|élla = 1/sin.
A.4. Proof of Lemma 4.1. The linearity of the mean and (2.2) imply

Eyly] = Ey[X Bo] + Ey[e] = XBy + 0 = Xy
Vary[y] = Vary [XB, + €] = Vary[e] = 0°I,,.

From (2.6), the above, and (Py)? = Py follows

Ey[y] = Ey[Px}’] = Px Ey[Y] = PxXBg = XBg
Vary [§7] = Vary [Pxy] = Px Vary [y|Px = 0?Px.

From the above, (2.4), and (2.1) follows
Ey“g] = Ey[XTY] = XT Eyly] = XTXBO = Bo
Vary [B] = Var, [XTy} = X' Var, [y](X")T = o2(XTX) 1.
A.5. Proof of Lemma 4.2. The Moore-Penrose conditions (A.1) imply

(Po)? = (SX)f (SX)(SX)/(SX) = (SX)(SX) = Py,
%

and (Pg)” = Py, confirming that Pg is an orthogonal projector.
1. Lemma 3.1 implies PX = X(SX)'S X = XPy.
2. If rank(SX) = p, then (SX)T is a left-inverse, see (2.1), so that Pg = I,,.
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A.6. Proof of Theorem 4.3. The expectation follows from Theorem 3.3, Lemma 4.1,
Lemma 4.2, and (2.1),

(A.2) Ey[B |S] = X'P Eyly] = X! PX B, = X'XPoB = PoBy.
XPo

From the definition of variance, Theorem 3.3, and the above follows

S] = By BB’ | 8]~ By [BB"

Vary[B

S| By (BB |S]”

T
= X'PE[yy"] (X'P) — (PoBo)(PoBy)”.
For the middle term in first summand, Lemma 4.1 implies
Eylyy"] = (XBo)(XBo)" + XBo Ey[e]” + Ey[e](XBg)" + Eylee”]
(A-3) = (XBo)(XBo)" + 0°Ly,

and when inserting this into the leading half of the first summand, one obtains as in (A.2)
that

(A.4) X'PXB, = PoB,.

This gives the first expression for the conditional variance,

Vary[B | S] = (PoBy) (PoBy)" + o* XTPPT(XT)" — (PoBy)(PoBy)"
= o2 XPPT (X7,
To obtain the second expression, multiply the model variance from Lemma 4.1 by I =
(XTX)(XTX),
Vary[B] = 0% (XTX) ™ = o2 (XTX) 1 (XTX) (XTX) !
=02 (XTX) 1 XTP, X (XTX)™ ! = 02 XTP, (X7,

where the remaining equalities follow from X = PyxX in (2.5) and from (2.1). Now add
Vary [B] — 02 XTP,(X)T = 0 in the first expression for the variance.

If P were an orthogonal projector onto range(X), then PTP = P = P,. Thus, PTP — P,
represents the deviation of P from being an orthogonal projector onto range(Py).

A.7. Proof of Corollary 4.4. The second expression for the variance in Theorem 4.3 and
submultiplicativity imply

| Vary[B | 8] — Vary[B][l2 < o® [IXT||z [PPT — Pxl2l|(XT) |2
= ||PP" — Py|2|| Vary [B]]l2,

where the equality follows from ||M|2||[M%]||s = [[MMT||5, and for any full-column rank
matrix M,

MI(MNHT = M™TM) MM (M M)~ = MTM) L.
The second expression for the expectation in Theorem 4.3 and submultiplicativity imply

IEy[B[S] — Boll2 < [T = Poll2[|Boll2:
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A.8. Proof of Theorem 4.5. The expectation follows from sequential conditioning (4.1)
and Lemma 4.3,

E[B] = Eq [Ey [B| S]] = Es[PoBo) = E[Po]Bo.

Insert this expression for the mean into the definition of the variance, and apply sequential
conditioning (4.1),

Var(B) = E[BB'] - E[B|E[B)”
—E. [y [BB | S]] - (Eu[PolBo) (Es[PolBo)” -
From Theorem 3.3, (A.3) and (A.3) follows
E, [BBT ‘ S} = X'PE,[yy"]P"(X")"

= X' P (0’1, + (XBo)(XBy)") PT(XH)”
= 2XTPPT(XN)T + (PoBy)(PoBo)” -

Conditioning this on S gives
E, [Ey [BB" |S]] = o*X"E, [PPT] (X")T + E, [(PoBy) (PoBo)"] -
Put everything together to obtain the first expression for the variance,
Var[B] = 0?X Eq [PPT] (xhH”

+Ey | (PoBo) (PoBo)” | — (Es[PolBo) (Es[PolBo)”

Varg flgo Bol

The second expression for Varg[PoB] follows from adding and subtracting

BoBo — Bo(Es[PolBo)” — Es[Po]BoEs[Bo]” -
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