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Abstract. For full-rank least squares regression problems under a Gaussian linear model, we5
analyze the uncertainties when the minimum-norm solution is computed by random row-sketching6
and, in particular random row-sampling. Our expressions for the total expectation and variance of7
the solution–with regard to both model- and algorithm-induced uncertainties– are exact; hold for8
general sketching matrices; and make no assumptions on the rank of the sketched matrix. They show9
that expectation and variance are governed by the rank-deficiency and spatial geometry induced by10
the sketching process, rather than by structural properties of specific sketching or sampling methods.11
In order to analyze the rank-deficient matrices from row-sketching, we introduce two projectors that12
connect least squares problems of different dimensions.13

From a deterministic perspective, our structural perturbation bounds imply that least squares14
solutions are less sensitive to multiplicative perturbations than to additive perturbations. From a15
probabilistic perspective, we show that the differences between the total bias and variance on the16
one hand, and the model bias and variance on the other hand, are governed by two factors: (i) the17
expected rank deficiency of the sketched matrix, and (ii) the expected difference between projectors18
onto the spaces of the original and the sketched problems. Surprisingly, the matrix condition number19
has far less impact on the statistical quantities than it has on numerical errors.20
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1. Introduction. We consider the randomized solution of least squares regres-24

sion problems under the Gaussian linear model, and analyze the effect of both: the25

statistical noise in the model, as well as the error due to algorithmic randomization.26

Our analysis extends the pioneering work [15, 16] through rigorous validation in a27

general setting, and demonstrates that expectation and variance are governed by ge-28

ometry rather than by structural properties of specific classes of sketching matrices:29

What matters is the rank deficiency induced by the sketching process, and the failure30

of the sketched matrix to reproduce the original column space.31

1.1. Problem setting. We start with a regression problem under the Gaussian32

linear model,33

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2In),(1.1)34

where X ∈ R
n×p is a given design matrix with rank(X) = p, β0 ∈ R

p is the true but35

unknown parameter vector, and the noise vector ǫ ∈ R
n has a standard multivari-36

ate normal distribution. For a fixed response vector y ∈ R
n, the unique maximum37

likelihood estimator of β0 is the solution β̂ of the full-rank least squares problem138

min
β∈Rp

‖Xβ− y‖2.(1.2)39
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1Here ‖x‖2 =

√
xTx represents the Euclidean two-norm, and the superscript T the transpose.
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2 JOCELYN T. CHI AND ILSE C.F. IPSEN

Solution of this least squares problem via random row-sketching,40

min
β∈Rp

‖S(Xβ− y)‖2,(1.3)41

is an effective approach in the highly over-constrained case [5, 6, 16, 22, 28] where42

observations far outnumber covariates, that is, X is tall and skinny with n ≫ p. Here43

S ∈ R
r×n is a random sketching matrix with r ≤ n, and the minimum norm solution44

is β̃.45

1.2. Existing work. Random sketching is a form of preconditioning and seems46

to have originated in [24]. By now, there are many variants which can be classified47

according to [26, Section 1]: Compression of rows [2, 5, 6, 13, 15, 16, 23, 28]; or columns48

[1]; or both [18]. Matrix concentration inequalities are used to derive probabilistic49

bounds for the error due to randomization [1, 6], and for the condition number of50

the sampled matrix [13]. From a practical perspective, bootstrapping can deliver fast51

error estimates [14].52

Most of the randomized least squares work comes from theoretical computer sci-53

ence and numerical analysis and is mainly concerned with errors due to algorithmic54

randomization, while ignoring statistical noise in the model. The pioneering work55

[15, 16] is the first to quantify the total uncertainty frommodel-induced and algorithm-56

induced randomness. This being the first analysis of its kind, it started out with a57

few assumptions: the sampling matrices must preserve rank, and their expected value58

must be known; and the conditional expectation and variances must admit Taylor59

series. Thus, the resulting first-order expansions hold only approximately.60

1.3. Specific Contributions. We extend the first-order expansions in [15, 16]61

as follows:62

1. We derive exact expressions for the total expectation and variance of β̃ with63

regard to model- and algorithm-induced uncertainties (Theorem 4.5). The ex-64

pressions hold for general random sketching matrices S, regardless of whether65

they preserve rank, and include sketching matrices that perform projections66

prior to sampling.67

2. In contrast to most deterministic and randomized analyses, our expressions68

are not limited to full-rank matrices. We analyse the rank-deficient matrices69

in (1.3) by supplementing the hat matrix Px = XX†, i.e. the orthogonal70

projector onto range(X), with two new projectors:71

(a) Comparison hat matrix P = X(SX)†S (Lemma 3.1).72

This projector makes it possible to compare the model problem (1.1)73

with the lower-dimensional sketched problem (1.3). The difference74

PPT − Px quantifies the deviation of P from being an orthogonal75

projector onto range(X).76

(b) Bias projector P0 = (SX)†(SX) (Lemma 4.1).77

This projector captures the failure of S to preserve rank. The differ-78

ence I−P0 quantifies the rank deficiency of the sketched matrix SX.79

3. For the model-induced uncertainty of β̃, conditioned on the sampling ma-80

trix S, we show (Theorem 4.2, Corollary 4.3):81

(a) The conditional bias increases with the rank deficiency of SX.82

(b) The difference between conditional variance and model variance in-83

creases with the deviation of P from being an orthogonal projector84

onto range(X).85

Thus, unbiasedness is easier to achieve because it only requires SX to have full86
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RANDOMIZED LEAST SQUARES REGRESSION 3

column rank. In contrast, recovering the model variance requires reproducing87

all of the original space range(X).88

4. For the total uncertainty in the solution β̃ we show (Theorem 4.5, Corol-89

lary 4.6):90

(a) The total bias increases with the expected rank deficiency of SX.91

(b) The difference between total variance and model variance increases92

with two terms: the expected rank deficiency of SX; and the expected93

deviation of P from being an orthogonal projector onto range(X).94

Thus, total expectation and variance are governed by the expected spatial95

geometry induced by the sketching process rather than by structural proper-96

ties of specific S. However, the condition number of X has far less impact97

than one would have expected based on numerical perturbation theory.98

5. We show analogous results for norm-wise quantities (Theorem 4.8, Corol-99

lary 4.9). The total expectations of the regression sum of squares ‖Py‖22 and100

the residual sum of squares ‖(I−P)y‖22 depend on the norms of the projectors101

P and I−P, amplified by the model variance σ2.102

6. We present structural bounds that improve existing perturbation bounds103

(Corollary 3.5). They imply that the minimum norm solution β̃ is less sensi-104

tive to multiplicative perturbations than to additive perturbations, because105

the dependence is only on the condition number, rather than on its square as106

in the case of additive perturbations.107

The judicious design of numerical experiments that are representative and informative108

from both, numerical and statistical perspectives, is beyond this scope, and will be109

the subject of a separate paper.110

1.4. Overview. After reviewing the computational models for least squares re-111

gression (Section 2), we adopt two perspectives:112

1. Deterministic (Section 3): The matrix S is fixed and the sketched problem113

(1.3) is a multiplicative perturbation of the deterministic problem (1.2), and114

we present structural perturbation bounds.115

2. Probabilistic (Section 4): The matrix S is a matrix-valued random variable,116

and (1.3) is a randomized algorithm for solving the model problem (1.1), and117

we derive expressions for expectation and variance with regard to the model-118

and algorithm-induced uncertainties.119

A brief discussion of our results (Section 5) ends the main part of the paper. Proofs120

are relegated to the Appendix (Section A), as are specific examples to provide insight121

for the geometry of the probabilistic results (Section B).122

2. Models for Least Squares Regression. Given is a fixed design matrix123

X ∈ R
n×p with rank(X) = p. Since X has full column rank, the Moore-Penrose124

inverse is a left inverse with125

X† = (XTX)−1XT and X†X = Ip.(2.1)126

The two-norm condition number of X with regard to left inversion is127

κ2(X) ≡ ‖X‖2‖X†‖2.128

We review the different incarnations of least squares regression: the Gaussian lin-129

ear model (Section 2.1), the traditional computation (Section 2.2), and algorithmic130

leveraging (Section 2.3).131
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4 JOCELYN T. CHI AND ILSE C.F. IPSEN

2.1. Gaussian linear model. Let β0 ∈ R
p denote the true but generally un-132

known parameter vector, and let the response vector y ∈ R
n satisfy the Gauss-Markov133

assumptions,134

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2In).(2.2)135

The noise vector ǫ ∈ R
n has a multivariate normal distribution whose mean is the136

vector of all zeros, 0 ∈ R
n, and whose covariance is a multiple σ2 > 0 of the identity137

matrix In ∈ R
n×n.138

2.2. Traditional algorithm for least squares solution. For a fixed y ∈ R
n139

solve140

min
β∈Rp

‖Xβ− y‖2.(2.3)141

Since X has full column rank, (2.3) is well posed and has the unique solution142

β̂ ≡ X†y.(2.4)143

The prediction and the least squares residual are, respectively144

ŷ ≡ Xβ̂ and ê ≡ y −Xβ̂ = y − ŷ.145

In terms of the hat matrix [3, 10, 27],146

Px ≡ XX† = X(XTX)−1XT ∈ R
n×n,(2.5)147

which is the orthogonal projector onto range(X) along null(XT ), the prediction and148

least squares residual can be expressed as149

ŷ = Pxy and ê = (I−Px)y.(2.6)150

2.3. Random Row-Sketching. From a deterministic perspective, this can be151

considered an extension of weighted least squares [8, Section 6.1] to rectangular weight-152

ing matrices.153

Given a sketching matrix S ∈ R
r×n with 1 ≤ r ≤ n, solve154

min
β∈Rp

‖S(Xβ− y)‖2,(2.7)155

which has the minimum norm solution156

β̃ ≡ (SX)† Sy.(2.8)157

This problem is generally ill-posed: Just because S has r > p rows, this does not158

imply rank(S) = p; and even if S does have full column rank, rank(SX) < p is still159

possible.160

By design, S has fewer rows thanX. Hence the corresponding predictions ŷ = Xβ̂161

and SXβ̃ have different dimension and cannot be directly compared; neither can162

their residuals. To remedy this, we follow previous work [5, 6, 22], and compare the163

predictions with regard to the original matrix,164

ỹ ≡ Xβ̃ and ẽ ≡ y −Xβ̃ = y − ỹ.(2.9)165

Note that ẽ is not a least squares residual; the least squares residual for (2.7) is166

SXβ̃− Sy. However, we need ẽ to assess the performance of β̃ in the context of the167

original problem (2.3).168
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RANDOMIZED LEAST SQUARES REGRESSION 5

3. Structural (deterministic perturbation) bounds. Here S is a fixed, gen-169

eral matrix; and SX is interpreted as a perturbation of X. We derive expressions for170

the quantities of interest from the perturbed problem (Section 3.1), followed by mul-171

tiplicative perturbation bounds (Section 3.2).172

3.1. The perturbed problem. We derive expressions for the solution, predic-173

tion and residual of the lower-dimensional problem (2.7). In order to relate them to174

the higher-dimensional original problem (2.3), we introduce (Lemma 3.1) a compari-175

son hat matrix P for (2.7), which corresponds to the hat matrix Px in (2.5) for the176

original problem (2.3). This makes it possible to express the solution, prediction, and177

residual of the perturbed problem in terms of the original problem (Theorem 3.3).178

Lemma 3.1 (Comparison hat matrix). With the assumptions in Section 2,179

P ≡ X(SX)†S180

is an oblique projector where181

1. PxP = P.182

2. P−Px reflects the difference between the spaces null(P) and null(Px).183

3. PX = X if rank(SX) = p.184

Proof. See Section A.1185

The name comparison hat matrix will become clear in Theorem 3.3, where P186

assumes the duties of the hat matrix Px for the expressions in (2.9).187

Remark 3.2. The following cases are possible.188

• If S = In, then P = Px.189

• If rank(SX) = rank(X), then P is an oblique version of the orthogonal pro-190

jector Px with range(P) = range(Px), but null(P) 6= null(Px) in general.191

• If192

rank(P) = rank(SX) < rank(X) = rank(Px) = p,193

then P projects only onto a subspace of range(X).194

The comparison hat matrix P generalizes the oblique projector Pu in [22, (11)],195

which was introduced to quantify prediction efficiency and residual efficiency of196

sketching algorithms in the statistical setting (2.2). This projector Pu is defined197

if rank(SX) = p, and equals Pu ≡ U(SU)†S = P, where U is an orthonormal ba-198

sis for range(X). However, if rank(SX) < rank(X), then Pu is not sufficient in our199

context.200

Theorem 3.3 (Perturbed least squares problem). With the assumptions in Sec-201

tion 2, the solution of (2.7) satisfies202

β̃ = X†Py = β̂+X†(P−Px)y.203

The prediction ỹ = Xβ̃ and residual ẽ = y −Xβ̃ satisfy204

ỹ = Py = ŷ + (P−Px)y,205

ẽ = (I−P)y = ê+ (Px −P)y.206

Proof. See Section A.2.207
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6 JOCELYN T. CHI AND ILSE C.F. IPSEN

Theorem 3.3 shows that the relation between perturbed and original least squares208

problems is governed by P − Px, which reflects the difference between the spaces209

null(P) and null(Px). The dependence on the sketching matrix is implicit, through210

the induced spaces.211

With its explicit expressions for β̃ that hold for general matrices S without as-212

sumptions on rank(SX), Theorem 3.3 also strengthens the ground breaking result [16,213

Lemma 1], reproduced in the lemma below.214

Lemma 3.4 (Lemma 1 in [15] and [16]). If, in addition to the assumptions in215

Section 2, the matrix S in (2.7) has a single nonzero entry per row, the vector w ≡216

diag(STS) ∈ R
n has a scaled multinomial distribution with expected value E[w] = 11,217

satisfies rank(SX) = rank(X), and admits a Taylor series expansion of the solution218

β̃(w) of (2.7) around w0 = 11 with β̃(w0) = β̂, then219

β̃(w) = β̂+X† diag(ê)(w − 11) + R(w),220

where R(w) is the remainder of the Taylor series expansion. The Taylor series ex-221

pansion is valid if R(w) = o(‖w −w0‖2) with high probability.222

3.2. Multiplicative perturbation bounds. We consider (2.7) as a multiplica-223

tive perturbation of the original problem (2.3) and derive norm-wise relative pertur-224

bation bounds (Corollary 3.5), followed by comparisons to existing work.225

Corollary 3.5. With the assumptions in Section 2, let 0 < θ < π/2 be the angle226

between y and range(X).227

The solution β̃ of (2.7) satisfies228

‖β̃− β̂‖2
‖β̂‖2

≤ κ2(X)
‖y‖2

‖X‖2‖β̂‖2
‖P−Px‖2 ≤ κ2(X)

‖P−Px‖2
cos θ

.229

The prediction ỹ = Xβ̃ satisfies230

‖ỹ − ŷ‖2
‖ŷ‖2

≤ ‖P−Px‖2
cos θ

.231

Proof. This is a direct consequence of Theorem 3.3, and of [8, (5.3.16)] which232

implies233

‖y‖2/(‖X‖2‖β̂‖2) ≤ ‖y‖2/‖Xβ̂‖2 = 1/ cosθ.234

For S = In, the bounds in Corollary 3.5 are zero and therefore tight. Corol-235

lary 3.5 implies that the sensitivity of the minimum norm least squares solution β̃236

to multiplicative perturbations depends on the distance between the spaces null(P)237

and null(Px), quantified by ‖P − Px‖2. This distance is amplified, as expected, by238

the conditioning of X is with regard to (left) inversion, and by the closeness of y to239

range(X). Corollary 3.5 is an absolute as well as a relative bound since ‖Px‖2 = 1.240

In contrast to multiplicative perturbation bounds for eigenvalue and singular value241

problems [11, 12], we do not require S to be nonsingular or square. Weighted least242

squares problems [8, Section 6.1] employ nonsingular diagonal matrices S for regular-243

ization or scaling of discrepancies, and do not view them as a perturbation.244

In contrast to additive bounds [8, Section 5.3.6], [9, Section 20.1], [25, (3.4)],245

there is no squaring of the condition number and no need for requiring rank(SX) =246
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rank(X). This suggests that the minimum norm solution of (2.7) and its residual are247

less sensitive to multiplicative perturbations than to additive perturbations.248

In contrast to existing structural bounds for randomized least squares algorithms249

[6, Theorem 1], such as the one in Lemma 3.6 below, the bound for β̃ in Corollary 3.5250

is more general and tighter because it does not exhibit nonlinear dependencies on the251

perturbations.252

Lemma 3.6 (Theorem 1 in [6]). In addition to Section 2, assume ‖Pxy‖2 ≥253

γ ‖y‖2 for some 0 < γ ≤ 1 and ‖ẽ‖2 ≤ (1 + η) ‖ê‖2. Then254

‖β̃− β̂‖2
‖β̂‖2

≤ κ2(X)
√

γ−2 − 1
√
η.255

4. Model-induced and randomized algorithm-induced uncertainty. Un-256

der the linear model (2.2), the computed solution β̂ has nice statistical properties257

[20, Chapter 6], as it is an unbiased estimator of β0 and it has minimal variance258

among all linear unbiased estimators. We show how this changes with the addition of259

algorithm-induced uncertainty.260

After briefly reviewing the uncertainty induced by the linear model (Section 4.1);261

we derive the expectation and variance of β̃, conditioned on the algorithm-induced262

uncertainty (Section 4.2), and from that the total expectation and variance (Sec-263

tion 4.3), followed by the derivation of the conditional and total expectations for the264

regression sum of squares and the residual sum of squares (Section 4.4).265

4.1. Model-induced uncertainty. We view the model-induced randomness in266

(1.1) and (2.2) as a property of the response vector y, so that267

Ey[ǫ] = 0, Vary[ǫ] = σ2 In.268

As a consequence269

Ey[β̂] = β0, Vary[β̂] = σ2(XTX)−1 ∈ R
p×p.(4.1)270

This implies that the computed solution β̂ is an unbiased estimator for β0, and271

it signals the well-known dependence of the variance on the conditioning of X [25,272

Section 5].273

The difficulty in analyzing random row-sketching (2.7), coupled with general con-274

cern about first-order expansions like the ones in [15, 16], is the frequent occurrence275

of rank deficiency in the sketched matrix, that is, rank(SX) < rank(X). In this case276

(SX)† cannot be expressed in terms of SX as in (2.1).277

One can derive bounds [1, Theorem 3.2], [13, Theorems 4.1and 5.2] on the prob-278

ability that rank(SX) = rank(X) for matrices S that perform uniform sampling and279

leverage score sampling. However, such bounds are not useful here, because we need280

the expected values to run over all instances of SX.281

We introduce a projector that quantifies the deviation of the columns of SX from282

being linearly independent.283

Lemma 4.1 (Bias projector). With the assumptions in Section 2,284

P0 ≡ (SX)†(SX) ∈ R
p×p

285

is an orthogonal projector with286

1. PX = XP0287
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8 JOCELYN T. CHI AND ILSE C.F. IPSEN

2. P0 = Ip if rank(SX) = p.288

As a consequence, Ip −P0 quantifies the rank deficiency of SX.289

Proof. See Section A.3.290

If rank(SX) < p, then P0 characterizes the subspace of range(X) onto which P291

projects. The name bias projector will become apparent in Theorem 4.2, where P0292

represents the bias in β̃.293

4.2. Model-induced uncertainty, conditioned on algorithm-induced un-294

certainty. We determine the conditional expectation and variance for the solution295

of (2.7), by assuming that the random sketching matrix S is fixed at a specific value S0.296

The expectation conditioned on S is abbreviated as297

Ey

[

·
∣
∣
∣S

]

≡ Ey

[

·
∣
∣
∣S = S0

]

.298

The exact expressions below for general matrices S extend the first-order expres-299

sions for specific sampling matrices in [16, Lemmas 2-6].300

Theorem 4.2 (Model-induced uncertainty conditioned on S). With the assump-301

tions in Section 2, the solution β̃ of (2.7) has the conditional expectation302

Ey

[

β̃

∣
∣
∣S

]

= P0β0 = β0 − (I−P0)β0,303

where Ey

[

β̃

∣
∣
∣ rank(SX) = p

]

= β0; and the conditional variance304

Vary

[

β̃

∣
∣
∣S

]

= σ2
(
X†P

) (
X†P

)T
305

= Vary[β̂] + σ2 X†
(
PPT −Px

)
(X†)T ,306

with PPT − Px representing the deviation of P from being an orthogonal projector307

onto range(X).308

Proof. See Section A.4.309

Theorem 4.2 shows that the conditional bias and variance of β̃ depend on the310

rank deficiency of SX, and the ability of P to reproduce the original space range(X).311

The fixed sketching matrix S is involved only implicitly, through the spaces induced312

by the sketching process. Specifically, Theorem 4.2 shows:313

1. The conditional bias of β̃ is proportional to the deviation I−P0 of SX from314

having full column rank. That is, the conditional bias becomes worse as the315

rank deficiency increases. If rank(SX) = rank(X), then β̃ is a conditional316

unbiased estimator of β0, regardless of the specific sketching class to which317

S belongs.318

2. The conditional variance is close to the model variance Vary[β̂], if P is close319

to being an orthogonal projector onto range(X). In the extreme case S = In,320

the conditional variance is identical to the model variance.321

The relevance of I−P0 and PPT −Px is further corroborated below.322

Corollary 4.3 (Relative differences between conditional and model uncertain-323

ties). With the assumptions in Theorem 4.2,324

‖Ey[β̃ |S]− β0‖2 ≤ ‖I−P0‖2 ‖β0‖2325

‖Vary[β̃ |S]− Vary[β̂]‖2
‖Vary[β̂]‖2

≤ ‖PPT −Px‖2.326
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Proof. See Section A.5.327

Corollary 4.3 implies that the relative differences to conditional unbiasedness328

and model variance are solely governed by the quantities I − P0 and PPT − Px,329

respectively. Somewhat surprisingly, the condition number of the model variance330

Vary[β̂] in (4.1) is not explicitly present. Instead, the conditional bias of β̃ increases331

with the rank deficiency of SX, while the relative difference between conditional and332

model variances increases with the deviation of P from being an orthogonal projector333

onto range(X). Thus, unbiasedness is easier to achieve because it only requires SX334

to have full column rank, while recovering the model variance requires reproducing335

all of range(X).336

The examples in Section B.2.1 illustrate the effect of rank deficiency in Theo-337

rem 4.2 and Corollary 4.3.338

Remark 4.4 (Sampling versus sketching). To confirm the importance of the339

induced spaces and the peripheral role of the particular structure of S, we perform340

sketching by first applying row-mixing [1, Section 3.2] with a unitary transform F ∈341

R
n×n prior to sampling,342

min
β∈Rp

‖S(Xβ− y)‖2 where S ≡ S1F,(4.2)343

where FTF = FFT = In, and S1 ∈ R
p×n is a sampling matrix. The row-mixed344

problem345

min
β∈Rp

‖F(Xβ− y)‖2346

is equivalent to the original problem (2.3), since it has the same solution, and the347

same comparison hat matrix and bias projector,348

X(FX)†F = XX† = Px349

(FX)† (FX) = X†X = In.350

Thus, any damaging effect on the conditional bias and variance comes from the pos-351

sible rank deficiency and the spaces induced by the sampling process.352

4.3. Combined algorithm-induced and model-induced uncertainty. We353

determine the total expectation and the total variance for the solution from (2.7)354

when S is a random sketching matrix, that is, S is a matrix-valued random variable.355

The algorithm-induced uncertainty of the random matrix S is represented by the356

expectation Es[·] and the variance Vars[·], while the total mean and variance of the357

combined uncertainty are denoted by E[·] and Var[·]. The total mean is computed by358

conditioning on the algorithm-induced randomness359

E [·] = Es

[

Ey

[

·
∣
∣
∣S

]]

.(4.3)360

Since S is a matrix-valued random variable, so are the projectors P and P0.361

The exact expressions below for general random matrices S extend the first order362

approximations for specific sampling matrices in [16, Lemmas 2-6].363

Theorem 4.5 (Total uncertainty). With the assumptions in Section 2, let S be364

a random sketching matrix. The solution β̃ of (2.7) has total expectation and variance365

E[β̃] = Es[P0β0] = β0 + Es[P0 − I]β0366

Var[β̃] = σ2 X†
Es

[
PPT

]
(X†)T + Vars[P0β0]367

= Vary[β̂] + σ2 X†
Es[PPT −Px] (X

†)T + Vars[(P0 − I)β0],368
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10 JOCELYN T. CHI AND ILSE C.F. IPSEN

where369

Vars[P0β0] = Es

[

(P0β0) (P0β0)
T
]

− (Es[P0β0]) (Es[P0β0])
T

370

= Vars[(P0 − I)β0].371

Proof. See Section A.6.372

Theorem 4.5 shows that total expectation and variance are governed by the rep-373

resentation of spaces associated with the original problem (2.3) and the sketched374

problem (2.7), rather than the specific class of sketching matrices over which Es and375

Vars range. Specifically,376

1. The total bias of β̃ is proportional to the expected deviation of the matrix-377

valued random variable SX from having full column rank. Note that the378

expectation Es[P0] of a projector P0 is in general not a projector, as the379

example in Section B.2.3 illustrates.380

2. The total variance of β̃ is proportional to the expected rank deficiency of381

SX, plus the expected deviation of the matrix-valued random variable P382

from being an orthogonal projector onto range(X).383

Corollary 4.6 (Relative differences between total and model uncertainties).384

With the assumptions in Theorem 4.5,385

‖E[β̃]− β0‖2 ≤ ‖Es[I−P0]‖2 ‖β0‖2386

‖Var[β̃]− Vary[β̂]‖2
‖Vary[β̂]‖2

≤ ‖Es[PPT −Px]‖2 +
‖Vars[(I−P0)β0]‖2

‖Vary[β̂]‖2
.387

Proof. See Section A.7.388

Corollary 4.6 implies that the relative differences to unbiasedness and model vari-389

ance are solely governed by the quantities Es[I−P0] and Es[PPT −Px]. Specifically,390

the total bias of β̃ increases with the expected rank deficiency of SX, while the391

relative difference between total and model variances increases with the expected de-392

viation of P from being an orthogonal projector onto range(X), and the expected393

rank deficiency of SX.394

The examples in Sections B.2.3-B.2.5 illustrate the effect of expected rank defi-395

ciency in Theorem 4.5 and Corollary 4.6.396

4.4. Regression and residual sums of squares. Two quantities from the397

original least squares problem (2.3) play a key role in hypothesis testing, regression398

diagnostics, and model selection metrics, such as the (adjusted) R2 statistic, Mal-399

lows’s Cp, the Akaike information criterion, and the Bayesian information criterion400

[7, 17, 20, 21].401

• Regression sum of squares, i.e. the squared norm of the prediction,402

SSRols ≡ yTPxy = yTPx
TPxy = ‖ŷ‖22.403

• Residual sum of squares, i.e. the squared norm of the least squares residual,404

RSSols = yT (I−Px)y = yT (I−Px)
T (I−Px)y = ‖ê‖22,405

From ŷT ê = 0 follows406

‖y‖22 = ‖ŷ‖22 + ‖ê‖22 = SSRols +RSSols,407
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which decomposes the observation into a portion that is explained by the model; and408

a portion that represents the error in the model. The corresponding quantities for409

random row-sketching are410

SSR ≡ yTPTPy = ‖ỹ‖22411

RSS ≡ yT (I−P)T (I−P)y = ‖ẽ‖22.412

They relate to their counter parts in the original problem (2.3) via the two-norm413

version of Theorem 3.3,414

SSR = SSRols + yT (PTP−Px)y415

RSS = RSSols + ‖(P−Px)y‖22.416

Since RSS evaluates the solution β̃ of (2.7) in the context of the original problem,417

β̃ is not a minimizer of (2.3), so clearly RSS ≥ RSSols. The difference between the418

quantities from random sketching and their deterministic counterparts is governed by419

the deviation of P from being an orthogonal projector onto range(X).420

Theorem 4.7 (Model-induced uncertainty conditioned on S). With the assump-421

tions in Section 2,422

Ey[SSR |S] = ‖PXβ0‖22 + σ2 ‖P‖2F423

Ey[RSS |S] = ‖(I−P)Xβ0‖22 + σ2 ‖I−P‖2F .424

Proof. See Section A.8.425

The total expectations follow immediately from Theorem 4.7.426

Theorem 4.8 (Total uncertainty). With the assumptions in Section 2,427

E[SSR] = (Xβ0)
T
Es[P

TP](Xβ0) + σ2 trace
(
Es[P

TP]
)

428

E[RSS] = (Xβ0)
T
Es[(I−P)T (I−P)](Xβ0) + σ2 trace

(
Es[(I−P)T (I−P)]

)
.429

At last we show that the difference between combined and model uncertainties430

is governed by the expected deviation of P from being an orthogonal projector onto431

range(X), and the expected deviation of I − P from being an orthogonal projector432

onto range(X)⊥, both amplified by the model variance σ2.433

Corollary 4.9 (Difference between total and model uncertainty). With the434

assumptions in Section 2,435

E[SSR]− Ey[SSRols] = (Xβ0)
T
Es[Γ](Xβ0) + σ2 trace (Es[Γ])436

E[RSS]− Ey[RSSols] = (Xβ0)
T
Es[Γ⊥](Xβ0) + σ2 trace (Es[Γ⊥]) ,437

where we abbreviate438

Γ ≡ PTP−Px, Γ⊥ ≡ (I−P)T (I−P)− (I−Px).439

Proof. See Section A.9.440

5. Discussion. We considered the randomized solution of least squares regres-441

sion problems442

min
β∈Rp

‖S(Xβ− y)‖2443
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arising from a standard Gaussian linear model444

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2In),445

and analyzed the effect on the solution β̃ of the combined uncertainties from algo-446

rithmic randomization and statistical noise.447

Our results show that the expectation and variance of β̃ are governed by the448

spatial geometry of the sketching process, rather than by structural properties of449

specific sketching matrices. Surprisingly, the condition number κ2(X) with respect450

to (left) inversion has far less impact on the statistical measures than it has on the451

numerical errors. Even from the deterministic view of the sampled problem as a452

multiplicative perturbation, the relative accuracy of β̃ depends only on κ2(X) –rather453

than on the larger factor κ2(X)2 typical for additive perturbations.454

The natural next step is the illustration of our analytical results through numer-455

ical experiments that are representative and informative from both, numerical and456

statistical perspectives.457

Appendix A. Proofs. We present the proofs for Sections 3 and 4.458

Our results depend on projectors constructed from the possibly rank-deficient459

matrix SX. In this case, the Moore-Penrose inverse cannot be expressed in terms460

of the matrix SX proper, so we rely on the four conditions [8, Section 5.5.2] that461

uniquely characterize the Moore-Penrose inverse,462

(SX)(SX)†(SX) = SX,
(
(SX)(SX)†

)T
= (SX)(SX)†(A.1)463

(SX)†(SX)(SX)† = (SX)†,
(
(SX)†(SX)

)T
= (SX)†(SX).464

A.1. Proof of Lemma 3.1. The Moore-Penrose conditions [8, Section 5.5.2]465

imply P2 = P for the generally nonsymmetric matrix P.466

1. This follows from the Moore-Penrose conditions (A.1).467

2. Use the fact [19, Problem 5.9.12] that null(P) = null(Px) if and only if468

PPx − P = 0 and PxP − Px = 0. With item 1, this implies PxP − Px =469

P − Px. Thus P − Px can be interpreted as a measure for the distance470

between null(P) and null(Px).471

3. This follows from (2.1).472

A.2. Proof of Theorem 3.3. The first expression for β̃ follows from (2.1),473

(2.8), and Lemma 3.1. The second expression follows from adding and subtracting in474

the first expression the term β̂ = X†y = X†Pxy.475

The first expression for ỹ follows from (2.8) and Lemma 3.1. The second ex-476

pression follows from adding and subtracting in the first expression the first term in477

(2.6).478

The first expression for ẽ follows from (2.9), (2.8) and Lemma 3.1. The second479

expression for ẽ follows from adding and subtracting in the first expression the second480

term in (2.6).481

A.3. Proof of Lemma 4.1. TheMoore-Penrose conditions (A.1) imply (P0)
2 =482

P0 and (P0)
T = P0, confirming that P0 is an orthogonal projector.483

1. This follows from Lemma 3.1.484

2. If rank(SX) = p, then (2.1) implies that (SX)† is a left-inverse.485

A.4. Proof of Theorem 4.2. The conditional expectation follows from Theo-486

rem 3.3, (4.1), Lemma 4.1, and (2.1).487
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The definition of variance, Theorem 3.3, and the above imply488

Vary[β̃
∣
∣
∣S] = Ey[β̃β̃

T
∣
∣
∣S]− Ey[β̃

∣
∣
∣S] Ey[β̃

∣
∣
∣S]T489

=
(
X†P

)
Ey[yy

T ]
(
X†P

)T − (P0β0)(P0β0)
T .490

The middle term in the first summand equals491

Ey[yy
T ] = (Xβ0)(Xβ0)

T +Xβ0 Ey[ǫ]
T + Ey[ǫ](Xβ0)

T + Ey[ǫǫ
T ]492

= (Xβ0)(Xβ0)
T + σ2In.(A.2)493

To obtain the first expression for the conditional variance, insert (A.2) into the con-494

ditional variance above, and apply Lemma 4.1 to cancel out the expressions with P0.495

For the second expression, use (2.1) and (2.5) to write the model variance in (4.1)496

as497

Vary[β̂] = σ2 X†Px(X
†)T .498

Then add and subtract this term in the first expression for the conditional variance.499

If P were an orthogonal projector onto range(X), then PTP = P = Px. Thus,500

PTP − Px represents the deviation of P from being an orthogonal projector onto501

range(X).502

A.5. Proof of Corollary 4.3. The bound for the conditional expectation fol-503

lows from (4.1), and the second expression for the expectation in Theorem 4.2. The504

second expression for the conditional variance in Theorem 4.2 implies505

‖Vary[β̃ |S]− Vary[β̂]‖2 ≤ σ2 ‖X†‖2 ‖PPT −Px‖2‖(X†)T ‖2.506

Now apply ‖M‖2 ‖MT‖2 = ‖MMT‖2, and M†(M†)T = (MTM)−1 for a full column-507

rank matrix M to deduce508

σ2 ‖X†‖2 ‖(X†)T ‖2 = ‖Vary[β̂]‖2,(A.3)509

where ‖Vary[β̂]‖2 6= 0 by assumption in Section 2.1.510

A.6. Proof of Theorem 4.5. Apply the iterated expectation (4.3), followed by511

Theorem 4.2 to obtain the mean,512

E[β̃] = Es

[

Ey

[

β̃

∣
∣
∣S

]]

= Es[P0β0] = Es[P0]β0.513

Insert this into the definition of the variance, and apply again (4.3),514

Var[β̃] = E[β̃β̃
T
]− E[β̃]E[β̃]T515

= Es

[

Ey

[

β̃β̃
T
∣
∣
∣S

]]

− (Es[P0]β0) (Es[P0]β0)
T
.516

Treat the first summand as in the proof of Theorem 4.2 in Section A.4 to deduce517

Ey

[

β̃β̃
T
∣
∣
∣S

]

= σ2X†PPT (X†)T + (P0β0)(P0β0)
T .518

Condition this on y and then insert it into the above expression for the variance,519

Var[β̃] = σ2X†
Es

[
PPT

]
(X†)T520

+Es

[

(P0β0) (P0β0)
T
]

− (Es[P0]β0) (Es[P0]β0)
T

︸ ︷︷ ︸

Vars[P0β0
]

.521
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The second expression for Vars[P0β0] follows from adding and subtracting522

β0β
T
0 − β0(Es[P0]β0)

T − (Es[P0]β0)β
T
0 ,523

in other words from β0 having zero variance.524

A.7. Proof of Corollary 4.6. The bound for the total expectation follows525

from (4.1), and the second expression for the expectation in Theorem 4.5. The bound526

for the total variance follows from the second expression for the variance in Theo-527

rem 4.5, and from (A.3).528

A.8. Proof of Theorem 4.7. We need the following auxiliary result about529

expectations of quadratic forms.530

Lemma A.1. With the assumptions in Section 2, if A ∈ R
n×n is a constant531

matrix, then,532

E[yTAy] = (Xβ0)
TA(Xβ0) + σ2 trace(A).533

Proof. This follows from yTAy being a real scalar, the circular commutativity534

of the trace, the interchangeability of the trace and expectation since both are sums,535

and (A.2) as follows,536

E[yTAy] = E
[
trace(yTAy)

]
= E

[
trace(AyyT )

]
= trace

(
AE[yyT ]

)
537

= trace
(
A(Xβ0)(Xβ0)

T + σ2A
)
= (Xβ0)

TA(Xβ0) + σ2 trace(A).538

539

Proof of the Theorem. The expression for SSR follows from ỹ = Py in Theo-540

rem 3.3, Lemma A.1, and trace(PTP) = ‖P‖2F . Analogously, the expression for RSS541

follows from ẽ = (I−P)y.542

A.9. Proof of Corollary 4.9. From (2.6) and Lemma A.1 follows543

Ey[y
TPxy] = (Xβ0)

TPx(Xβ0) + σ2 trace(Px)544

Ey[y
T (I−Px)y] = (Xβ0)

T (I−Px)(Xβ0)
︸ ︷︷ ︸

0

+σ2 trace(I−Px).545

Add and subtract these to the respective expressions in Theorem 4.8.546

Appendix B. Examples with uniform row sampling. We start with a547

brief review of sketching matrices for least squares problems (Section B.1), before548

presenting examples that give insight into the results of Section 4 and the detrimental549

effects of rank deficiency (Section B.2).550

B.1. Random sketching matrices in least squares. We present a few ex-551

amples of sketching matrices used by the randomized least squares solvers [1, 2, 5, 6,552

14, 15, 16, 18, 23].553

Uniform sampling with replacement. This is the EXACTLY(c) algorithm [6, Al-554

gorithm 3] with uniform probabilities, which performs row-wise compression for direct555

methods for the solution of full column rank least squares in [6, Algorithm 3], see also556

the BasicMatrixMultiplication Algorithm [4, Fig. 2], [13, Algorithm 3.2], [14, Algo-557

rithms 1 and 2], and the Uniform Sampling Estimator [16, Section 2.2].558

The probability of a particular instance of diag(STS), and therefore S is given by559

a scaled multinomial distribution [16, Section 3.1].560

This manuscript is for review purposes only.



RANDOMIZED LEAST SQUARES REGRESSION 15

Algorithm B.1 Uniform sampling with replacement

Input: Integers n ≥ 1 and 1 ≤ r ≤ n
Output: Sampling matrix S ∈ R

r×n with Es[S
TS] = In

for t = 1 : r do
Sample kt from { 1, . . . , n } with probability 1/n,
independently and with replacement

end for
S =

√
n
r

(
ek1

. . . ekr

)T

Random orthogonal sketching. This is used in Blendenpik [1, Algorithm 1] to561

compute randomized preconditioners for the iterative solution of full column rank562

least squares problems.563

Here S = BTD ∈ R
n×n, where D ∈ R

n×n is a diagonal matrix whose diagonal564

elements are independent Rademacher random variables, equaling±1 with equal prob-565

ability; T ∈ R
n×n is a unitary matrix, such as a Walsh-Hadamard, discrete cosine, or566

discrete Hartley transform; and B is a diagonal matrix whose diagonal elements are567

Bernoulli variables, equaling 1 with probability γp/n for some γ > 0, and 0 otherwise.568

Gaussian sketching. This is used in to compute randomized preconditioners for569

the iterative solution of general least squares problems [18, Algorithms 1 and 2].570

Here the elements of S ∈ R
r×n are independent N (0, 1) random variables. In571

Matlab: S = randn(r, n).572

B.2. Examples. The purpose is to provide insight for Theorem 4.2, Corol-573

lary 4.3, Theorem 4.5 and Corollary 4.6 in a way that is easy to reproduce. For574

a small example matrix, we illustrate the effect of rank deficiency SX (Section B.2.1);575

perform uniform sampling with replacement (Section B.2.2); compute the expecta-576

tions for P0 (Section B.2.3) and PPT (Section B.2.4); and put this into context with577

two matrices S at opposite ends of sampling performance (Section B.2.5).578

Our example is the full column-rank matrix579

X =







1 0
0 1
1 0
0 0







∈ R
4×2 with X† =

(
1
2 0 1

2 0
0 1 0 0

)

,580

and rank(X) = 2. The hat matrix (2.5) and its null space are581

Px = XX† =







1
2 0 1

2 0
0 1 0 0
1
2 0 1

2 0
0 0 0 0







, null(Px) = range







1 0
0 0
−1 0
0 1







582

while the model variance (4.1) is583

Vary[β̃] = σ2(XTX)−1 = σ2

(
1
2 0
0 1

)

.(B.1)584

B.2.1. Effect of rank deficiency in Theorem 4.2 and Corollary 4.3. We585

choose two different matrices S with full row-rank rank(S) = 2, one producing a full586

rank SX, and the other one a rank-deficient SX.587
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1. Full column-rank SX. The sketching matrix is588

S =

(
1 0 0 0
0 1 0 0

)

where SX =

(
1 0
0 1

)

= (SX)† = I2,589

rank(SX) = rank(X) = 2. The comparison hat matrix in Lemma 3.1 and the bias590

projector in Lemma 4.1 are591

P = X(SX)†S =







1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0







, P0 = (SX)†(SX) = I2.592

Thus range(P) = range(X). The deviation of P from being an orthogonal projector593

onto range(X) is594

PPT −Px =







1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 0







, ‖PPT −Px‖2 = 1.595

Thus, the solution β̃ of (2.7) is an unbiased estimator, but with increased variance.596

Specifically,597

• P is a projector onto range(X), but it is not an orthogonal projector, since598

P is not symmetric.599

• The conditional expectation of β̃ is Ey[β̃ |S] = β0, since P0 = I2, and the600

corresponding bound in Corollary 4.3 holds with equality.601

• The conditional variance has increased compared to (B.1), because602

Vary

[

β̃

∣
∣
∣S

]

= σ2 X†PPT (X†)T = σ2 I2.603

In the worst case, it has zero norm-wise relative accuracy since604

‖Vary[β̃ |S]− Vary[β̂]‖2/‖Vary[β̂]‖2 =
1

2
≤ ‖PPT −Px‖2 = 1.605

2. Rank deficient SX. The sketching matrix is606

S =

(
1 0 0 0
0 0 0 1

)

where SX =

(
1 0
0 0

)

= (SX)†,607

rank(SX) = 1 < rank(X), and range(P) ⊂ range(X). The comparison hat matrix in608

Lemma 3.1 and the bias projector in Lemma 4.1 are609

P =







1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0







, P0 = (SX)†(SX) =

(
1 0
0 0

)

.610

The deviation of P from being an orthogonal projector onto range(X) is611

PPT −Px =







1
2 0 1

2 0
0 −1 0 0
1
2 0 1

2 0
0 0 0 0







, ‖PPT −Px‖2 = 1,612

and the rank deficiency of SX is represented by ‖I−P0‖2 = 1. Thus, the solution β̃613

of (2.7) is a biased estimator with a conditional variance that is singular. Specifically,614
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• Although P is a projector, it is not an orthogonal projector onto range(X),615

since P is not symmetric and it projects only onto a lower-dimensional sub-616

space of range(X).617

• The conditional expectation of β̃ is Ey[β̃ |S] 6= β0, since P0 6= I2, and the618

relative distance to unbiasedness can be maximal in the worst case, since619

‖Ey[β̃ |S]− β0‖2 ≤ ‖β0‖2.620

• The conditional variance has become singular,621

Vary

[

β̃

∣
∣
∣S

]

= σ2 X†PPT(X†)T = σ2

(
1 0
0 0

)

,622

with zero norm-wise relative accuracy, and the corresponding bound holds623

with equality,624

‖Vary[β̃ |S]− Vary[β̂]‖2/‖Vary[β̂]‖2 = 1 = ‖PPT −Px‖2.625

B.2.2. Uniform sampling with replacement. Algorithm B.1 with n = 4 and626

r = 2 produces a sampling matrix S ∈ R
2×4, which has n2 = 16 instances627

Sij =
√
2

(
eTi
eTj

)

, 1 ≤ i, j ≤ n,628

each occurring with probability 1/n2. For instance,629

S11 =
√
2

(
1 0 0 0
1 0 0 0

)

, S42 =
√
2

(
0 0 0 1
0 1 0 0

)

.630

The expectation of the Gram product is an unbiased estimator of the identity, since631

Es[S
TS] =

4∑

i=1

4∑

j=1

1
16S

T
ijSij =

4∑

i=1

4∑

j=1

1
16 (eie

T
i + eje

T
j ) = I4.632

B.2.3. Expected rank deficiency in Theorem 4.5 and Corollary 4.6. The633

total expectation of P0 ∈ R
2×2 is634

Es[P0] =

4∑

i=1

4∑

j=1

1
16 (SijX)†(SijX) = Es[P0] =

1
16

(
12 0
0 7

)

.635

For instance, representative summands include636

(S13X)† =
√

1
2

(
1 0
1 0

)†

=
√

1
2

(
1/2 1/2
0 0

)

, (S13X)†(S13X) =

(
1 0
0 0

)

,637

(S32X)† =
√

1
2

(
1 0
0 1

)†

=
√

1
2

(
1 0
0 0

)

=
√

1
2 I2, (S32X)†(S32X) = I2,638

(S44X)† =
√

1
2

(
0 0
0 0

)†

= 0, (S44X)†(S44X) = 0.639

Among the sketched matrices SX, 75 percent are rank deficient. The ones with full640

column rank are S12X, S21X, S23X, and S32X. The expected rank deficiency of SX641

equals642

Es[I−P0] =
1
16

(
4 0
0 9

)

with ‖Es[I−P0]‖2 = 9
16 .643

Thus, the solution β̃ of (2.7) is a biased estimator. Specifically,644

This manuscript is for review purposes only.



18 JOCELYN T. CHI AND ILSE C.F. IPSEN

• Es[P0] is not a projector, since it is not idempotent.645

• The total expectation of β̃ equals Es[β̃] 6= β0, since Es[P0] 6= I2. and the646

relative distance to unbiasedness can be large, since ‖E[β̃]−β0‖2 ≤ 9
16 ‖β0‖2.647

B.2.4. Expected deviation of P from being an orthogonal projector in648

Theorem 4.5 and Corollary 4.6. To the expectation of PPT ∈ R
4×4, note that649

the trailing column of X is zero, and650

PPT = X(SX)†SST
(
(SX)†

)T
XT ,651

the trailing row and column of all instances of PPT and Es[PPT ] are zero as well,652

and653

Es[PPT ] =

4∑

i=1

4∑

j=1

1
16 X(SijX)†SijS

T
ij

(
(SijX)†

)T
XT = 1

16







11 0 11 0
0 7 0 0
11 0 11 0
0 0 0 0







.654

Thus, Es[PPT ] is not a projector since it is not idempotent, and the expected devi-655

ation of P from being an orthogonal projector onto range(X) can be larger than 50656

percent, since657

Es[PPT −Px] =
1
16







3 0 3 0
0 −9 0 0
3 0 3 0
0 0 0 0







with ‖Es[PPT −Px]‖2 = 9
16 .658

B.2.5. Extreme examples. We consider two more 4 × 2 matrices, both with659

orthogonal columns, but at the opposite ends in terms of the performance for uniform660

sampling in Section B.2.2.661

Columns of the Hadamard matrix. With its mass spread uniformly spread, which662

is quantified by minimal coherence and uniform leverage scores [13, 16], this matrix663

is optimal for uniform row sampling,664

X =







1 1
1 −1
1 1
1 −1







∈ R
4×2, Px = XX† = 1

2







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1







.665

Half of the sketched matrices SX have full column rank. The expectations for the666

projectors are667

Es[P0] =
12
16I2, Es[PPT ] = 11

16







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1







.668

Thus the expected deviation of SX from full column-rank rank, and the expected669

deviation of P from being an orthogonal projector onto range(X) are670

‖Es[I−P0]‖2 = 4
16 ,

∥
∥Es[PPT −Px]

∥
∥
2
= 3

16 ,671

and clearly lower, and therefore better than the respective ones in Sections B.2.3672

and B.2.4.673
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Columns of the identity matrix. With its concentrated mass spread, which is674

quantified by maximal coherence and widely differing leverage scores [13, 16], this675

matrix presents a worst case for uniform row sampling of 4 × 2 a full column-rank676

matrix,677

X =







1 0
0 1
0 0
0 0







∈ R
4×2, Px = XX† =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







.678

Only two among the 16 sketched matrices SX have full column rank, S12X and S21X.679

The expectations for the projectors are680

Es[P0] =
7
16I2, Es[PPT ] = 7

16







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







.681

The expected deviations of SX from full column-rank and of P from being an orthog-682

onal projector onto range(X) are683

‖Es[I−P0]‖2 = 9
16 ,

∥
∥Es[PPT −Px]

∥
∥
2
= 9

16 ,684

thus clearly worse than those for the Hadamard matrix.685

Acknowledgements. We are grateful to Dennis Boos and Chris Waddell for686

many helpful discussions.687

REFERENCES688

[1] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: supercharging Lapack’s least-689
squares solver, SIAM J. Sci. Comput., 32 (2010), pp. 1217–1236.690

[2] C. Boutsidis and P. Drineas, Random projections for the nonnegative least-squares problem,691
Linear Algebra Appl., 431 (2009), pp. 760–771.692

[3] S. Chatterjee and A. S. Hadi, Influential observations, high leverage points, and outliers in693
linear regression, Statist. Sci., 1 (1986), pp. 379–416. With discussion.694

[4] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo Algorithms for Matrices.695
I: Approximating Matrix Multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.696

[5] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Sampling algorithms for l2 regression697
and applications, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on698
Discrete Algorithms, ACM, New York, 2006, pp. 1127–1136.699

[6] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster least squares700
approximation, Numer. Math., 117 (2011), pp. 219–249.701

[7] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1,702
Springer series in statistics New York, 2001.703

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University704
Press, Baltimore, fourth ed., 2013.705

[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, sec-706
ond ed., 2002.707

[10] D. C. Hoaglin and R. E. Welsch, The Hat matrix in regression and ANOVA, Amer. Statist.,708
32 (1978), pp. 17–22.709

[11] I. C. F. Ipsen, Relative perturbation results for matrix eigenvalues and singular values, in Acta710
Numerica 1998, vol. 7, Cambridge University Press, Cambridge, 1998, pp. 151–201.711

[12] I. C. F. Ipsen, An overview of relative sinΘ theorems for invariant subspaces of complex712
matrices, J. Comput. Appl. Math., 123 (2000), pp. 131–153. Invited Paper for the special713
issue Numerical Analysis 2000: Vol. III – Linear Algebra.714

[13] I. C. F. Ipsen and T. Wentworth, The effect of coherence on sampling from matrices with715
orthonormal columns, and preconditioned least squares problems, SIAM J. Matrix Anal.716
Appl., 35 (2014), pp. 1490–1520.717

This manuscript is for review purposes only.



20 JOCELYN T. CHI AND ILSE C.F. IPSEN

[14] M. E. Lopes, S. Wang, and M. W. Mahoney, Error estimation for randomized least-squares718
algorithms via the bootstrap, in Proc. 35th International Conference on Machine Learning,719
vol. 80, PMLR, 2018, pp. 3217–3226.720

[15] P. Ma, M. W. Mahoney, and B. Yu, A statistical perspective on algorithmic leveraging, in721
Proceedings of the 31st International Conference on International Conference on Machine722
Learning, vol. 32 of ICML’14, JMLR.org, 2014, pp. I–91–I–99.723

[16] P. Ma, M. W. Mahoney, and B. Yu, A statistical perspective on algorithmic leveraging, J.724
Mach. Learn. Res., 16 (2015), pp. 861–911.725

[17] C. L. Mallows, Some comments on c p, Technometrics, 15 (1973), pp. 661–675.726
[18] X. Meng, M. A. Saunders, and M. W. Mahoney, LSRN: a parallel iterative solver for727

strongly over- or underdetermined systems, SIAM J. Sci. Comput., 36 (2014), pp. C95–728
C118.729

[19] C. D. Meyer, Matrix analysis and applied linear algebra, Society for Industrial and Applied730
Mathematics (SIAM), Philadelphia, PA, 2000.731

[20] J. F. Monahan, A primer on linear models, Texts in Statistical Science Series, Chapman &732
Hall/CRC, Boca Raton, FL, 2008.733

[21] D. Posada and T. R. Buckley, Model selection and model averaging in phylogenetics: ad-734
vantages of Akaike information criterion and Bayesian approaches over likelihood ratio735
tests, Systematic biology, 53 (2004), pp. 793–808.736

[22] G. Raskutti and M. W. Mahoney, A statistical perspective on randomized sketching for737
ordinary least-squares, J. Mach. Learn. Res., 17 (2016), pp. Paper No. 214, 31.738

[23] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear least-739
squares regression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13212–13217.740

[24] T. Sarlós, Improved Approximation Algorithms for Large Matrices via Random Projections,741
in 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), IEEE,742
Oct 2006, pp. 143–152.743

[25] G. W. Stewart, Collinearity and least squares regression, Statist. Sci., 2 (1987), pp. 68–100.744
With discussion.745

[26] G.-A. Thanei, C. Heinze, and N. Meinshausen, Random Projections For Large-Scale Re-746
gression, 2017, https://arxiv.org/abs/1701.05325.747

[27] P. F. Velleman and R. E. Welsch, Efficient computing of regression diagnostics, Amer.748
Statist., 35 (1981), pp. 234–242.749

[28] H. Wang, R. Zhu, and P. Ma, Optimal Subsampling for Large Scale Logistic Regression, J.750
Amer. Stat. Assoc., 113 (2018), pp. 829–844.751

This manuscript is for review purposes only.

https://arxiv.org/abs/1701.05325

	Introduction
	Problem setting
	Existing work
	Specific Contributions
	Overview

	Models for Least Squares Regression
	Gaussian linear model
	Traditional algorithm for least squares solution
	Random Row-Sketching

	Structural (deterministic perturbation) bounds
	The perturbed problem
	Multiplicative perturbation bounds

	Model-induced and randomized algorithm-induced uncertainty
	Model-induced uncertainty
	Model-induced uncertainty, conditioned on algorithm-induced uncertainty
	Combined algorithm-induced and model-induced uncertainty
	Regression and residual sums of squares

	Discussion
	Appendix A. Proofs
	Proof of Lemma 3.1
	Proof of Theorem 3.3
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.3
	Proof of Theorem 4.5
	Proof of Corollary 4.6
	Proof of Theorem 4.7
	Proof of Corollary 4.9

	Appendix B. Examples with uniform row sampling
	Random sketching matrices in least squares
	Examples
	Effect of rank deficiency in Theorem 4.2 and Corollary 4.3
	Uniform sampling with replacement
	Expected rank deficiency in Theorem 4.5 and Corollary 4.6
	Expected deviation of P from being an orthogonal projector in Theorem 4.5 and Corollary 4.6
	Extreme examples


	References

