Multiplicative perturbation bounds for multivariate multiple linear regression in Schatten p-norms

Jocelyn T. Chi$^{a, *}$, Ilse C.F. Ipsenb

a Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
b Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

Article Info

Article history:
Received 12 July 2020
Accepted 30 March 2021
Available online 6 April 2021
Submitted by N.J. Higham

MSC:
15-02

Keywords:
Projector
Multiplicative perturbations
Moore Penrose inverse
Schatten p-norms
Multivariate multiple linear regression

Abstract

Multivariate multiple linear regression (MMLR), which occurs in a number of practical applications, generalizes traditional least squares (multivariate linear regression) to multiple right-hand sides. We extend recent MLR analyses to sketched MMLR in general Schatten p-norms by interpreting the sketched problem as a multiplicative perturbation. Our work represents an extension of Maher’s results on Schatten p-norms. We derive expressions for the exact and perturbed solutions in terms of projectors for easy geometric interpretation. We also present a geometric interpretation of the action of the sketching matrix in terms of relevant subspaces. We show that a key term in assessing the accuracy of the sketched MMLR solution can be viewed as a tangent of a largest principal angle between subspaces under some assumptions. Our results enable additional interpretation of the difference between an orthogonal and oblique projector with the same range.

© 2021 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: jtchi@ncsu.edu (J.T. Chi), ipsen@ncsu.edu (I.C.F. Ipsen).

https://doi.org/10.1016/j.laa.2021.03.039
0024-3795/© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Multivariate multiple linear regression (MMLR)\(^1\) is a natural generalization of traditional least squares regression (multivariate linear regression) to multiple right-hand sides. It is also useful in many large-scale real-world applications including image classification \([28,58]\), quality control monitoring \([15,38]\), genetic association studies \([4,27]\), spatial genetic variation studies \([52]\), climate studies \([22]\), and low-rank tensor factorizations \([25]\) to name a few. In the mathematics literature, least squares problems with multiple right-hand sides occur in the total least squares context, where both the independent and dependent variables may contain errors \([18,19,45]\).

In recent years, randomized approaches have become a popular method of dealing with very large data problems in numerical linear algebra \([35,57]\). The idea is to utilize random projections, random sampling, or some combination of the two to reduce the problem to a lower dimension while approximately retaining the characteristics of the original problem. Referred to as sketching, this has become a popular approach for the fast solution of highly overdetermined or underdetermined regression problems \([2,9,12,29,30,36,39,41]\), where either the number of rows far exceeds the number of columns, or vice versa.

We view row-sketched MMLR as a multiplicative perturbation of MMLR, and derive perturbation bounds that are amenable to geometric interpretation. Following up on our recent work \([9]\), which quantifies the effect of sketching on the geometry of traditional least squares, we extend our analysis to sketched MMLR in general Schatten \(p\)-norms, which appear in numerous machine learning problems. In particular, the nuclear \((p = 1)\) and Frobenius \((p = 2)\) norms appear in penalized regression \([55,58]\), regularized matrix regression \([59]\), matrix completion \([6,7]\), trace approximation \([16,48]\), image feature extraction \([14]\), and image processing and classification \([26,53,54]\).

1.1. Problem setting

We begin with the exact MMLR problem in a Schatten \(p\)-norm. Denote the singular values of a matrix \(M \in \mathbb{R}^{m \times d}\) by

\[
\sigma_1(M) \geq \sigma_2(M) \geq \cdots \geq \sigma_{\min(m,d)}(M) \geq 0.
\]

The Schatten \(p\)-norm \([23, \text{page 199}]\) of \(M\) is a function of its singular values

\[
\|M\|_{(p)} = \sqrt[p]{\sigma_1(M)^p + \cdots + \sigma_r(M)^p} \text{ for } 1 \leq p \leq \infty.
\]

Given a pair of matrices \(A \in \mathbb{R}^{m \times n}\) and \(B \in \mathbb{R}^{m \times d}\) with \(\text{rank}(A) = n\), the goal is to estimate the solution \(\hat{X} \in \mathbb{R}^{n \times d}\) satisfying

\(^1\) We abbreviate multivariate multiple linear regression as “MMLR” throughout this paper.
\[
\min_{X \in \mathbb{R}^{n \times d}} \|AX - B\|_{(p)} \quad \text{for } 1 \leq p \leq \infty.
\]

Popular Schatten \(p\)-norms include the

- \(p = 1\) nuclear (trace) norm \(\|M\|_{*} = \sum_{j=1}^{\min(m,d)} \sigma_j(M) = \|M\|_{(1)}\),
- \(p = 2\) Frobenius norm \(\|M\|_F = \sqrt{\sum_{j=1}^{\min(m,d)} \sigma_j(M)^2} = \|M\|_{(2)}\), and
- \(p = \infty\) Euclidean (operator) norm \(\|M\|_\infty = \sigma_1(M) = \|M\|_{(\infty)}\).

Given a matrix \(S \in \mathbb{R}^{c \times m}\) with \(n \leq c \leq m\), the perturbed MMLR problem in a Schatten \(p\)-norm via randomized row-sketching is

\[
\min_{X \in \mathbb{R}^{n \times d}} \|S(AX - B)\|_{(p)} \quad \text{for } 1 \leq p \leq \infty.
\]

Row-sketching can be an effective approach to handling large data in the highly over-constrained case \([11,12,30,39,51]\), where \(m \gg n\).

1.2. Existing work

Widely considered to have originated in \([41]\), randomized sketching has become a popular approach to solving large data problems in machine learning and numerical linear algebra \([35,57]\). In the regression setting, sketching approaches can be broadly classified \([46,\text{Section } 1]\) according to whether they achieve row compression \([3,11,12,21,29,30,40,51]\), column compression \([2,46]\), or both \([36]\). Recent work has improved the theoretical understanding of randomized regression from a statistical \([9,29,30,39,55]\) and geometric perspective \([9]\).

The sketched MMLR problem in \((2)\) can be viewed as a generalization of weighted least squares since \(S\) is not required to be positive definite diagonal \([24,42,56]\). Additionally, \((2)\) holds more generally for Schatten \(p\)-norms with \(1 \leq p \leq \infty\) rather than only the Frobenius norm. Perturbation analysis for weighted least squares quantifies the effect of additive perturbations of the weights, \(A\), or both \([56]\). By contrast, we view the sketched problem in \((2)\) as a multiplicative perturbation of \((1)\).

1.3. Our contributions

Our results extend the following: 1) Maher’s work \([31–34]\) on Schatten \(p\)-norms; 2) the analysis in \([9]\) to the sketched MMLR problem in a Schatten \(p\)-norm; and 3) the result in \([12,\text{Lemma } 1]\) to the \(d \geq 1\) case and for Schatten \(p\)-norms with \(1 \leq p \leq \infty\) under weaker assumptions. We also show that the accuracy of the sketched MMLR solution in a Schatten \(p\)-norm depends on a term that captures both 1) how close the sketching matrix \(S\) is to approximately preserving orthogonality \([10,37,47]\) for any rank-preserving \(S\) and 2) how close the vectors in a basis for the sketched subspace are to being orthonormal.
(Proposition 3). We present a geometric interpretation of the action of the sketching matrix S in terms of relevant subspaces. We show that a key term in assessing the accuracy of the sketched MMLR solution can be interpreted as the tangent of a largest principal angle between these subspaces if S has orthonormal rows (Proposition 4) or if S preserves rank (Proposition 5). We extend this interpretation to the operator norm difference between an orthogonal and oblique projector with the same range when S preserves rank (Proposition 6).

1.4. Preliminaries

We begin by setting some notation. Let $I_n = (e_1, e_2, \ldots, e_n)$ denote the $n \times n$ identity matrix, and let the superscript T denote the transpose. Let $A \in \mathbb{R}^{m \times n}$ be a matrix with $\text{rank}(A) = n$. Then A has the following full (first equality) and thin (second equality) QR decompositions

$$A = (Q \quad Q_\perp) \begin{pmatrix} R \\ 0_{(m-n)\times n} \end{pmatrix} = QR,$$

respectively, where $R \in \mathbb{R}^{n \times n}$ is nonsingular. Thus, $Q \in \mathbb{R}^{m \times n}$ and $Q_\perp \in \mathbb{R}^{m \times (m-n)}$ represent orthonormal bases for $\text{range}(A)$ and $\text{range}(A)^\perp = \text{null}(A^T)$, respectively.

Since A has full column rank, its Moore-Penrose generalized inverse is

$$A^\dagger = (A^T A)^{-1} A^T = R^{-1} Q^T.$$

The two-norm condition number of A with respect to left inversion is

$$\kappa_2(A) = \|A\|_2 \|A^\dagger\|_2.$$

The following lemma asserts strong multiplicativity for Schatten p-norms and invariance under multiplication by matrices with orthonormal columns (rows) on the left (right).

Lemma 1 ([34, (2.7)]). For $F \in \mathbb{R}^{m \times n}$, $G \in \mathbb{R}^{k \times m}$ and $C \in \mathbb{R}^{n \times l}$ with $1 \leq p \leq \infty$, we have

$$\|GFC\|_p \leq \|G\|_2 \|F\|_2 \|C\|_p.$$

This version of Lemma 1 is obtained from a modification of the proof for [34, (2.5)].

2. Multivariate Multiple Linear Regression

We describe the solution and regression residual for the exact and perturbed MMLR problems in a Schatten p-norm in (1) and (2), respectively. The following states that the solutions for (1) are the same, regardless of the choice of $p \geq 1$ [34].
Proposition 1 ([31,32,34]). Let matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times d}$ be given. The MMLR problem in a Schatten p-norm

$$
\min_{X \in \mathbb{R}^{n \times d}} \|AX - B\|_p \quad \text{for} \quad 1 \leq p \leq \infty
$$

has the minimal Schatten p-norm solution $\hat{X} \equiv A^\dagger B$ with prediction and regression residual

$$
\hat{B} \equiv A\hat{X} \quad \text{and} \quad \hat{\Gamma} \equiv B - A\hat{X} = (I - AA^\dagger)B,
$$

respectively. If $\text{rank}(A) = n$, then the solution $\hat{X} = R^{-1}Q^T B$ is unique with regression residual $\hat{\Gamma} = (I - QQ^T)B = Q_\perp Q^T B$.

For a proof that \hat{X} is the minimal Schatten p-norm solution to (1), see [31,32,34]. Specifically, [31] shows that $\|AX - B\|_p \geq \|AA^\dagger B - B\|_p$ for $2 \leq p < \infty$ and [32] extends the result to $1 \leq p < \infty$. Then, [34] extends the inequality to $1 \leq p \leq \infty$ by showing that $\sigma_j(AX - B) \geq \sigma_j(\text{null}(A)) \geq \sigma_j(AA^\dagger B - B)$ for $j = 1, 2, \ldots$ for finite rank operators. Finally, [34, Corollary 3.1] shows that \hat{X} has minimal Schatten p-norm. If $\text{rank}(A) = n$, then $\text{null}(A) = \{0\}$ so that the general solution in [34, Corollary 3.1] is also unique.

Let $S \in \mathbb{R}^{c \times m}$ be a multiplicative perturbation matrix from the left with $n \leq c \leq m$ and $\text{rank}(SA) \leq \text{rank}(A) = n$. For example, S may be a sampling matrix that extracts rows from A [12,30], a projection matrix [1,41], or a combination of sampling and projection matrices [2,12].

Corollary 1. Let matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times d}$ be given. The perturbed MMLR problem in a Schatten p-norm

$$
\min_{X \in \mathbb{R}^{n \times d}} \|S(AX - B)\|_p \quad \text{for} \quad 1 \leq p \leq \infty
$$

in (2) has the minimal Schatten p-norm solution $\tilde{X} = (SA)^\dagger SB$. If $\text{rank}(SA) = \text{rank}(A) = n$, then \tilde{X} is unique.

Following convention [30,39], we define the prediction and regression residual of the perturbed MMLR problem to be

$$
\tilde{B} = A\tilde{X} \quad \text{and} \quad \tilde{\Gamma} = B - A\tilde{X}.
$$

3. General multiplicative perturbations

We present general multiplicative perturbation bounds for (2) requiring no assumptions on S. To enable geometric interpretation, we express the bounds in terms of
orthogonal and oblique projectors onto range(A) or a subspace of range(A). For a matrix A,
\[P_A = AA^\dagger \]
denotes the orthogonal projector onto range(A) along null(A^T) ([44, Theorem III.1.3] and [8,20,50]). For the perturbed MMLR problem in (2),
\[P = A(SA)^\dagger S \]
denotes the corresponding oblique projector onto a subspace of range(A). If rank(SA) = rank(A), then range(P) = range(P_A) although null(P) = null(A^T S^T S) [49, Theorem 3.1], and null(A^T S^T S) \not= null(P_A) in general [9, Lemma 3.1]. Oblique projectors appear in [43,49] for constrained least squares, [17] for discrete inverse problems, and [5,42] for weighted least squares. The oblique projector P can be viewed as an extension of the oblique projector
\[P_D = A(A^T DA)^{-1} A^T D \]
in [42] if D = S^T S is a diagonal matrix with positive elements on the diagonal and (A^T DA)^{-1} exists. If S is a sketching matrix that samples without replacement and c = m, then S^T S = I_m satisfies the requirements for D in [42]. In this case, however, the sketched MMLR problem in (2) becomes the exact MMLR problem in (1). If d = 1 and p = 2 in (2), the oblique projector P appears in [39] if rank(SA) = rank(A) and in [9, Lemma 3.1] for any sketching matrix S. Oblique projectors also appear in other problems, such as the discrete empirical interpolation method (DEIM) oblique projector \(D = U_r (S^T U_r)^\dagger S^T \) in [13, Section 3.1].

Since A^\dagger is a left inverse of A, the exact and perturbed solutions are \(\hat{X} = A^\dagger PA B \) and \(\tilde{X} = A^\dagger PB \), respectively [9, Lemma 3.1]. Therefore, the absolute error between the solution and regression residual is
\[\hat{X} - \tilde{X} = [(SA)^\dagger S - A^\dagger]B = A^\dagger (P - P_A)B \quad \text{and} \]
\[\hat{r} - \tilde{r} = A[A^\dagger - (SA)^\dagger S]B = (P_A - P)B. \]

Proposition 2 bounds the absolute error of the perturbed solution and regression residual for the MMLR problem in a Schatten p-norm with \(1 \leq p \leq \infty \) in terms of the above projection matrices.

Proposition 2. For the perturbed MMLR problem in (2), the absolute error bounds on the solution and regression residual in a Schatten p-norm are
\[\|\hat{X} - \tilde{X}\|_{(p)} \leq \|A^\dagger\|_2 \|P - P_A\|_2 \|B\|_{(p)} \quad \text{and} \]
\[\|\hat{r} - \tilde{r}\|_{(p)} \leq \|P - P_A\|_2 \|B\|_{(p)}. \]
If $A^T B \neq 0$, the relative error bound in a Schatten p-norm is

$$\frac{\|\tilde{X} - \hat{X}\|_p}{\|\tilde{X}\|_p} \leq \kappa_2(A) \frac{\|P - P_A\|_2}{\|A\|_2} \frac{\|B\|_p}{\|X\|_p}.$$

Proof. Lemma 1 implies the bounds for the absolute error in a Schatten p-norm. □

Proposition 2, which extends [9, Corollary 3.5] to multiple right-hand sides and Schatten p-norms with $1 \leq p \leq \infty$, shows that the accuracy of the sketched solution and regression residual depends on the operator norm projector difference $\|P - P_A\|_2$.

4. Multiplicative perturbations that preserve rank

We present multiplicative perturbation bounds for (2) that hold if $\text{rank}(SA) = \text{rank}(A)$. We begin by rewriting the difference between P_A and P in terms of an orthonormal basis for the column space of A. Since $\text{rank}(SA) = n$, $(SA)^\dagger = R^{-1}(SQ)^\dagger$ so that

$$P_A - P = QQ^T - Q(SQ)^\dagger S.$$

Although the results in this section require the additional assumption that $\text{rank}(SA) = \text{rank}(A)$, they enable geometric interpretation beyond the difference between the projectors P_A and P.

Proposition 3. For the perturbed MMLR problem in (2), if $\text{rank}(SA) = \text{rank}(A)$, the absolute error bound in a Schatten p-norm for $1 \leq p \leq \infty$ is

$$\|\tilde{X} - \hat{X}\|_p \leq \|A\|_2 \| (SQ)^\dagger SQ_\perp \|_2 \|\hat{\Gamma}\|_p.$$

Proof. Since $\text{rank}(SA) = n$, we have $(SA)^\dagger = R^{-1}(SQ)^\dagger$. Thus,

$$\tilde{X} - \hat{X} = (SA)^\dagger SB - A^\dagger B$$

$$= R^{-1}[(SQ)^\dagger S - Q^{T}]B. \quad (4)$$

Multiplying B on the left by the identity matrix $I = QQ^T + Q_\perp Q_\perp^T$ and inserting it in (4) gives

$$\tilde{X} - \hat{X} = R^{-1}[(SQ)^\dagger S - Q^{T}](QQ^T + Q_\perp Q_\perp^T)B$$

$$= R^{-1}(SQ)^\dagger SQ_\perp Q_\perp^T B. \quad (5)$$

Lemma 1 implies the following upper bound on the Schatten p-norm of the absolute error difference between the sketched and exact MMLR solutions.
\[\| \hat{X} - \tilde{X} \|_2 \leq \| R^{-1} \|_2 \| (SQ)^\dagger SQ \|_2 \| Q \perp Q_T^T B \|_2. \]

Finally, applying the definition of the exact regression residual \(\hat{X} = Q \perp Q_T^T B \) concludes the proof. \(\Box \)

Since \(\| A^\dagger \|_2 \) and \(\| \hat{\Gamma} \|_2 \) are fixed for any pair of \(A \) and \(B \), only \(\| (SQ)^\dagger SQ \|_2 \) is affected by the choice of the sketching matrix \(S \). We compare this to the approximate isometry term \(\| (SQ)^T \tilde{S} \hat{\Gamma} \|_2 \) from [12, Equation 9], where \((SQ)^T \tilde{S} \hat{\Gamma} \) is a vector. Notice that we can arrive at the \(\| (SQ)^T \tilde{S} \hat{\Gamma} \|_2 \) term if we revert to (5) in the above proof and assume that the columns of \(SQ \) are orthonormal so that \((SQ)^\dagger = (SQ)^T \). If we further restrict our analysis to the \(d = 1 \) and \(p = 2 \) case, we recover the same normed quantity as in [12, Equation 9]. Thus, we compare Proposition 3 to [12, Lemma 1], where the absolute solution error for the \(d = 1 \) and \(p = 2 \) case is

\[\| \hat{X} - \tilde{X} \|_2 \leq \| A^\dagger \|_2 \sqrt{\epsilon} \| \hat{\Gamma} \|_2 \]

(6)

for \(\epsilon \) and \(S \) satisfying [12, Equations 8 and 9]:

\[\| (SQ)^\dagger \|_2 \leq 2^{\frac{3}{2}} \quad \text{and} \]

\[\| (SQ)^\dagger \tilde{S} \hat{\Gamma} \|_2 \leq \sqrt{\frac{\epsilon}{2}} \| \hat{\Gamma} \|_2. \]

(7)

(8)

Proposition 3 can be viewed as an extension of [12, Lemma 1] in the following ways. First, Proposition 3 extends the result in [12, Lemma 1] for \(d \geq 1 \) and for Schatten \(p \)-norms with \(1 \leq p \leq \infty \). Second, [12, Lemma 1] is a special case of Proposition 3 when \(d = 1 \), \(p = 2 \), and \(\sqrt{\epsilon} = \| (SQ)^\dagger SQ \|_2 \). Third, in contrast with [12, Lemma 1], the bound in Proposition 3 holds without requiring the assumptions (7) or (8).

5. Angle between the original and perturbed subspaces

We show that \(\| (SQ)^\dagger SQ \|_2 \) is the tangent of a largest principal angle under two conditions: if \(S \) has orthonormal rows, or if \(S \) preserves rank. Furthermore we show that if \(S \) preserves rank, then \(\| (SQ)^\dagger SQ \|_2 \) equals the operator norm difference between the orthogonal projector \(P_A \) and the oblique projector \(P \). Therefore, if an orthogonal and an oblique projector have the same range, then their operator norm difference can be interpreted in terms of principal angles. We begin with a decomposition of \(\text{range}(S^T) \) with respect to \(\text{range}(Q) \) and \(\text{range}(Q_{\perp}) \).

5.1. A decomposition of \(\text{range}(S^T) \)

The following geometric interpretations depend on a decomposition of \(S \) into three subspaces. Let \(Q \equiv \text{range}(Q) \), \(Q_{\perp} \equiv \text{range}(Q_{\perp}) \), and \(S \equiv \text{range}(S^T) \). Following the
notation in [60, Section 2], we can decompose S into the direct sum of the following subspaces

$$S_1 ≡ S \cap Q, \quad S_0 ≡ S \cap Q^\perp, \quad \text{and} \quad S_{10} ≡ S \cap (Q \oplus Q^\perp)^\perp.$$

We summarize and interpret these subspaces of S as follows. The subspace S_1 contains the directions in S that are also in Q. Specifically, $S_1 = \{ s \in S : s^T q = \|s\|_2 \|q\|_2 \text{ for some } q \in Q \}$, where $\| \cdot \|_2$ denotes the Euclidean vector norm.

The subspace S_0 contains the directions in S that are also in Q^\perp. Therefore, these are the directions in S that are orthogonal to directions in Q. Specifically, $S_0 = \{ s \in S : s^T q = 0 \text{ for all } q \in Q \}$.

The subspace S_{10} contains the directions in S that are in neither Q nor Q^\perp. Therefore, these are the directions in S that are not orthogonal to Q but are also not in Q. Specifically, $S_{10} = \{ s \in S : 0 < |s^T q| < \|s\|_2 \|q\|_2 \text{ for all } q \in Q \}$.

The subspace $S_Q ≡ S_1 \oplus S_{10}$, then comprises the directions in S that are not orthogonal with directions in Q. Specifically, $S_Q = \{ s \in S : 0 < |s^T q| \leq \|s\|_2 \|q\|_2 \text{ for all } q \in Q \}$.

Section 5.3.1 presents an illustrative example of these subspaces in the context of Proposition 5. In general, we have

$$\dim(S_1) \leq \dim(Q) = n$$

and

$$\dim(S_1) \leq \dim(S_Q) \leq \dim(S) \leq c.$$

If $\text{rank}(SA) = n$, then we additionally have

$$\dim(S_1) \leq n \leq \dim(S_Q) \leq \dim(S) \leq c.$$

5.2. Interpretation of $\| (SQ)^\dagger SQ \|_2$ if S has orthonormal rows

If S has orthonormal rows, the quantity $\| (SQ)^\dagger SQ \|_2$ has geometric interpretation even with no additional requirements on S or $\text{rank}(SA)$. One example is sketching via random sampling without replacement where one row is selected in each sample. The following relies on a key result on the angles between subspaces from [60, Theorem 3.1].

Proposition 4. For the perturbed MMLR problem in (2) with the subspaces defined in Section 5.1, if S has orthonormal rows, then
\|(SQ)^\dagger(SQ_\perp)\|_2 = \tan \theta_1(S, Q),

where \(\theta_1(S, Q)\) denotes a largest principal angle between \(S\) and \(Q\). The absolute error bound in a Schatten \(p\)-norm is

\[\|\hat{X} - \tilde{X}\|_p \leq \tan \theta_1(S, Q) \|A^\dagger\|_2 \|\hat{\Gamma}\|_p.\]

This result follows from [60, Theorem 3.1] using the orthogonal matrix \((Q \quad Q_\perp)\) and \(ST\) with \(S\) having orthonormal rows. Thus, the positive singular values of \((SQ)^\dagger SQ_\perp\) are the tangents of the principal angles between \(S\) and \(Q\). Therefore, the absolute error in a Schatten \(p\)-norm between the sketched and exact MMLR solutions depends on the tangent of a largest principal angle between \(S\) and \(Q\). Notice that without additional assumptions on \(\text{rank}(SA)\), the tangent of a principal angle between \(S\) and \(Q\) may be \(\infty\).

5.3. Interpretation of \(\|(SQ)^\dagger SQ_\perp\|_2\) if \(\text{rank}(SA) = \text{rank}(A)\)

If the sketching matrix \(S\) preserves rank so that \(\text{rank}(SA) = \text{rank}(A)\), the quantity \(\|(SQ)^\dagger SQ_\perp\|_2\) has geometric interpretation without requiring additional assumptions on \(S\). This interpretation is based on [60, Theorem 3.1 and Remark 3.1].

Proposition 5. For the perturbed MMLR problem in (2) with the subspaces defined in Section 5.1, if \(\text{rank}(SA) = \text{rank}(A)\) and \(Z \equiv (SQ)^\dagger S\), then the singular values of \((SQ)^\dagger SQ_\perp\) represent the tangents of the principal angles between \(Z \equiv \text{range}(Z^T)\) and \(Q\). Therefore,

\[\|(SQ)^\dagger(SQ_\perp)\|_2 = \tan \theta_1(Z, Q),\]

where \(\theta_1(Z, Q)\) denotes a largest principal angle between \(Z\) and \(Q\). Moreover, \(\tan \theta_1(Z, Q)\) is strictly less than \(\infty\) and the absolute error bound in a Schatten \(p\)-norm is

\[\|\hat{X} - \tilde{X}\|_p \leq \tan \theta_1(Z, Q) \|A^\dagger\|_2 \|\hat{\Gamma}\|_p.\]

Proof. The proof is adapted from [60, Remark 3.1]. The proof strategy is to construct an orthonormal basis for a subspace of \(S_Q\) and then to apply [60, Theorem 3.1] with the orthonormal basis and \(Q\).

We begin with a basis transformation of \(S\) by constructing the orthogonal matrix

\[Q_B \equiv (Q \quad Q_\perp) \in \mathbb{R}^{m \times m}.\]

Rewriting \(S\) in terms of \(Q_B\) gives

\[S = SQ_BQ_B^T = (SQ \quad SQ_\perp)Q_B^T.\]

Since \(\text{rank}(SQ) = n\), \((SQ)^\dagger\) is a left inverse of \(SQ\) and so applying it to \(S\) on the left gives
\[Z = (SQ)^\dagger S = (I_n \ (SQ)^\dagger SQ_\perp) Q^T_B \in \mathbb{R}^{n \times m}. \]

Let \(T \equiv (SQ)^\dagger SQ_\perp \in \mathbb{R}^{n \times (m-n)} \). We will show that the singular values of \(T \) represent the tangents of the principal angles between \(Z \) and \(Q \).

Notice that the Gram matrix
\[ZZ^T = I_n + TT^T \in \mathbb{R}^{n \times n} \]
is symmetric positive definite. Therefore, its inverse has the unique symmetric positive definite square root \((ZZ^T)^{-\frac{1}{2}} = (I_n + TT^T)^{-\frac{1}{2}}\). Now define
\[Z_0 \equiv (ZZ^T)^{-\frac{1}{2}} Z \in \mathbb{R}^{n \times m}. \]

Then \(Z_0 \) has orthonormal rows and the columns of \(Z_0^T \) represent a basis for \(\text{range}(Z^T) \). Since \(\text{rank}(SQ) = n \), \(\text{rank}(Z^T) = \text{range}(S^T SQ) \subseteq \text{range}(S^T) = S \).

Applying [60, Theorem 3.1] with \(Z_0^T \) and \(Q \) shows that the singular values of \((SQ)^\dagger SQ_\perp \) are the tangents of the principal angles between \(Z = \text{range}(Z^T) \) and \(Q \). Since \((Z_0^T)^T Q = Z_0 Q = (ZZ)^{-\frac{1}{2}} = (I_n + TT^T)^{-\frac{1}{2}}\) is nonsingular, \(Z \subseteq S_Q \) and the tangents of the principal angles between \(Z \) and \(Q \) are strictly less than \(\infty \). □

Clearly, \(Z \subseteq S_Q \). One might ask the question: Is \(Z = S_Q \)? Notice that \(\text{rank}(SA) = n \) and \(\text{rank}(S^T) \leq c \) imply that
\[n \leq \dim(S_Q) \leq c \quad \text{and} \quad \dim(S_1) \leq c - n. \]

Although \(Z \neq S_Q \) in general, if \(\dim(S_Q) = n \), then \(\dim(Z) = n \) implies that \(Z = S_Q \).

Meanwhile, if \(\dim(S_Q) > n \), then \(n = \dim(Z) < \dim(S_Q) \) so that \(Z \neq S_Q \). The example in Section 5.3.1 illustrates this concretely.

Propositions 4 and 5 show that if \(\text{rank}(SA) = \text{rank}(A) \), \(\|(SQ)^\dagger SQ_\perp\|_2 \) has geometric interpretation as the tangent of a largest principal angle between a subspace of \(S_Q \) and \(Q \). Moreover, the tangents of the principal angles between these two subspaces are bounded. If \(\text{rank}(SA) < \text{rank}(A) \), then \(\|(SQ)^\dagger SQ_\perp\|_2 \) still has geometric interpretation as the tangent of a largest principal angle between \(S \) and \(Q \) if \(S \) has orthonormal rows. Proposition 5 implies that if \(\text{rank}(SA) = \text{rank}(A) \), then the operator norm difference between \(P \) and \(P_A \) has the following geometric interpretation.

Proposition 6. For the perturbed MMLR problem in (2) with the subspaces defined in Section 5.1, if \(\text{rank}(SA) = \text{rank}(A) \),
\[\|P - P_A\|_2 = \tan \theta_1(Z, Q), \]
where \(Z \) is a subspace of \(S_Q \) and \(\theta_1(Z, Q) \) denotes a largest principal angle between \(Z \) and \(Q \). Moreover, \(\tan \theta_1(Z, Q) \) is strictly less than \(\infty \).
Proof. We decompose I_m into the sum of orthogonal projectors and rewrite the operator norm difference between P_A and P as the following

$$P_A - P = QQ^T - Q(SQ)^{\dagger}S(QQ^T + Q_\perp Q_\perp^T).$$

After we expand and cancel terms, the result follows from unitary invariance of spectral norms and Proposition 5. □

This result is implied from the absolute error bound in Proposition 5. However, the direct statement of this result ties the interpretation of $\| (SQ)^{\dagger}SQ_\perp \|_2$ as the tangent of a largest principal angle between a subspace of S_Q and Q to the operator norm difference between P and P_A. In this way, we have additional geometric interpretation of the difference between an orthogonal and oblique projector with the same range if S preserves rank.

5.3.1. Illustrative example of the subspaces in Proposition 5

We provide an example illustrating the subspaces of Section 5.1 in the context of Proposition 5. Let

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Q_\perp = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad S^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Then S has the following subspaces

$$S_1 = \text{range} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad S_{10} = \text{range} \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \text{and} \quad S_Q = \text{range} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

This example illustrates how S_1 contains directions in S that are in Q, and S_{10} contains directions in S that cannot be represented solely by directions in Q or directions in Q_\perp. This is because vectors in S_{10} are obtained from a non-trivial linear combination of vectors in Q with vectors in Q_\perp. Thus, for any $v \in S_{10}$ and any $q \in Q$, we have $v^Tq \neq 0$. However, $v \notin Q$ and $v \notin Q_\perp$.

Notice that in this example, there are no non-zero directions in S that are also in Q_\perp. Since $\text{rank}(SA) = n$ and $\text{rank}(S^T) \leq c$ require that $\dim(S_Q) \geq n$ and $\dim(S_1) \leq c - n$, $S_0 = \{0\}$ is an artifact of this example.
Proceeding with the example, we have
\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\] and
\[
\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix},
\]
where \(SQ \) has full column rank. This gives us
\[
ZZ^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{5}{3} & 0 \\ 0 & 0 & 2 \end{pmatrix}
\] and
\[
Z_0 = (ZZ^T)^{-\frac{1}{2}}Z = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{2\sqrt{5}}{5} & 0 & 0 & \frac{\sqrt{5}}{5} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 & 0 & \frac{\sqrt{3}}{2} \end{pmatrix}.
\]
Thus, \(Z_0^T \) has orthonormal columns and
\[
Z_0Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{2\sqrt{5}}{5} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} \end{pmatrix}
\]
is nonsingular so that \(Z \subseteq S_Q \) since all three directions in \(Z \) are not orthogonal with directions in \(Q \). However, \(\dim(Z) = 3 = n \) while \(\dim(S_Q) = 4 = c \) so that \(Z \neq S_Q \).

6. Conclusion

This paper extends recent sketched least squares analyses \([9,12]\) and Maher’s results on Schatten \(p \)-norms \([31–34]\) to sketched MMLR in general Schatten \(p \)-norms by interpreting the sketched problem as a multiplicative perturbation. Our expressions for the exact and perturbed solutions in terms of projectors enable geometric interpretations of: 1) the action of the sketching matrix in terms of relevant subspaces, and 2) the difference between an orthogonal and oblique projector with the same range. As the results in the paper focus on general sketching matrices, we leave as future work investigating their implications for specific sketching algorithms.

Declaration of competing interest

The authors declare that they have no competing interests.

Funding

The work was supported in part by NSF grants DGE-1633587, DMS-1760374, and DMS-1745654.
References

