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A GEOMETRIC ANALYSIS OF
MODEL- AND ALGORITHM-INDUCED UNCERTAINTIES
FOR RANDOMIZED LEAST SQUARES REGRESSION*

JOCELYN T. CHI' AND ILSE C. F. IPSEN*

Abstract. For full-rank least squares regression problems under a Gaussian linear model, we
analyze the uncertainties when the minimum-norm solution is computed by random row-sketching
and, in particular random row-sampling. Our expressions for the total expectation and variance of
the solution—with regard to both model- and algorithm-induced uncertainties— are exact; hold for
general sketching matrices; and make no assumptions on the rank of the sketched matrix. They show
that expectation and variance are governed by the rank-deficiency and spatial geometry induced by
the sketching process, rather than by structural properties of specific sketching or sampling methods.
In order to analyze the rank-deficient matrices from row-sketching, we introduce two projectors that
connect least squares problems of different dimensions.

From a deterministic perspective, our structural perturbation bounds imply that least squares
solutions are less sensitive to multiplicative perturbations than to additive perturbations. From a
probabilistic perspective, we show that the differences between the total bias and variance on the
one hand, and the model bias and variance on the other hand, are governed by two factors: (i) the
expected rank deficiency of the sketched matrix, and (ii) the expected difference between projectors
onto the spaces of the original and the sketched problems. Surprisingly, the matrix condition number
has far less impact on the statistical quantities than it has on numerical errors.

Key words. Condition number with respect to inversion, projector, multiplicative perturba-
tions, Moore Penrose inverse, expectation, variance, matrix valued random variable

AMS subject classification. 62J05, 62J10, 65F20, 65F22, 65F35, 68W20

1. Introduction. We consider the randomized solution of least squares regres-
sion problems under the Gaussian linear model, and analyze the effect of both: the
statistical noise in the model, as well as the error due to algorithmic randomization.
Our analysis extends the pioneering work [15, 16] through rigorous validation in a
general setting, and demonstrates that expectation and variance are governed by ge-
ometry rather than by structural properties of specific classes of sketching matrices:
What matters is the rank deficiency induced by the sketching process, and the failure
of the sketched matrix to reproduce the original column space.

1.1. Problem setting. We start with a regression problem under the Gaussian
linear model,

(11) y:Xf’0+€7 eNN(()uUQIn)u

where X € R™"*? is a given design matrix with rank(X) = p, B, € R? is the true but
unknown parameter vector, and the noise vector ¢ € R™ has a standard multivari-
ate normal distribution. For a fixed response vector y € R", the unique maximum
likelihood estimator of B is the solution B of the full-rank least squares problem’

1.2 in |XB — yls.
(1.2) ég}élpll B -yl
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1Here ||x|l2 = VxTx represents the Euclidean two-norm, and the superscript T the transpose.
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2 JOCELYN T. CHI AND ILSE C.F. IPSEN

Solution of this least squares problem via random row-sketching,
1.3 in [|[S(Xp —
(1.3) min [S(XB )2,

is an effective approach in the highly over-constrained case [5, 6, 16, 22, 28] where
observations far outnumber covariates, that is, X is tall and skinny with n > p. Here
S € R™*™ is a random sketching matrix with » < n, and the minimum norm solution
is B.

1.2. Existing work. Random sketching is a form of preconditioning and seems
to have originated in [24]. By now, there are many variants which can be classified
according to [26, Section 1]: Compression of rows [2, 5, 6, 13, 15, 16, 23, 28]; or columns
[1]; or both [18]. Matrix concentration inequalities are used to derive probabilistic
bounds for the error due to randomization [1, 6], and for the condition number of
the sampled matrix [13]. From a practical perspective, bootstrapping can deliver fast
error estimates [14].

Most of the randomized least squares work comes from theoretical computer sci-
ence and numerical analysis and is mainly concerned with errors due to algorithmic
randomization, while ignoring statistical noise in the model. The pioneering work
[15, 16] is the first to quantify the total uncertainty from model-induced and algorithm-
induced randomness. This being the first analysis of its kind, it started out with a
few assumptions: the sampling matrices must preserve rank, and their expected value
must be known; and the conditional expectation and variances must admit Taylor
series. Thus, the resulting first-order expansions hold only approximately.

1.3. Specific Contributions. We extend the first-order expansions in [15, 16]
as follows:

1. We derive ezxact expressions for the total expectation and variance of B with
regard to model- and algorithm-induced uncertainties (Theorem 4.5). The ex-
pressions hold for general random sketching matrices S, regardless of whether
they preserve rank, and include sketching matrices that perform projections
prior to sampling.

2. In contrast to most deterministic and randomized analyses, our expressions
are not limited to full-rank matrices. We analyse the rank-deficient matrices
in (1.3) by supplementing the hat matriz P, = XX, i.e. the orthogonal
projector onto range(X), with two new projectors:

(a) Comparison hat matrizv P = X(SX)'S (Lemma 3.1).

This projector makes it possible to compare the model problem (1.1)
with the lower-dimensional sketched problem (1.3). The difference
PPT — P, quantifies the deviation of P from being an orthogonal
projector onto range(X).

(b) Bias projector Po = (SX)(SX) (Lemma 4.1).

This projector captures the failure of S to preserve rank. The differ-
ence I —Pg quantifies the rank deficiency of the sketched matrix SX.

3. For the model-induced uncertainty of [}», conditioned on the sampling ma-
trix S, we show (Theorem 4.2, Corollary 4.3):

(a) The conditional bias increases with the rank deficiency of SX.

(b) The difference between conditional variance and model variance in-
creases with the deviation of P from being an orthogonal projector
onto range(X).

Thus, unbiasedness is easier to achieve because it only requires SX to have full
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RANDOMIZED LEAST SQUARES REGRESSION 3

column rank. In contrast, recovering the model variance requires reproducing
all of the original space range(X).

4. For the total uncertainty in the solution [~5 we show (Theorem 4.5, Corol-
lary 4.6):

(a) The total bias increases with the expected rank deficiency of SX.
(b) The difference between total variance and model variance increases
with two terms: the expected rank deficiency of SX; and the expected
deviation of P from being an orthogonal projector onto range(X).
Thus, total expectation and variance are governed by the expected spatial
geometry induced by the sketching process rather than by structural proper-
ties of specific S. However, the condition number of X has far less impact
than one would have expected based on numerical perturbation theory.

5. We show analogous results for norm-wise quantities (Theorem 4.8, Corol-
lary 4.9). The total expectations of the regression sum of squares ||Py||3 and
the residual sum of squares ||(I—P)y||3 depend on the norms of the projectors
P and I — P, amplified by the model variance 2.

6. We present structural bounds that improve existing perturbation bounds
(Corollary 3.5). They imply that the minimum norm solution {3 is less sensi-
tive to multiplicative perturbations than to additive perturbations, because
the dependence is only on the condition number, rather than on its square as
in the case of additive perturbations.

The judicious design of numerical experiments that are representative and informative
from both, numerical and statistical perspectives, is beyond this scope, and will be
the subject of a separate paper.

1.4. Overview. After reviewing the computational models for least squares re-
gression (Section 2), we adopt two perspectives:

1. Deterministic (Section 3): The matrix S is fixed and the sketched problem
(1.3) is a multiplicative perturbation of the deterministic problem (1.2), and
we present structural perturbation bounds.

2. Probabilistic (Section 4): The matrix S is a matrix-valued random variable,
and (1.3) is a randomized algorithm for solving the model problem (1.1), and
we derive expressions for expectation and variance with regard to the model-
and algorithm-induced uncertainties.

A brief discussion of our results (Section 5) ends the main part of the paper. Proofs
are relegated to the Appendix (Section A), as are specific examples to provide insight
for the geometry of the probabilistic results (Section B).

2. Models for Least Squares Regression. Given is a fixed design matrix
X € R"*? with rank(X) = p. Since X has full column rank, the Moore-Penrose
inverse is a left inverse with

(2.1) X = (XTX)"'X" and X'X=1I,.
The two-norm condition number of X with regard to left inversion is
R (X) = || X]|2|XT |2
We review the different incarnations of least squares regression: the Gaussian lin-

ear model (Section 2.1), the traditional computation (Section 2.2), and algorithmic
leveraging (Section 2.3).

This manuscript is for review purposes only.
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4 JOCELYN T. CHI AND ILSE C.F. IPSEN

2.1. Gaussian linear model. Let 3, € R? denote the true but generally un-
known parameter vector, and let the response vector y € R" satisfy the Gauss-Markov
assumptions,

(2.2) y =XBy +e, e ~ N(0,0%1,).

The noise vector € € R™ has a multivariate normal distribution whose mean is the
vector of all zeros, 0 € R", and whose covariance is a multiple 02 > 0 of the identity
matrix I,, € R™"*™,

2.2. Traditional algorithm for least squares solution. For a fixed y € R"
solve

(23) i X~y
Since X has full column rank, (2.3) is well posed and has the unique solution
(2.4) B =Xly.
The prediction and the least squares residual are, respectively

$=XB and eé=y—-XB=y-9.
In terms of the hat matriz [3, 10, 27],
(2.5) P, = XX = X(XTX)"!XT ¢ R™*",

which is the orthogonal projector onto range(X) along null(X”), the prediction and
least squares residual can be expressed as

(2.6) ¥ =Py and é=(1I-Py)y.

2.3. Random Row-Sketching. From a deterministic perspective, this can be
considered an extension of weighted least squares [8, Section 6.1] to rectangular weight-
ing matrices.

Given a sketching matrix S € R"™*™ with 1 < r < n, solve

2. i Xp —

(2.7) min IS(XB —y)ll2,
which has the minimum norm solution

(2.8) B = (SX) sy.

This problem is generally ill-posed: Just because S has r > p rows, this does not
imply rank(S) = p; and even if S does have full column rank, rank(SX) < p is still
possible.

By design, S has fewer rows than X. Hence the corresponding predictions y = X[?)
and SXf have different dimension and cannot be directly compared; neither can
their residuals. To remedy this, we follow previous work [5, 6, 22], and compare the
predictions with regard to the original matrix,

(2.9) y=XB and é=y-XB=y-y.

Note that € is not a least squares residual; the least squares residual for (2.7) is
SXp — Sy. However, we need € to assess the performance of 3 in the context of the
original problem (2.3).

This manuscript is for review purposes only.
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3. Structural (deterministic perturbation) bounds. Here S is a fixed, gen-
eral matrix; and SX is interpreted as a perturbation of X. We derive expressions for
the quantities of interest from the perturbed problem (Section 3.1), followed by mul-
tiplicative perturbation bounds (Section 3.2).

3.1. The perturbed problem. We derive expressions for the solution, predic-
tion and residual of the lower-dimensional problem (2.7). In order to relate them to
the higher-dimensional original problem (2.3), we introduce (Lemma 3.1) a compari-
son hat matriz P for (2.7), which corresponds to the hat matriz Py in (2.5) for the
original problem (2.3). This makes it possible to express the solution, prediction, and
residual of the perturbed problem in terms of the original problem (Theorem 3.3).

LEMMA 3.1 (Comparison hat matrix). With the assumptions in Section 2,
P = X(SX)'s

is an oblique projector where
1. PxP =P.
2. P — Py reflects the difference between the spaces null(P) and null(Py).
3. PX =X if rank(SX) = p.
Proof. See Section A.1 0

The name comparison hat matriz will become clear in Theorem 3.3, where P
assumes the duties of the hat matriz Py for the expressions in (2.9).

Remark 3.2. The following cases are possible.
e If S=1,, then P = P,.
o If rank(SX) = rank(X), then P is an oblique version of the orthogonal pro-
jector Py with range(P) = range(Py), but null(P) # null(Py) in general.
o If

rank(P) = rank(SX) < rank(X) = rank(Px) = p,

then P projects only onto a subspace of range(X).

The comparison hat matrix P generalizes the oblique projector Py in [22, (11)],
which was introduced to quantify prediction efficiency and residual efficiency of
sketching algorithms in the statistical setting (2.2). This projector Py is defined
if rank(SX) = p, and equals P, = U(SU)'S = P, where U is an orthonormal ba-
sis for range(X). However, if rank(SX) < rank(X), then Py, is not sufficient in our
context.

THEOREM 3.3 (Perturbed least squares problem). With the assumptions in Sec-
tion 2, the solution of (2.7) satisfies

B =XPy = g+ XT(P - Py)y.

The prediction y = X[?) and residual € =y — X[?) satisfy

Proof. See Section A.2. d

This manuscript is for review purposes only.
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6 JOCELYN T. CHI AND ILSE C.F. IPSEN

Theorem 3.3 shows that the relation between perturbed and original least squares
problems is governed by P — Py, which reflects the difference between the spaces
null(P) and null(Pyx). The dependence on the sketching matrix is implicit, through
the induced spaces. _

With its explicit expressions for $ that hold for general matrices S without as-
sumptions on rank(SX), Theorem 3.3 also strengthens the ground breaking result [16,
Lemma 1], reproduced in the lemma below.

LEMMA 3.4 (Lemma 1 in [15] and [16]). If, in addition to the assumptions in
Section 2, the matriz S in (2.7) has a single nonzero entry per row, the vector w =
diag(STS) € R™ has a scaled multinomial distribution with expected value E[w] = 1,
satisfies rank(SX) = rank(X), and admits a Taylor series expansion of the solution
B(w) of (2.7) around wo = 1 with B(wo) = B, then

B(w) = B + X diag(&)(w — 1) + R(w),
where R(w) is the remainder of the Taylor series expansion. The Taylor series ex-
pansion is valid if R(w) = o(||w — wo||2) with high probability.

3.2. Multiplicative perturbation bounds. We consider (2.7) as a multiplica-
tive perturbation of the original problem (2.3) and derive norm-wise relative pertur-
bation bounds (Corollary 3.5), followed by comparisons to existing work.

COROLLARY 3.5. With the assumptions in Section 2, let 0 < 6 < w/2 be the angle
between y and range(X).
The solution B of (2.7) satisfies

[P — Pxll2
cosf

1B=Bllz ey ¥z b oy o x
Bl g =

The prediction y = Xp satisfies

15 ~ 9l _ [P~ Pull>
[$l = cost

Proof. This is a direct consequence of Theorem 3.3, and of [8, (5.3.16)] which
implies

Iyll2/(1X[12l1Bll2) < [[yll2/XBll2 = 1/ cosb.

For S = I,,, the bounds in Corollary 3.5 are zero and therefore tight. Corol-
lary 3.5 implies that the sensitivity of the minimum norm least squares solution
to multiplicative perturbations depends on the distance between the spaces null(P)
and null(Py), quantified by ||P — Pxll2. This distance is amplified, as expected, by
the conditioning of X is with regard to (left) inversion, and by the closeness of y to
range(X). Corollary 3.5 is an absolute as well as a relative bound since ||Pxl|2 = 1.

In contrast to multiplicative perturbation bounds for eigenvalue and singular value
problems [11, 12], we do not require S to be nonsingular or square. Weighted least
squares problems [8, Section 6.1] employ nonsingular diagonal matrices S for regular-
ization or scaling of discrepancies, and do not view them as a perturbation.

In contrast to additive bounds [8, Section 5.3.6], [9, Section 20.1], [25, (3.4)],
there is no squaring of the condition number and no need for requiring rank(SX) =

This manuscript is for review purposes only.
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RANDOMIZED LEAST SQUARES REGRESSION 7

rank(X). This suggests that the minimum norm solution of (2.7) and its residual are
less sensitive to multiplicative perturbations than to additive perturbations.

In contrast to existing structural bounds for randomized least squares algorithms
[6, Theorem 1], such as the one in Lemma 3.6 below, the bound for  in Corollary 3.5
is more general and tighter because it does not exhibit nonlinear dependencies on the
perturbations.

LEMMA 3.6 (Theorem 1 in [6]). In addition to Section 2, assume ||Pxy|2 >
Yyll2 for some 0 <~ <1 and ||€]]2 < (1 +n) ||&|l2- Then

|ﬁa%§@mw;zjﬁ_
2

4. Model-induced and randomized algorithm-induced uncertainty. Un-
der the linear model (2.2), the computed solution [3 has nice statistical properties
[20, Chapter 6], as it is an unbiased estimator of B, and it has minimal variance
among all linear unbiased estimators. We show how this changes with the addition of
algorithm-induced uncertainty.

After briefly reviewing the uncertainty induced by the linear model (Section 4.1);
we derive the expectation and variance of [3, conditioned on the algorithm-induced
uncertainty (Section 4.2), and from that the total expectation and variance (Sec-
tion 4.3), followed by the derivation of the conditional and total expectations for the
regression sum of squares and the residual sum of squares (Section 4.4).

4.1. Model-induced uncertainty. We view the model-induced randomness in
(1.1) and (2.2) as a property of the response vector y, so that

Ey[e] =0,  Vary[e] = 0?1,.
As a consequence
(4.1) Ey[8] = Bo,  Vary[B] = 0*(XTX)"1 € RPP,

This implies that the computed solution B is an unbiased estimator for f,, and
it signals the well-known dependence of the variance on the conditioning of X [25,
Section 5].

The difficulty in analyzing random row-sketching (2.7), coupled with general con-
cern about first-order expansions like the ones in [15, 16], is the frequent occurrence
of rank deficiency in the sketched matrix, that is, rank(SX) < rank(X). In this case
(SX)T cannot be expressed in terms of SX as in (2.1).

One can derive bounds [1, Theorem 3.2], [13, Theorems 4.1and 5.2] on the prob-
ability that rank(SX) = rank(X) for matrices S that perform uniform sampling and
leverage score sampling. However, such bounds are not useful here, because we need
the expected values to run over all instances of SX.

We introduce a projector that quantifies the deviation of the columns of SX from
being linearly independent.

LEMMA 4.1 (Bias projector). With the assumptions in Section 2,
Py = (SX)'(SX) € RP*?

is an orthogonal projector with

1. PX =XPy
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8 JOCELYN T. CHI AND ILSE C.F. IPSEN

2. Po =1, if rank(SX) = p.
As a consequence, I, — Po quantifies the rank deficiency of SX.
Proof. See Section A.3. |

If rank(SX) < p, then Pg characterizes the subspace of range(X) onto which P
projects. The name bias projector will become apparent in Theorem 4.2, where Pg
represents the bias in f3.

4.2. Model-induced uncertainty, conditioned on algorithm-induced un-
certainty. We determine the conditional expectation and variance for the solution
of (2.7), by assuming that the random sketching matrix S is fixed at a specific value So.
The expectation conditioned on S is abbreviated as

Ey -S| = By |-|S=50].

The exact expressions below for general matrices S extend the first-order expres-
sions for specific sampling matrices in [16, Lemmas 2-6].

THEOREM 4.2 (Model-induced uncertainty conditioned on S). With the assump-
tions in Section 2, the solution B of (2.7) has the conditional expectation

Ey [E’ ‘ S] =PoBy =By — (I-Po)By,

where Ey [ﬁ

rank(SX) = p} = By; and the conditional variance

Vary [B ‘ S| =02 (x'P) (x'P)"
= Vary[[g] + 02Xt (PPT - Px) (xHT,

with PPT — Py representing the deviation of P from being an orthogonal projector
onto range(X).

Proof. See Section A.4. d

Theorem 4.2 shows that the conditional bias and variance of [~5 depend on the
rank deficiency of SX, and the ability of P to reproduce the original space range(X).
The fixed sketching matrix S is involved only implicitly, through the spaces induced
by the sketching process. Specifically, Theorem 4.2 shows:

1. The conditional bias of fj is proportional to the deviation I — Pg of SX from
having full column rank. That is, the conditional bias becomes worse as the
rank deficiency increases. If rank(SX) = rank(X), then B is a conditional
unbiased estimator of B, regardless of the specific sketching class to which
S belongs.

2. The conditional variance is close to the model variance Vary[[g], if P is close
to being an orthogonal projector onto range(X). In the extreme case S = I,,,
the conditional variance is identical to the model variance.

The relevance of I — Pg and PPT — Py is further corroborated below.

COROLLARY 4.3 (Relative differences between conditional and model uncertain-
ties). With the assumptions in Theorem 4.2,

| Ey[B|S] = Boll2 < T —Poll2 [|Boll2
[Vary[B [ S] — Vary[B]||2
|| Vary [B][l2

< |PPT — Pyl

This manuscript is for review purposes only.
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Proof. See Section A.5. O

Corollary 4.3 implies that the relative differences to conditional unbiasedness
and model variance are solely governed by the quantities I — Pg and PP — Py,
respectively. Somewhat surprisingly, the condition number of the model variance
Vary [B] in (4.1) is not explicitly present. Instead, the conditional bias of B increases
with the rank deficiency of SX, while the relative difference between conditional and
model variances increases with the deviation of P from being an orthogonal projector
onto range(X). Thus, unbiasedness is easier to achieve because it only requires SX
to have full column rank, while recovering the model variance requires reproducing
all of range(X).

The examples in Section B.2.1 illustrate the effect of rank deficiency in Theo-
rem 4.2 and Corollary 4.3.

Remark 4.4 (Sampling versus sketching). To confirm the importance of the
induced spaces and the peripheral role of the particular structure of S, we perform
sketching by first applying row-mixing [1, Section 3.2] with a unitary transform F €
R™"™ prior to sampling,

(4.2) min ||S(XB —y)|l2 where S =S;F,
BERP

where FIF = FF?T =1, and S; € RP*" is a sampling matrix. The row-mixed
problem

min [|F(XB —y)|l2

is equivalent to the original problem (2.3), since it has the same solution, and the
same comparison hat matrix and bias projector,
X(FX)'F = XX' = P,
(FX)" (FX) = X'X =1I,,.
Thus, any damaging effect on the conditional bias and variance comes from the pos-

sible rank deficiency and the spaces induced by the sampling process.

4.3. Combined algorithm-induced and model-induced uncertainty. We
determine the total expectation and the total variance for the solution from (2.7)
when S is a random sketching matrix, that is, S is a matrix-valued random variable.

The algorithm-induced uncertainty of the random matrix S is represented by the
expectation Eg[-] and the variance Varg[-], while the total mean and variance of the
combined uncertainty are denoted by E[-] and Var[]. The total mean is computed by
conditioning on the algorithm-induced randomness

(4.3) E[] = E, [Ey [ ’ S” .

Since S is a matrix-valued random variable, so are the projectors P and Pyg.
The exact expressions below for general random matrices S extend the first order
approximations for specific sampling matrices in [16, Lemmas 2-6].

THEOREM 4.5 (Total uncertainty). With the assumptions in Section 2, let S be
a random sketching matriz. The solution B of (2.7) has total expectation and variance

E[B] = Es[PoBo] = By + Es[Po — I|B,
Var[p] = o? XT Eg [PP] (X" + Vars[PoBy]
= Vary [B] + 02 X! E [PPT — P,] (X1)T + Var,[(Po — I)B,],

This manuscript is for review purposes only.
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where

Vars[Popo] = Ex | (PoBy) (PoBo)” | — (E<[PoBo]) (Ex[PoBo])”
= Varg[(Po — I)By]-

Proof. See Section A.6. O

Theorem 4.5 shows that total expectation and variance are governed by the rep-
resentation of spaces associated with the original problem (2.3) and the sketched
problem (2.7), rather than the specific class of sketching matrices over which Eg and
Varg range. Specifically,

1. The total bias of @ is proportional to the expected deviation of the matrix-
valued random variable SX from having full column rank. Note that the
expectation Eg[Pg] of a projector Pg is in general not a projector, as the
example in Section B.2.3 illustrates.

2. The total variance of [3 is proportional to the expected rank deficiency of
SX, plus the expected deviation of the matrix-valued random variable P
from being an orthogonal projector onto range(X).

COROLLARY 4.6 (Relative differences between total and model uncertainties).
With the assumptions in Theorem 4.5,

A E[B] - Boll2 < [|E<[T = Polll2 [|Boll-
| Var[B] — Vary [B] [ Vars[(T — Po)Bolll2
| Vary [B][l2 | Vary [B][l2

Proof. See Section A.7. O

Corollary 4.6 implies that the relative differences to unbiasedness and model vari-
ance are solely governed by the quantities Es[I — Po] and Es[PP? — Py]. Specifically,
the total bias of B increases with the expected rank deficiency of SX, while the
relative difference between total and model variances increases with the expected de-
viation of P from being an orthogonal projector onto range(X), and the expected
rank deficiency of SX.

The examples in Sections B.2.3-B.2.5 illustrate the effect of expected rank defi-
ciency in Theorem 4.5 and Corollary 4.6.

l2 e pPT — Py +

4.4. Regression and residual sums of squares. Two quantities from the
original least squares problem (2.3) play a key role in hypothesis testing, regression
diagnostics, and model selection metrics, such as the (adjusted) R? statistic, Mal-
lows’s Cp, the Akaike information criterion, and the Bayesian information criterion
[7, 17, 20, 21].

e Regression sum of squares, i.e. the squared norm of the prediction,

SSRois = y' Py = y' P’ Pxy = |3,
e Residual sum of squares, i.e. the squared norm of the least squares residual,
RSSois =y (I-Px)y =y" (I-Px)" (I~ Px)y = [[&]3,
From 3”& = 0 follows

Iyl = 19113 + 1813 = SSRois + RSSos,

This manuscript is for review purposes only.
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which decomposes the observation into a portion that is explained by the model; and
a portion that represents the error in the model. The corresponding quantities for
random row-sketching are
SSR =y PPy = |35
RSS = y7(I—P)T(I-P)y = [8]2.
They relate to their counter parts in the original problem (2.3) via the two-norm
version of Theorem 3.3,
SSR = SSRois +y” (PTP — Py)y
RSS = RSS,is + [|(P — Py)yl/3.

Since RSS evaluates the solution B of (2.7) in the context of the original problem,
[~3 is not a minimizer of (2.3), so clearly RSS > RSS.s. The difference between the
quantities from random sketching and their deterministic counterparts is governed by
the deviation of P from being an orthogonal projector onto range(X).

THEOREM 4.7 (Model-induced uncertainty conditioned on S). With the assump-
tions in Section 2,
Ey[SSR|S] = [|[PXBll5 + o* | P]|7
Ey[RSS[S] = [|(I - P)XB|3 + o |1 - P[5
Proof. See Section A.8. |
The total expectations follow immediately from Theorem 4.7.

THEOREM 4.8 (Total uncertainty). With the assumptions in Section 2,

E[SSR] = (XB,)" Es[P"P](XB,) + o° trace (Es[P"P])

E[RSS] = (XB)" Es[(I—P)" (I - P)|(XBy) + o trace (Es[(I—P)"(I-P)]).
At last we show that the difference between combined and model uncertainties

is governed by the expected deviation of P from being an orthogonal projector onto

range(X), and the expected deviation of I — P from being an orthogonal projector

onto range(X)*, both amplified by the model variance o2.

COROLLARY 4.9 (Difference between total and model uncertainty).  With the
assumptions in Section 2,

E[SSR] — Ey[SSRois] = (XBo)T Es[T](XBg) + o2 trace (Es[T])
E[RSS] — Ey[RSSe1s] = (XBo) T Es[T1](XBg) + o2 trace (Es[T'L]),

where we abbreviate
r=P'P-P,, I =1I-P)'T-P)— (I-Py).

Proof. See Section A.9. O

5. Discussion. We considered the randomized solution of least squares regres-
sion problems

min, 1S(XB —y)2

This manuscript is for review purposes only.
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arising from a standard Gaussian linear model
y:XBO+ea € NN(OaUQIn)a

and analyzed the effect on the solution [3 of the combined uncertainties from algo-
rithmic randomization and statistical noise.

Our results show that the expectation and variance of B are governed by the
spatial geometry of the sketching process, rather than by structural properties of
specific sketching matrices. Surprisingly, the condition number ko(X) with respect
to (left) inversion has far less impact on the statistical measures than it has on the
numerical errors. Even from the deterministic view of the sampled problem as a
multiplicative perturbation, the relative accuracy of B depends only on ks (X) —rather
than on the larger factor x2(X)? typical for additive perturbations.

The natural next step is the illustration of our analytical results through numer-
ical experiments that are representative and informative from both, numerical and
statistical perspectives.

Appendix A. Proofs. We present the proofs for Sections 3 and 4.

Our results depend on projectors constructed from the possibly rank-deficient
matrix SX. In this case, the Moore-Penrose inverse cannot be expressed in terms
of the matrix SX proper, so we rely on the four conditions [8, Section 5.5.2] that
uniquely characterize the Moore-Penrose inverse,

(A1) (SX)(SX)T(SX) = SX, (sx)(sx)H)" = (8X)(SX)!
(SX)T(sX)(SX)T = (SX)T,  ((SX)'(sX))" = (SX)I(SX).

A.1. Proof of Lemma 3.1. The Moore-Penrose conditions [8, Section 5.5.2]
imply P? = P for the generally nonsymmetric matrix P.

1. This follows from the Moore-Penrose conditions (A.1).

2. Use the fact [19, Problem 5.9.12] that null(P) = null(Py) if and only if
PPx — P = 0 and PxP — Px = 0. With item 1, this implies PxP — Px =
P — Px. Thus P — P, can be interpreted as a measure for the distance
between null(P) and null(Py).

3. This follows from (2.1).

A.2. Proof of Theorem 3.3. The first expression for B follows from (2.1),
(2.8), and Lemma 3.1. The second expression follows from adding and subtracting in
the first expression the term B =Xy = XTP,y.

The first expression for § follows from (2.8) and Lemma 3.1. The second ex-
pression follows from adding and subtracting in the first expression the first term in
(2.6).

The first expression for & follows from (2.9), (2.8) and Lemma 3.1. The second
expression for e follows from adding and subtracting in the first expression the second
term in (2.6).

A.3. Proof of Lemma 4.1. The Moore-Penrose conditions (A.1) imply (Pg)? =
Py and (Pg)T = Py, confirming that Py is an orthogonal projector.
1. This follows from Lemma 3.1.
2. If rank(SX) = p, then (2.1) implies that (SX)T is a left-inverse.

A.4. Proof of Theorem 4.2. The conditional expectation follows from Theo-
rem 3.3, (4.1), Lemma 4.1, and (2.1).
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The definition of variance, Theorem 3.3, and the above imply
~ ~~T ~ ~
Vary[B| S| = By BB |S] - Ey[B|S] Ey[B |S]”
T
= (XTP) Ey[ny] (XTP) - (POBO)(POBO)T'
The middle term in the first summand equals

Eylyy"] = (XBo)(XBy)" + XBo Ey[e]” + Ey[e](XBg)" + Eylee”]
(A.2) = (XBo)(XB)" + o’1,.

To obtain the first expression for the conditional variance, insert (A.2) into the con-
ditional variance above, and apply Lemma 4.1 to cancel out the expressions with Pyg.

For the second expression, use (2.1) and (2.5) to write the model variance in (4.1)
as

Vary[B] = o2 X' P, (X7,

Then add and subtract this term in the first expression for the conditional variance.

If P were an orthogonal projector onto range(X), then P”P = P = P,. Thus,
PTP — P, represents the deviation of P from being an orthogonal projector onto
range(X).

A.5. Proof of Corollary 4.3. The bound for the conditional expectation fol-
lows from (4.1), and the second expression for the expectation in Theorem 4.2. The
second expression for the conditional variance in Theorem 4.2 implies

| Vary [B | S] — Vary[B]ll2 < o® | X[z [PPT — Pl2|(XT)"|2.

Now apply ||[M]||2 [|MT||s = |[MMT||, and MT(M")T = (MTM)~! for a full column-
rank matrix M to deduce

(A.3) o [IXT 2 (XN 2 = || Vary [B]||2,

where || Vary[B]||2 # 0 by assumption in Section 2.1.

A.6. Proof of Theorem 4.5. Apply the iterated expectation (4.3), followed by
Theorem 4.2 to obtain the mean,

E[B] = E. [Ey [B|S]] = E.[PoBy] = E<[Po]B,.
Insert this into the definition of the variance, and apply again (4.3),
Var(B] = E[BB '] - E[B|EIB]”

=B, [Ey BB |S]] - (B.[PolBy) (Es[Po]By)”

Treat the first summand as in the proof of Theorem 4.2 in Section A.4 to deduce
Ey [BB' | S| = *XIPPT(X)T + (PoBy) (PoBy)"-
Condition this on y and then insert it into the above expression for the variance,
Var[p] = o?X' E; [PPT] (XT)”
+Eq [(PoBy) (PoBo)"| — (Es[Po]By) (Es[Po]Bo)"

Vars[PoB]
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14 JOCELYN T. CHI AND ILSE C.F. IPSEN

The second expression for Varg[Po] follows from adding and subtracting

BoBo — Bo(Es[Po]Bo)" — (Es[Po]By)By
in other words from B, having zero variance.

A.7. Proof of Corollary 4.6. The bound for the total expectation follows
from (4.1), and the second expression for the expectation in Theorem 4.5. The bound
for the total variance follows from the second expression for the variance in Theo-
rem 4.5, and from (A.3).

A.8. Proof of Theorem 4.7. We need the following auxiliary result about
expectations of quadratic forms.

LEMMA A.1. With the assumptions in Section 2, if A € R" ™ is a constant
matrix, then,

Ely" Ay] = (XBo)" A(XBy) + 0 trace(A).

Proof. This follows from y” Ay being a real scalar, the circular commutativity
of the trace, the interchangeability of the trace and expectation since both are sums,
and (A.2) as follows,

Ely"Ay] =E [trace(yTAy)] =E [trace(Any)} = trace (A E[ny])

= trace (A(XBO)(XBO)T +0%°A) = (XBo)TA(XBy) + o2 trace(A).

|

Proof of the Theorem. The expression for SSR follows from y = Py in Theo-
rem 3.3, Lemma A.1, and trace(PTP) = ||P||%. Analogously, the expression for RSS
follows from € = (I — P)y.

A.9. Proof of Corollary 4.9. From (2.6) and Lemma A.1 follows
Eyly" Pxy] = (XBo) " Px(XBg) + 0° trace(Py)
Ey [y’ (I - Py)y] = (XBo)T (I - Py)(XBg) +0? trace(I — Py).

0

Add and subtract these to the respective expressions in Theorem 4.8.

Appendix B. Examples with uniform row sampling. We start with a
brief review of sketching matrices for least squares problems (Section B.1), before
presenting examples that give insight into the results of Section 4 and the detrimental
effects of rank deficiency (Section B.2).

B.1. Random sketching matrices in least squares. We present a few ex-
amples of sketching matrices used by the randomized least squares solvers [1, 2, 5, 6,
14, 15, 16, 18, 23).

Uniform sampling with replacement. This is the EXACTLY (c) algorithm [6, Al-
gorithm 3] with uniform probabilities, which performs row-wise compression for direct
methods for the solution of full column rank least squares in [6, Algorithm 3], see also
the BasicMatrixMultiplication Algorithm [4, Fig. 2], [13, Algorithm 3.2], [14, Algo-
rithms 1 and 2], and the Uniform Sampling Estimator [16, Section 2.2].

The probability of a particular instance of diag(S”S), and therefore S is given by
a scaled multinomial distribution [16, Section 3.1].
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Algorithm B.1 Uniform sampling with replacement

Input: Integers n >1and 1 <r <n
Output: Sampling matrix S € R"™*" with E¢[STS] =1,
fort=1:rdo
Sample k; from {1,...,n } with probability 1/n,
independently and with replacement
end for

S = % (ekl ekr)T

Random orthogonal sketching. This is used in Blendenpik [1, Algorithm 1] to
compute randomized preconditioners for the iterative solution of full column rank
least squares problems.

Here S = BTD € R™*" where D € R"*" is a diagonal matrix whose diagonal
elements are independent Rademacher random variables, equaling +1 with equal prob-
ability; T € R™*"™ is a unitary matrix, such as a Walsh-Hadamard, discrete cosine, or
discrete Hartley transform; and B is a diagonal matrix whose diagonal elements are
Bernoulli variables, equaling 1 with probability vp/n for some v > 0, and 0 otherwise.

Gaussian sketching. This is used in to compute randomized preconditioners for
the iterative solution of general least squares problems [18, Algorithms 1 and 2].

Here the elements of S € R™*" are independent N(0,1) random variables. In
Matlab: S = randn(r,n).

B.2. Examples. The purpose is to provide insight for Theorem 4.2, Corol-
lary 4.3, Theorem 4.5 and Corollary 4.6 in a way that is easy to reproduce. For
a small example matrix, we illustrate the effect of rank deficiency SX (Section B.2.1);
perform uniform sampling with replacement (Section B.2.2); compute the expecta-
tions for Pg (Section B.2.3) and PPT (Section B.2.4); and put this into context with
two matrices S at opposite ends of sampling performance (Section B.2.5).

Our example is the full column-rank matrix

c R**2 with XTz(

O = O =
SO = O
O w=
= O
[es) NI
£

and rank(X) = 2. The hat matrix (2.5) and its null space are

19 Lo 10
0 1 0 0 0 0
P, = XX = L Lol null(Py) = range 1 0
0 0 0 O 0 1
while the model variance (4.1) is
~ 1
(B.1) Vary [p] = 0?(XTX)"! = o? ((2) O) .

B.2.1. Effect of rank deficiency in Theorem 4.2 and Corollary 4.3. We
choose two different matrices S with full row-rank rank(S) = 2, one producing a full
rank SX, and the other one a rank-deficient SX.
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1. Full column-rank SX. The sketching matrix is

{100 0 (1 0) et
S—(O 1 0 0) where SX—(0 1)—(SX) = I,

rank(SX) = rank(X) = 2. The comparison hat matrix in Lemma 3.1 and the bias
projector in Lemma 4.1 are

1 000
010 0

P = X(SX)'S = Lo o0 ol Po = (SX)7(SX) = L.
00 00

Thus range(P) = range(X). The deviation of P from being an orthogonal projector
onto range(X) is

PP’ - P, = : |[PPT — Pyl = 1.

O= Ol
o O OO
O ON-
o O OO

Thus, the solution B of (2.7) is an unbiased estimator, but with increased variance.
Specifically,
e P is a projector onto range(X), but it is not an orthogonal projector, since
P is not symmetric. _ _
e The conditional expectation of B is Ey[B|S] = By, since Pg = Iz, and the
corresponding bound in Corollary 4.3 holds with equality.
e The conditional variance has increased compared to (B.1), because

Var, [E’, ’ s} - 2 XPPT(XNT = 62 L.
In the worst case, it has zero norm-wise relative accuracy since
- N - 1
I'Vary [B | S] — Vary [B][l2/]| Vary [B]ll2 = 5 < IPPY — Pyll2 = 1.

2. Rank deficient SX. The sketching matrix is

/100 0 10\ e
S_<O 0 0 1) where SX—(0 O)—(SX),

rank(SX) = 1 < rank(X), and range(P) C range(X). The comparison hat matrix in
Lemma 3.1 and the bias projector in Lemma 4.1 are

10 0 0
10 0 0 O - + (1 0
P= 100 ol Po_(SX)(SX)_<O 0>.
0 0 0O
The deviation of P from being an orthogonal projector onto range(X) is
3 0 50
pp7_p, = | LU0 yppT_p, =1,
3 0 50
0 0 0 O

and the rank deficiency of SX is represented by ||I — Pgllz = 1. Thus, the solution 3
of (2.7) is a biased estimator with a conditional variance that is singular. Specifically,
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e Although P is a projector, it is not an orthogonal projector onto range(X),
since P is not symmetric and it projects only onto a lower-dimensional sub-
space of range(X).

e The conditional expectation of B is Ey[[g |S] # By, since Pg # I, and the
relative distance to unbiasedness can be maximal in the worst case, since

IEy[B[S] — Bollz < lIBoll2-

e The conditional variance has become singular,
Vary [B } s} = 2XTPPT(XHT = o ((1) 8) ,

with zero norm-wise relative accuracy, and the corresponding bound holds
with equality,

| Vary [B | S] — Vary[B][|2/|| Vary [B][l2 = 1 = |[PPT — Px|l2.

B.2.2. Uniform sampling with replacement. Algorithm B.1 with n = 4 and
r = 2 produces a sampling matrix S € R?*4, which has n? = 16 instances

el
Sij = V2 (eT) 1<ij<n,
J

each occurring with probability 1/n2. For instance,

1000 0001
S”_\/i(1 00 0)’ 342_\/5(0 10 0)'

The expectation of the Gram product is an unbiased estimator of the identity, since

4 4
Es[STS] =) ) Lsls;; =

i=1 j=1 i

B.2.3. Expected rank deficiency in Theorem 4.5 and Corollary 4.6. The
total expectation of Pg € R?*? is

4
12 0
Es[Po] = ZZ 15(S5X) (S X) = Es[Po] = £ (0 7) '
For instance, representative summands include
1
1 0 1/2 1/2 1 0
S92 = /4 (1 0) RE < 0 0 > XS (0 0) |
T
1 0 1 0
(S32X)" = \/g (O 1) = \/g (0 O) = \/%Iza (S52X)"(S32X) = I,

T
(SuX)' = /1 (8 8) —0,  (SuX)((SuX) =0,

Among the sketched matrices SX, 75 percent are rank deficient. The ones with full
column rank are S12X, S21X, So3X, and S32X. The expected rank deficiency of SX
equals

NgE

Z% eel +eje; =1,

J=1

Il
-

4 0 .
Bl = 4 (3 o) with [EI-Polls = &

Thus, the solution B of (2.7) is a biased estimator. Specifically,
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18 JOCELYN T. CHI AND ILSE C.F. IPSEN

e [ [Po] is not a projector, since it is not idempotent.
e The total expectation of B equals Es[B] # By, since Es[Po] # I,. and the
relative distance to unbiasedness can be large, since || E[B]—Bgll2 < % [|Bol2-
B.2.4. Expected deviation of P from being an orthogonal projector in

Theorem 4.5 and Corollary 4.6. To the expectation of PPT € R**4, note that
the trailing column of X is zero, and

PP’ = X(SX)'$S7 ((sx)1)" X7,

the trailing row and column of all instances of PPT and Es[PP7] are zero as well,
and

. 4 11 0 11 0

T 0 7 0 O

PPT Z Z % S“X SZJS ((Sin)T) XT = %6 11 0 11 0
==t 00 0 O

Thus, Es[PP7] is not a projector since it is not idempotent, and the expected devi-
ation of P from being an orthogonal projector onto range(X) can be larger than 50
percent, since

3 0 30
0 -9 0 0 .

Es[PP" ~Pul=15 |5 o 3 o with [E[PP" —Pyl>= .
0 0 00

B.2.5. Extreme examples. We consider two more 4 x 2 matrices, both with
orthogonal columns, but at the opposite ends in terms of the performance for uniform
sampling in Section B.2.2.

Columns of the Hadamard matriz. With its mass spread uniformly spread, which
is quantified by minimal coherence and uniform leverage scores [13, 16], this matrix
is optimal for uniform row sampling,

1
-1
1
-1

e R¥*2 Py =XX'=1

Il
— = = =
O = O =
_= O = O
O = O
— O = O

Half of the sketched matrices SX have full column rank. The expectations for the
projectors are

1 0 1 0
01 0 1
EfPo) = 2L,  EPPT=1 |0 o0 )
01 0 1

Thus the expected deviation of SX from full column-rank rank, and the expected
deviation of P from being an orthogonal projector onto range(X) are

HE [I_PO]HQ X]H2_

|E[PPT Py, = &

16’

and clearly lower, and therefore better than the respective ones in Sections B.2.3
and B.2.4.
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Columns of the identity matriz. With its concentrated mass spread, which is
quantified by maximal coherence and widely differing leverage scores [13, 16], this
matrix presents a worst case for uniform row sampling of 4 x 2 a full column-rank
matrix,

10 100 0
o1 42 et |01 00
X=|g o] €B"  Px=XXT=| o 0,

0 0 0000

Only two among the 16 sketched matrices SX have full column rank, S12X and So;X.
The expectations for the projectors are

Es[Po] = 1o, Es[PP"] = L

SO O
o o= O
O O OO
OO OO

The expected deviations of SX from full column-rank and of P from being an orthog-
onal projector onto range(X) are

IEsI—Polll, = 5. ||EsS[PPT Py, = 5,

thus clearly worse than those for the Hadamard matrix.
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