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Abstract. Low-rank approximations to a real matrix A can be conputed from ZZTA, where
Z is a matrix with orthonormal columns, and the accuracy of the approximation can be estimated
from some norm of A− ZZTA.

We show that computing A − ZZTA in the two-norm, Frobenius norms, and more generally
any Schatten p-norm is a well-posed mathematical problem; and, in contrast to dominant sub-
space computations, it does not require a singular value gap. We also show that this problem is
well-conditioned (insensitive) to additive perturbations in A and Z, and to dimension-changing or
multiplicative perturbations in A –regardless of the accuracy of the approximation.

For the special case when A does indeed have a singular values gap, connections are established
between low-rank approximations and subspace angles.
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1. Introduction. An emerging problem in theoretical computer science and
data science is the low-rank approximation ZZTA of a matrix A ∈ R

m×n by means
of an orthonormal basis Z ∈ R

m×k [9, 28].
The ideal low-rank approximations in the two most popular Schatten p-norms,

the two (operator) norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F , consist of left singular
vectorsUk associated with the k dominant singular values σ1(A) ≥ · · · ≥ σk(A) of A.
The approximation errors are minimal, and depend on subdominant singular values,

‖(I−UkU
T
k )A‖2 = max

j≥k+1
σj(A), ‖(I−UkU

T
k )A‖F =

√ ∑

j≥k+1

σj(A)2.

A popular approach is compute Z as an orthonormal basis for a dominant subspace
of A, via subspace iteration or Krylov space methods [12, 19].

However, the computation of dominant subspaces range(Uk), an important prob-
lem in numerical linear algebra [21,22], is well-posed only if the associated singular val-
ues are separated from the subdominant singular values by a gap σk(A)−σk+1(A) > 0,
see [18,23,25–27,29] which exploit perturbation results for invariant subspaces of Her-
mitian matrices [4, 5]. It is not enough, though, for the gap to exist. It must also
be sufficiently large to guarantee that range(Uk) is robust (well-conditioned) to tiny
perturbations in A, such as roundoff errors. Thus, effort has been put into deriving
bounds that not require the existence of the singular value gap σk(A)−σk+1(A) > 0.

Contribution. The purpose of our paper, following up on [6], is to establish a
clear distinction between the mathematical problems of low-rank approximation on
the one hand, and approximation of dominant subspaces on the other. We show that
the approximation problem 9(I − ZZT )A9p is well-posed in any Schatten p-norm,
and furthermore well-conditioned under perturbations in A and Z. To the best of
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our knowledge, these findings (summarized in Section 1.4) are novel, of unparalleled
clarity, and fully general. Specifically, they

1. make no demands on the accuracy of the approximation ZZTA,
2. hold in all Schatten p-norms,
3. apply to large classes of perturbations: additive rank-preserving perturba-

tions in the basisZ; and additive, multiplicative, and even dimension-changing
perturbations in A.

However, if one so chooses to compute Z from a dominant subspace of A, one better
be assured of the existence of a sufficiently large singular value gap, for otherwise this
is a numerically unstable algorithm.

Overview. After reviewing the singular value decomposition (Section 1.1), Schat-
ten p-norms (Section 1.2) and angles between subspaces (Section 1.3), we highlight
the main results (Section 1.4) and discuss their relevance. This is followed by proofs
for low-rank approximations (Section 2), and relations to subspace angles (Section 3,
Appendix A).

1.1. Singular Value Decomposition (SVD). Let the non-zero matrix A ∈
R

m×n have a full SVD A = UΣVT , where U ∈ R
m×m and V ∈ R

n×n are orthogonal
matrices, i.e.1

UUT = UTU = Im, VVT = VTV = In,

and Σ ∈ R
m×n is a diagonal matrix with diagonal elements

‖A‖2 = σ1(A) ≥ · · · ≥ σr(A) ≥ 0, r ≡ min{m,n}. (1.1)

For 1 ≤ k ≤ rank(A), the respective leading k columns of U and V are Uk ∈ R
m×k

and Vk ∈ R
m×k. They are orthonormal, UT

kUk = Ik = VT
k Vk, and are associated

with the k dominant singular values

Σk ≡ diag
(
σ1(A) · · · σk(A)

)
∈ R

k×k.

Then

Ak ≡ UkΣkV
T
k = UkU

T
k A (1.2)

is a best rank-k approximation of A in the two norm and in the Frobenius norm,

‖(I−UkU
T
k )A‖2,F = ‖A−Ak‖2,F = min

rank(B)=k
‖A−B‖2,F .

Projectors. We construct orthogonal projectors to capture the target space, i.e.
a dominant subspace of A.

Definition 1.1. A matrix P ∈ R
m×m is an orthogonal projector, if it is idem-

potent and symmetric,

P2 = P = PT . (1.3)

1The superscript T denotes the transpose.
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Examples.
• If Z ∈ R

m×k has orthonormal columns with ZTZ = Ik, then ZZT is an
orthogonal projector.

• For 1 ≤ k ≤ rank(A), the matrix UkU
T
k = AkA

†
k is the orthogonal projector

onto the k-dimensional dominant subspace range(Uk) = range(Ak). Here

the pseudo inverse is A†
k = VkΣ

−1
k UT

k .

1.2. Schatten p-norms. These are norms defined on the singular values of real
and complex matrices, and thus special cases of symmetric gauge functions. We briefly
review their properties, based on [3, Chapter IV] and [16, Sections 3.4-3.5].

Definition 1.2. For integers p ≥ 1, the Schatten p norms on R
m×n are

9A9p ≡ p
√
σ1(A)p + · · ·+ σr(A)p, r ≡ min{m,n}.

Popular Schatten p-norms:.
p = 1 : Nuclear (trace) norm ‖A‖∗ =

∑r
j=1 σj(A) = 9A91.

p = 2 : Frobenius norm ‖A‖F =
√∑r

j=1 σj(A)2 = 9A92.

p = ∞ : Two (operator) norm ‖A‖2 = σ1(A) = 9A9∞.

We will make ample use of the following properties.

Lemma 1.3. Let A ∈ R
m×n, B ∈ R

n×ℓ, and C ∈ R
s×m.

• Unitary invariance:
If Q1 ∈ R

s×m with QT
1 Q1 = Im and Q2 ∈ R

ℓ×n with QT
2 Q2 = In, then

9Q1AQT
2 9p = 9A 9p .

• Submultiplicativity: 9AB9p ≤ 9A 9p 9B9p.
• Strong submultiplicativity (symmetric norm):

9CAB9p ≤ σ1(C)σ1(B) 9 A9p = ‖C‖2 ‖B‖2 9 A 9p .

• Best rank-k approximation:

9(I−UkU
T
k )A9p = 9A−Ak9p = min

rank(B)=k
9A−B9p

1.3. Principal Angles between Subspaces. We review the definition of an-
gles between subspaces, and the connections between angles and projectors.

Definition 1.4 (Section 6.4.3 in [11] and Section 2 in [29]). Let Z ∈ R
m×k and

Ẑ ∈ R
m×ℓ with ℓ ≥ k have orthonormal columns so that ZTZ = Ik and ẐT Ẑ = Iℓ.

Let the singular values of ZT Ẑ be the diagonal elements of the k × k diagonal matrix

cosΘ(Z, Ẑ) ≡ diag
(
cos θ1 · · · cos θk

)
.

Then θj, 1 ≤ j ≤ k, are defined as the principal (canonical) angles θj between range(Z)

and range(Ẑ).

To extract such principal angles between subspaces of possibly different dimen-
sions, we make use of projectors.

Lemma 1.5. Let P ≡ ZZT and P̂ ≡ ẐẐT be orthogonal projectors, where Z ∈
R

m×k and Ẑ ∈ R
m×ℓ with ℓ ≥ k have orthonormal columns. With θj being the k

principal angles between range(Z) and range(Ẑ), define

sinΘ(P, P̂) = sinΘ(Z, Ẑ) ≡ diag
(
sin θ1 · · · sin θk

)
,
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1. If rank(Ẑ) = k = rank(Z), then

9 sinΘ(Z, Ẑ)9p = 9(I−P) P̂9p = 9(I− P̂)P 9p .

In particular

‖(I−P) P̂‖2 = ‖P− P̂‖2

represents the distance between the subspaces range(P) and range(P̂).

2. If rank(Ẑ) > k = rank(Z), then

9 sinΘ(Z, Ẑ)9p = 9(I− P̂)P9p ≤ 9(I−P) P̂ 9p .

Proof. The two-norm expressions follow from [11, Section 2.5.3] and [27, Sec-
tion 2]. The Schatten p-norm expressions follow from the CS decompositions in [20,
Theorem 8.1], [29, Section 2], and Appendix A.

1.4. Highlights of the Main Results. We present a brief overview of the
main results: The well-conditioning of low-rank approximations under additive per-
turbations in A and the projector basis Z (Section 1.4.1); the well-conditioning of
low-rank approximations under perturbations in A that change the column dimen-
sion (Section 1.4.2); and the connection between low-rank approximation errors and
angles between subspaces (Section 1.4.3).

Thus: Low-rank approximations of the form 9A−ZZTA9p are well-posed, well-
conditioned, and do not need a singular value gap.

1.4.1. Additive perturbations in the projector basis and the matrix. We
show that the low-rank approximation error is insensitive to additive rank-preserving
perturbations in the projector basis (Theorem 1 and Corollary 1), and to additive
perturbations in the matrix (Theorem 2 and Corollary 2).

Theorem 1 (Additive rank-preserving perturbations in the projector basis). Let
A ∈ R

m×n, and let Z ∈ R
m×ℓ be a projector basis with orthonormal columns so that

ZTZ = Iℓ. Denote by Ẑ ∈ R
m×ℓ a perturbation and define

ǫZ ≡ ‖Ẑ†‖2 ‖Z− Ẑ‖2.

1. If rank(Ẑ) = rank(Z) then

9(I− ZZT )A 9p −ǫZ 9 A9p ≤ 9(I− ẐẐ†)A 9p

≤ 9(I− ZZT )A 9p +ǫZ 9 A 9p .

2. If ‖Z− Ẑ‖2 ≤ 1/2, then rank(Ẑ) = rank(Z) and ǫZ ≤ 2 ‖Z− Ẑ‖2.

Proof. See Section 2, and in particular Theorem 2.2.

Remark 1. Theorem 1 shows what happens to the approximation error when the
basis changes from Z to Ẑ. The absolute change in the approximation error is small
if 9A9p is small, and if Ẑ is close to Z and is well conditioned with respect to (left)
inversion.

1. The error for the perturbed basis Ẑ is bounded in terms of ǫZ amplified by the
norm of A.
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The additive two-norm expression ǫZ represents both, an absolute and a rel-
ative perturbation, as

ǫZ ≡ ‖Ẑ†‖2 ‖Z− Ẑ‖2 = ‖Ẑ‖2‖Ẑ†‖2︸ ︷︷ ︸
Deviation from

orthonormality

‖Ẑ− Z‖2
‖Ẑ‖2

.

︸ ︷︷ ︸
Relative distance

from exact basis

The first factor is the two-norm condition number ‖Ẑ‖2‖Ẑ†‖2 of the perturbed
basis with regard to (left) inversion. The second factor is the relative two-
norm distance between the bases.
The assumption force the perturbed vectors Ẑ to be linearly independent, but
not necessarily orthonormal. Hence the Moore Penrose inverse replaces the
transpose in the orthogonal projector, and the condition number represents
the deviation of Ẑ from orthonormality.

2. For simplicity, we consider ‖Z − Ẑ‖2 ≤ 1/2 instead of ‖Z − Ẑ‖2 < 1. Both

requirements insure that Ẑ has linearly independent columns, hence represents
a basis.
The stronger requirement ‖Z− Ẑ‖2 ≤ 1/2 also guarantees that the perturbed

basis Ẑ is well-conditioned and that it is close to the exact basis Z.
The lower bound in Theorem 1 simplifies when the columns of Z are dominant

singular vectors of A. No singular value gap is required below, as we merely pick the
leading k columns of U from some SVD of A, and then perturb them.

Corollary 1 (Rank-preserving perturbations of dominant singular vectors). Let

Uk ∈ R
m×k in (1.2) be k dominant left singular vectors of A. Denote by Û ∈ R

m×k

a perturbation with rank(Û) = k or ‖Uk − Û‖2 ≤ 1/2, and define

ǫU ≡ ‖Û†‖2 ‖Uk − Û‖2.

Then

9(I−UkU
T
k )A9p ≤ 9(I− ÛÛ†)A9p ≤ 9(I−UkU

T
k )A 9p +ǫU 9 A 9p .

Proof. See Section 2, and in particular Theorem 2.2.
Next we consider perturbations in the matrix, with a bound that is completely

general and holds for any projector P in any Schatten p-norm.

Theorem 2 (Additive perturbations in the matrix). Let A and A+E ∈ R
m×n,

and denote by P ∈ R
m×m an orthogonal projector as in (1.3). Then

∣∣∣∣ 9 (I−P) (A+E) 9p − 9 (I−P)A 9p

∣∣∣∣ ≤ 9E 9p .

Proof. See Section 2, and in particular Theorem 2.3.

Remark 2. Theorem 2 shows what happens to the approximation error when the
matrix changes from A to A+ E. The change in the approximation error is propor-
tional to the change 9E9p in the matrix. Thus, the low-rank approximation error is
well-conditioned (in the absolute sense) to additive perturbations in the matrix.
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Theorem 2 also implies the following upper bound for a low-rank approximation
from singular vectors of A+E. Again, no singular value gap is required. We merely
pick the leading k columns Uk obtained from some SVD of A, and the leading k
columns Ûk obtained from some SVD of A+E.

Corollary 2 (Low-rank approximation from additive perturbations). Let Uk ∈
R

m×k in (1.2) the k dominant left singular vectors of A. Denote by Ûk ∈ R
m×k the

same number of dominant left singular vectors of A+E. Then

9(I−UkU
T
k )A9p ≤ 9(I− ÛkÛ

T
k )A9p ≤ 9(I−UkU

T
k )A 9p +2 9 E 9p .

Proof. See Section 2, and in particular Corollary 2.4.
Bounds with an additive dependence on E, like the two-norm bound above, can

be derived for other Schatten p-norms as well, and can then be combined with bounds
for E in [1, 2, 10] where A+E is obtained from element-wise sampling from A.

In the context of a different error measure, one can show [13, Theorem 4.5] that

‖Ak −Y‖F ≤ 1+
√
5

2 ‖A−Y‖F holds for any Y ∈ R
m×n with rank(Y) ≤ k.

1.4.2. Perturbations that change the matrix dimension. We consider per-
turbations that can change the number of columns in A and include, among others,
multiplicative perturbations of the form Â = AX. However, our bounds are com-
pletely general and hold even in the absence of any relation between range(A) and

range(Â), for the two-norm (Theorem 3), the Frobenius norm (Theorem 4), and gen-
eral Schatten p-norms (Theorem 5).

Our bounds are inspired by the analysis of for randomized low-rank approxima-
tions [8], with errors evoking Gram matrix approximations AAT − ÂÂT . Compared
to existing work [7, 15, 28], (1.4) is much more general: It holds for any orthogonal

projector P and is not limited to multiplicative perturbations Â = AX where X
samples and rescales columns. The bound (1.7) is identical to [8, Theorem 3].

Theorem 3 (Two-norm). Let A ∈ R
m×n and Â ∈ R

m×c. Denote by P ∈ R
m×m

an orthogonal projector as in (1.3). Then

∣∣∣∣‖(I−P)A‖22 − ‖(I−P) Â‖22
∣∣∣∣ ≤ ‖AAT − ÂÂT ‖2, (1.4)

and

‖(I− ÂÂ†)A‖22 ≤ ‖AAT − ÂÂT ‖2. (1.5)

More generally, denote by Âk ∈ R
m×c a best rank-k approximation of Â. Then

‖(I− ÂkÂ
†
k)A‖22 ≤ ‖AAT − ÂkÂ

T
k ‖2 (1.6)

and also

‖(I− ÂkÂ
†
k)A‖22 ≤ ‖A−Ak‖22 + 2 ‖AAT − ÂÂT ‖2. (1.7)

Proof. See Section 2, Specifically, see Theorem 2.5 for (1.4); Theorem 2.6 for
(1.5); and and Theorem 2.7 for (1.7). The bound (1.6) simply follows from (1.5).
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Remark 3. Theorem 3, as well as Theorems 4 and 5 to follow, show what happens
to the approximation error when the matrix A is replaced by a potentially unrelated
matrix of different dimension.

Since A and Â do not have the same number of columns, the difference A− Â is
not defined and cannot be used to measure the perturbations. Without any knowledge
about Â, other than it has the same number of rows of A, the most general approach
is to represent the perturbation as the Gram matrix difference AAT − ÂÂT .

1. The change in approximation error is small if Â is a good Gram matrix
approximation to A.

2. The contribution of range(A) orthogonal to range(Â) is bounded by the Gram
matrix approximation error. Both errors are small if the column spaces of
A and Â are close. Note that I − ÂÂ† is the orthogonal projector onto
range(Â)⊥.

3. If we project A instead onto a larger space, that is, the space orthogonal to a
best rank-k approximation of Â , then the contribution of A in that space can
be bounded by the largest subdominant singular value σk+1(A) plus the Gram
matrix approximation error.

The Frobenius norm bound (1.8) below is the first one of its kind in this generality,
as holds for any projector P. The bound (1.11) is similar to [8, Theorem 2], being
weaker for smaller k but tighter for larger k.

Theorem 4 (Frobenius norm). Let A ∈ R
m×n and Â ∈ R

m×c. Denote by
P ∈ R

m×m an orthogonal projector as in (1.3) with s ≡ rank(P). Then

∣∣∣∣‖(I−P) Â‖2F − ‖(I−P)A‖2F
∣∣∣∣ ≤ (1.8)

min

{
‖AAT − ÂÂT ‖∗,

√
m− s ‖AAT − ÂÂT ‖F

}
,

and

‖(I− ÂÂ†)A‖2F ≤ min

{
‖AAT − ÂÂT ‖∗,

√
m− s ‖AAT − ÂÂT ‖F

}
. (1.9)

More generally, denote by Âk ∈ R
m×c a best rank-k approximation of Â. Then

‖(I− ÂkÂ
†
k)A‖2F ≤ min

{
‖AAT − ÂkÂ

T
k ‖∗,

√
m− k ‖AAT − ÂkÂ

T
k ‖F

}
(1.10)

and

‖(I− ÂkÂ
†
k)A‖2F ≤ ‖A−Ak‖2F (1.11)

+2 min
{
‖AAT − ÂÂT ‖∗,

√
m− k ‖AAT − ÂÂT ‖F

}
.

Proof. See Section 2, Specifically, see Theorem 2.5 for (1.8); Theorem 2.6 for
(1.9); and Theorem 2.7 for (1.11). The bound (1.10) simply follows from (1.9).

Remark 4. Theorem 4 has the same interpretation as Theorem 3. There are
two differences, though.
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First, the Gram matrix approximation error in the Frobenius norm is amplified
by the factor

√
m− rank(P), which is small if rank(P) is close to m and range(P)

covers a large portion of Rm. In this case the low-rank approximation errors are small.
Second, Theorem 4 relates the approximation error in the Frobenius norm to the

Gram matrix approximation error in the trace norm, i.e. the Schatten one-norm.
This is a novel connection, and should motivate further work into understanding the
behaviour of the trace norm, thereby complementing prior investigations into the two-
and Frobenius norms.

To the best of our knowledge, Theorem 5 is new. It generalizes Theorems 3
and 4, and is the first non-trivial bound to connect low-rank approximations with
Gram matrix approximation errors in general Schatten p-norms.

Theorem 5 (General Schatten p-norms). Let A ∈ R
m×n and Â ∈ R

m×c. Denote
by P ∈ R

m×m an orthogonal projector as in (1.3) with s ≡ rank(P). Then

∣∣∣∣ 9 (I−P)A 92
p − 9 (I−P) Â 92

p

∣∣∣∣ ≤ (1.12)

min

{
9 AAT − ÂÂT9p/2,

p
√
m− s 9 AAT − ÂÂT 9p

}
,

and

9(I− ÂÂ†)A92
p/2 ≤ (1.13)

min

{
9 AAT − ÂÂT9p/2,

p
√
m− s 9 AAT − ÂÂT 9p

}
.

More generally, denote by Âk ∈ R
m×c a best rank-k approximation of Â. Then

9(I− ÂkÂ
†
k)A92

p/2 ≤ (1.14)

min

{
9 AAT − ÂkÂ

T
k 9p/2,

p
√
m− k 9 AAT − ÂkÂ

T
k 9p

}

and

9(I− ÂkÂ
†
k)A92

p/2 ≤ 9A−Ak 92
p + (1.15)

2 min
{

9 AAT − ÂÂT9p/2,
p
√
m− k 9 AAT − ÂÂT 9p

}
.

Proof. See Section 2. Specifically, see Theorem 2.5 for (1.12); Theorem 2.6 for
(1.13); and Theorem 2.7 for (1.15). The bound (1.14) simply follows from (1.13).

1.4.3. Relations between low-rank approximation error and subspace
angle. For matrices A whose dominant singular values are separated by a gap from
the subdominant singular values, we bound the low-rank approximation error in terms
of the subspace angle (Theorem 6) and discuss the tightness of the bounds (Remark 6).

To guarantee that the k-dimensional dominant subspace of A is well defined
requires the existence of gap after the kth singular value,

‖A‖2 = σ1(A) ≥ · · · ≥ σk(A) > σk+1(A) ≥ · · · ≥ σr(A) ≥ 0, r ≡ min{m,n},
8



Theorem 6. Let Pk ≡ AkA
†
k be the orthogonal projector onto the dominant

k-dimensional subspace of A. Denote by P ∈ R
m×m any orthogonal projector as in

(1.3) with k ≤ rank(P) < m− k. Then

σk(A) 9 sinΘ(P,Pk)9p ≤ 9(I−P)A9p ≤ ‖A‖2 9 sinΘ(P,Pk)9p +9A−Ak 9p .

Proof. See Section 3, and in particular Theorem 3.1 for the lower bound, and
Theorems 3.2 and 3.3 for the upper bounds.

Remark 5. This is a comparison between the approximation error (I−P)A on
the on hand, and the angle between the approximation range(P) and the target space
range(Pk) on the other – without any assumptions on the accuracy of the approxima-
tion.

The singular value gap is required to guarantee that the dominant subspace, rep-
resented by Pk, is well-defined.

However, the remaining assumptions pose no constraints in the proper context.
Practical low-rank approximations target subspaces whose dimension is small compared
to that of the host space. To be effective at all, an approximation range(P) must have
a dimension that covers, if not exceeds, that of the target space.

Remark 6 (Tightness of Theorem 6). The subspace angles in lower and upper
bounds are amplified by a dominant singular value; and the upper bound contains an
additive term consisting of subdominant singular values.

• If rank(A) = k, so that A−Ak = 0, then the tightness depends on the spread
of the non-zero singular values,

σk(A) 9 sinΘ(P,Pk)9p ≤ 9(I−P)A9p ≤ ‖A‖2 9 sinΘ(P,Pk) 9p .

• If rank(A) = k and σ1(A) = · · · = σk(A), then the bounds are tight, and
they are equal to

9(I−P)A9p = ‖A‖2 9 sinΘ(P,Pk) 9p .

• If range(P) = range(Pk), so that sinΘ(P,Pk) = 0, then the upper bound is
tight and equal to

9(I−P)A9p = 9A−Ak 9p .

2. Well-conditioning of low-rank approximations. We investigate the ef-
fect of additive perturbations in the projector basis Z on the orthogonal projector
as a whole (Section 2.1) and on the approximation error (Section 2.2); and the ef-
fect of matrix perturbations on the approximation error (Section 2.3). At last, we
relate the low-rank approximation error to the error in Gram matrix approximation
(Section 2.4).

2.1. Orthogonal projectors, and perturbations in the projector basis.
We show that orthogonal projectors and subspace angles are insensitive to additive,
rank-preserving perturbations in the projector basis (Theorem 2.1) if the perturbed
projector basis is well-conditioned.

Theorem 2.1. Let Z ∈ R
m×s be a projector basis with orthonormal columns so

that ZTZ = Is. Denote by Ẑ ∈ R
m×s a perturbation, and set ǫZ ≡ ‖Ẑ†‖2 ‖Z− Ẑ‖2.
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1. If rank(Ẑ) = rank(Z), then the distance between range(Z) and range(Ẑ) is

‖ZZT − ẐẐ†‖2 = ‖ sinΘ(Z, Ẑ)‖2 ≤ ǫZ .

2. If ‖Z− Ẑ‖2 ≤ 1/2, then rank(Ẑ) = rank(Z) and ǫZ ≤ 2 ‖Z− Ẑ‖2.
Proof.
1. The equality follows from Lemma 1.5. The upper bound follows from [24,

Theorem 3.1] and [14, Lemma 20.12], but we provide a simpler proof adapted

for this context. Set F = Ẑ− Z, and substitute

P̂ ≡ ẐẐ† = (Z+ Ẑ− Z) Ẑ† = (Z+ F) Ẑ†

into

(I− ZZT )P̂ = (I− ZZT )(Z+ F) Ẑ† = (I− ZZT )F Ẑ†,

and apply Lemma 1.5,

‖ sinΘ(Z, Ẑ)‖2 = ‖(I− ZZT )P̂‖2 ≤ ‖Ẑ†‖2 ‖F‖2. (2.1)

2. To show rank(Ẑ) = rank(Z) in the case ‖Z− Ẑ‖2 ≤ 1/2, consider the singular

values σj(Z) = 1 and σj(Ẑ), 1 ≤ j ≤ s. The well-conditioning of singular
values [11, Corollary 8.6.2] implies

∣∣∣1− σj(Ẑ)
∣∣∣ =

∣∣∣σj(Z)− σj(Ẑ)
∣∣∣ ≤ ‖F‖2 ≤ 1/2, 1 ≤ j ≤ s.

Thus min1≤j≤s σj(Ẑ) ≥ 1/2 > 0 and rank(P̂) = rank(Ẑ) = s = rank(P).
Hence (2.1) holds with

‖ sinΘ(Z, Ẑ)‖2 ≤ ‖Ẑ†‖2‖F‖2 ≤ 2‖F‖2. (2.2)

2.2. Approximation errors, and perturbations in the projector basis.
We show that low-rank approximation errors are insensitive to additive, rank-preserving
perturbations in the projector basis (Theorem 2.2), provided the perturbed projector
basis remains well-conditioned.

Theorem 2.2. Let A ∈ R
m×n, and let Z ∈ R

m×k be a projector basis with
orthonormal columns so that ZTZ = Ik. Denote by Ẑ ∈ R

m×k a perturbation, and
set ǫZ ≡ ‖Ẑ†‖2 ‖Z− Ẑ‖2.

1. If rank(Ẑ) = rank(Z) then

9(I− ZZT )A 9p −ǫZ 9 A9p ≤ 9(I− ẐẐ†)A9p

≤ 9(I− ZZT )A 9p +ǫZ 9 A 9p .

2. If ‖Z− Ẑ‖2 ≤ 1/2, then rank(Ẑ) = rank(Z) and ǫZ ≤ 2 ‖Z− Ẑ‖2.
3. If, in addition, Z = Uk are k dominant singular vectors of A, then

9(I−UkU
T
k )A9p ≤ 9(I− ẐẐ†)A9p ≤ 9(I−UkU

T
k )A 9p +ǫU 9 A9p,

where ǫU ≡ ‖Ẑ†‖2 ‖Uk − Ẑ‖2.
10



Proof. Abbreviate P ≡ ZZT and P̂ ≡ ẐẐ†, and write

(I− P̂)A = (I−P)A+ (P− P̂)A.

1. Apply the triangle and reverse triangle inequalities, followed by strong sub-
multiplicativity in Lemma 1.3. Then bound the second summand according
to item 1 in Theorem 2.1 as follows,

9(P− P̂)A9p ≤ ‖Ẑ†‖2 ‖Ẑ− Z‖2 9 A9p = ǫZ 9 A 9p .

2. This follows from item 2 in Theorem 2.1.
3. In the lower bound, use the optimality of the SVD from Lemma 1.3.

2.3. Approximation errors, and perturbations in the matrix. We show
that low-rank approximation errors are insensitive to matrix perturbations that are ei-
ther additive (Theorem 2.3 and Corollary 2.4), or dimension changing (Theorem 2.5).

Theorem 2.3 (Additive perturbations). Let A,E ∈ R
m×n, denote by P ∈ R

m×m

an orthogonal projector as in (1.3), and let p ≥ 1 be an integer. Then

9(I−P)A 9p − 9 E9p ≤ 9(I−P)(A+E)9p ≤ 9(I−P)A 9p + 9 E 9p .

Proof. Apply the triangle and reverse triangle inequalities, followed by strong
submultiplicativity in Lemma 1.3, and the fact that an orthogonal projectorP satisfies
‖I−P‖2 ≤ 1.

Corollary 2.4 (Low-rank approximation from singular vectors of A+E). Let

Uk ∈ R
m×k in (1.2) be k dominant left singular vectors of A; and let Ûk ∈ R

m×k be
k dominant left singular vectors of A+E. Then

9(I−UkU
T
k )A9p ≤ 9(I− ÛkÛ

T
k )A9p ≤ 9(I−UkU

T
k )A 9p +2 9 E 9p .

Proof. The lower bound follows from the optimality of the SVD of A in all
Schatten p-norms, see Lemma 1.3.

As for the upper bound, set P = ÛkÛ
T
k in the upper bound of Theorem 2.3,

9(I− ÛkÛ
T
k )A9p ≤ 9(I− ÛkÛ

T
k ) (A+E) 9p + 9 E 9p .

Since Ûk are singular vectors of A + E, the optimality of the SVD of A + E, see
Lemma 1.3, followed by another application of Theorem 2.3, yields

9(I− ÛkÛ
T
k ) (A+E)9p = min

ZTZ=Ik

9(I− ZZT ) (A+E)9p ≤ 9(I−UkU
T
k ) (A+E) 9p

≤ 9(I−UkU
T
k )A 9p + 9 E 9p .

Theorem 2.5 (Perturbations that change the number of columns). Let A ∈
R

m×n and Â ∈ R
m×c. Denote by P ∈ R

m×m an orthogonal projector as in (1.3), set
s ≡ rank(P), and let p ≥ 1 be an even integer. Then

11



1. Two norm (p = ∞)
∣∣∣∣‖(I−P)A‖22 − ‖(I−P)Â‖22

∣∣∣∣ ≤ ‖ÂÂT −AAT ‖2.

2. Schatten p norm (p even)
∣∣∣∣ 9 (I−P)A 92

p − 9 (I−P)Â 92
p

∣∣∣∣ ≤

min

{
9 ÂÂT −AAT9p/2,

p
√
m− s 9 ÂÂT −AAT 9p

}
.

3. Frobenius norm (p = 2)
∣∣∣∣‖(I−P) Â‖2F − ‖(I−P)A‖2F

∣∣∣∣ ≤

min

{
‖ÂÂT −AAT ‖∗,

√
m− s ‖ÂÂT −AAT ‖F

}
.

Proof. The proof is motivated by that of [8, Theorems 2 and 3]. If s = m, then
P = Im and the bounds follow from the reverse triangle inequality. So let s < m.

1. Two-norm. The invariance of the two norm under transposition and the tri-
angle inequality imply

‖(I−P)Â‖22 = ‖ÂT (I−P)‖22 = ‖(I−P)ÂÂT (I−P)‖2
= ‖(I−P)AAT (I−P) + (I−P)

(
ÂÂT −AAT

)
(I−P)‖2

≤ ‖(I−P)AAT (I−P)‖2 + ‖(I−P)
(
ÂÂT −AAT

)
(I−P)‖2.

The first summand on the right equals

‖(I−P)AAT (I−P)‖2 = ‖(I−P)A‖22,

while the second one can be bounded by submultiplicativity and ‖I−P‖2 ≤ 1,

‖(I−P)
(
ÂÂT −AAT

)
(I−P)‖2 ≤ ‖I−P‖22 ‖ÂÂT −AAT ‖2

≤ ‖ÂÂT −AAT ‖2.

This gives the upper bound

‖(I−P)Â‖22 − ‖(I−P)A‖22 ≤ ‖ÂÂT −AAT ‖2.

Apply the inverse triangle inequality to show the lower bound,

−‖ÂÂT −AAT ‖2 ≤ ‖(I−P)Â‖22 − ‖(I−P)A‖22.

2. Schatten p-norm (p even). The proof is similar to that of the two-norm, since
an even Schatten p-norm is a Q-norm [3, Definition IV.2.9], meaning it represents a
quadratic gauge function. This can be seen in terms of singular values, where for any
matrix C,

9C9p
p =

∑

j

(σj(C))
p
=
∑

j

(
σj(CCT )

)p/2
= 9CCT 9

p/2
p/2 .

12



Hence

9 C92
p = 9CCT 9p/2 . (2.3)

Abbreviate M ≡ ÂÂT − AAT , and B ≡ I − P where BT = B and ‖B‖2 = 1.
Since singular values do not change under transposition, it follows from (2.3) and the
triangle inequality that

9BÂ92
p = 9ÂT B92

p = 9BÂÂT B9p/2 = 9BAATB + BMB 9p/2 (2.4)

≤ 9BAAT B 9p/2 + 9 BMB9p/2 .

Apply (2.3) to the first summand on the right, 9BAAT B9p/2 = 9BA92
p, and insert

it into the above inequalities,

9 BÂ 92
p − 9 BA92

p ≤ 9BMB9p/2 . (2.5)

1. Derivation of the first term in the minimum: Bound the rightmost term
in (2.5) with strong submultiplicativity and ‖B‖2 = 1,

9BMB9p/2 ≤ ‖B‖22 9 M9p/2 ≤ 9M9p/2,

which gives the upper bound

9BÂ 92
p − 9 BA92

p ≤ 9M 9p/2 .

Apply the inverse triangle inequality in 2.4) to show the lower bound

− 9 M9p/2 ≤ 9BÂ 92
p − 9 BA 92

p .

2. Derivation of the second term in the minimum: From

rank (BMB) ≤ rank(B) = rank(I−P) = m− s > 0

follows σj(B) = 1, ≤ j ≤ m − s. With the non-ascending singular value
ordering in (1.1), the Schatten p-norm needs to sum over only the largest
nonzero m−s singular values. This, together with the singular value inequal-
ity [17, (7.3.14)]

σj(BMB) ≤ σ1(B)2 σj(M) = 1 · σ1(M), 1 ≤ j ≤ m− s,

gives for the rightmost term in (2.5)

9BMB9
p/2
p/2 =

m−s∑

j=1

(σj(BMB))
p/2 ≤

m−s∑

j=1

1 · (σj(M))
p/2

.

Then apply the Cauchy-Schwartz inequality to the vectors of singular values

m−s∑

j=1

1 · (σj(M))
p/2 ≤

√
m− s

√√√√
m−s∑

j=1

(σj(M))
p ≤

√
m− s 9 M 9p/2

p .

Merging the last two sequences of inequalities gives

9BMB9
p/2
p/2 ≤

√
m− s 9 M 9p/2

p .

Thus 9BMB9p/2 ≤ p
√
m− s9M9p, which can now be substituted into (2.5).

13



3. Frobenius norm. This is the special case p = 2 with 9A92 = ‖A‖F and
9A91 = ‖A‖∗.

2.4. Approximation error, and Gram matrix approximation. We gener-
alize [8, Theorems 2 and 3] to Schatten p-norms.

Theorem 2.6. Let A ∈ R
m×n, C ∈ R

m×c with s ≡ rank(C); and let p ≥ 1 be
an even integer. Then

1. Two-norm (p = ∞)

‖(I−CC†)A‖22 ≤ ‖AAT −CCT ‖2.

2. Schatten p-norm (p even)

9(I−CC†)A92
p ≤ min

{
9AAT−CCT9p/2,

p
√
m− s9AAT−CCT9p

}
.

3. Frobenius norm (p = 2)

‖(I−CC†)A‖2F ≤ min

{
‖AAT −CCT ‖∗,

√
m− s ‖AAT −CCT ‖F

}
.

Proof. Set P = CC† and Â = C. The properties of the Moore-Penrose inverse
imply

(I−P) Â = (I−CC†)C = C−CC†C = 0,

When substituting this into Theorem 2.5, the second summand on the left of the
bounds drops out.

In addition, for the Frobenius and Schatten p-norm bounds, use rank(P) =
rank(C) = s.

Recall Mirsky’s Theorem [17, Corollary 7.4.9.3], an extension of the Hoffman-
Wielandt theorem to any unitarily invariant norm and, in particular, Schatten p-
norms: For A,H ∈ R

m×n, the singular values σj(AAT ) and σj(HHT ), 1 ≤ j ≤ m,
are also eigenvalues and they satisfy

m∑

j=1

|σj(AAT )− σj(HHT )|p ≤ 9AAT −HHT 9p
p . (2.6)

Theorem 2.7. Let A ∈ R
m×n and C ∈ R

m×c. Denote by Ck be a best rank-k
approximation to C; and let p ≥ 1 be an even integer. Then

1. Two-norm (p = ∞)

‖(I−CkC
†
k)A‖22 ≤ ‖A−Ak‖22 + 2 ‖AAT −CCT ‖2.

2. Schatten p-norm (p even)

9(I−CkC
†
k)A92

p ≤ 9A−Ak 92
p +

2 min
{

9 AAT −CCT9p/2,
p
√
m− k 9 AAT −CCT 9p

}
.

3. Frobenius norm (p = 2)

‖(I−CkC
†
k)A‖2F ≤ ‖A−Ak‖2F +

2 min
{
‖AAT −CCT ‖∗,

√
m− k ‖AAT −CCT ‖F

}
.

Proof. We first introduce some notation before proving the bounds.
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0. Set up. PartitionA = Ak+A⊥ and C = Ck+C⊥ to distinguish the respective
best rank-k approximations Ak and Ck. From AkA

T
⊥ = 0 and CkC

T
⊥ = 0 follows

AAT = AkA
T
k +A⊥A

T
⊥, CCT = CkC

T
k +C⊥C

T
⊥. (2.7)

Since the relevant matrices are symmetric positive semi-definite, eigenvalues are equal
to singular values. The dominant ones are

σj(AkA
T
k ) = σj(AAT ) = σj(A)2, σj(CkC

T
k ) = σj(CCT ) = σj(C)2, 1 ≤ j ≤ k,

and the subdominant ones are, with j ≥ 1,

σj(A⊥A
T
⊥) = σk+j(AAT ) = σk+j(A)2, σj(C⊥C

T
⊥) = σk+j(CCT ) = σk+j(C)2.

To apply Theorem 2.5, set Â = C, P = CkC
†
k. Then rank(P) = rank(Ck) = k and

(I−P) Â = (I−CkC
†
k) (Ck +C⊥) = C⊥.

Thus

9 (I−CkC
†
k)C9p = 9(I−P) Â92

p = 9C⊥ 92
p . (2.8)

Two-norm. Substituting (2.8) into the two norm bound in Theorem 2.5 gives

‖(I−CkC
†
k)A‖22 ≤ ‖C⊥‖22 + ‖AAT −CCT ‖2. (2.9)

With the notation in (2.7), add and subtract σk+1(AAT ) = ‖A⊥‖22 = ‖A − Ak‖22,
and then apply Weyl’s theorem,

‖C⊥‖22 = ‖C⊥C
T
⊥‖2 = σk+1(CCT )

≤
∣∣σk+1(CCT )− σk+1(AAT )

∣∣+ ‖A⊥‖22
≤ ‖AAT −CCT ‖2 + ‖A−Ak‖22.

Substituting this into (2.9) gives

‖(I−CkC
†
k)A‖22 ≤ ‖A−Ak‖22 + 2 ‖AAT −CCT ‖2.

Schatten p-norm (p even). Substituting (2.8) into the Schatten-p norm bound in
Theorem 2.5 gives

9(I−CkC
†
k)A92

p ≤ 9C⊥ 92
p + (2.10)

min
{

9 AAT −CCT9p/2,
p
√
m− k 9 AAT −CCT 9p

}
.

From (2.5) follows 9C⊥92
p = 9C⊥C

T
⊥9p/2. For a column vector x, let

‖x‖p = p

√∑

j

|xj |1/p

be the ordinary vector p-norm, and put the singular values of C⊥C
T
⊥ into the vector

c⊥ ≡
(
σ1(C⊥C

T
⊥) · · · σm−k(C⊥C

T
⊥)
)T

.
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Move from matrix norm to vector norm,

9C⊥C
T
⊥9

p/2
p/2 =

m−k∑

j=1

σj(C⊥C
T
⊥)

p/2 =

m−k∑

j=1

(c⊥)
p/2
j = 9c⊥ 9

p/2
p/2 .

Put the singular values of A⊥A
T
⊥ into the vector

a⊥ ≡
(
σ1(A⊥A

T
⊥) · · · σm−k(A⊥A

T
⊥)
)T

,

and apply the triangle inequality in the vector norm

9C⊥C
T
⊥9p/2 = 9c⊥9p/2 ≤ 9c⊥ − a⊥ 9p/2 + 9 a⊥ 9p/2 .

Substituting the following expression

9a⊥9
p/2
p/2 =

m−k∑

j=1

σj(A⊥A
T
⊥)

p/2 =
m−k∑

j=1

σj(A⊥)
p = 9A⊥9p

p

into the previous bound and applying (2.5) again gives

9 C⊥92
p = 9C⊥C

T
⊥9p/2 ≤ 9c⊥ − a⊥ 9p/2 + 9 A⊥ 92

p . (2.11)

1. Derivation of the first term in the minimum in (2.10):
Apply Mirsky’s Theorem (2.6) to the first summand in (2.11)

9c⊥ − a⊥9
p/2
p/2 =

m−k∑

j=1

∣∣σk+j(CCT )− σk+j(AAT )
∣∣p/2

≤
m∑

j=1

∣∣σj(CCT )− σj(AAT )
∣∣p/2 ≤ 9CCT −AAT 9

p/2
p/2 .

Take the p/2 square root on both sides,

9c⊥ − a⊥9p/2 ≤ 9CCT −AAT9p/2,

and substitute this into (2.11), so that

9C⊥92
p ≤ 9A⊥ 92

p + 9 CCT −AAT 9p/2 .

The above, in turn, substitute into (2.10) to obtain the first term in the
minimum,

9(I−CkC
†
k)A92

p ≤ 9A⊥ 92
p +2 9 CCT −AAT 9p/2 .

2. Derivation of the second term in the minimum in (2.10):
Consider the first summand in (2.11), but apply the Cauchy Schwartz in-

16



equality before Mirsky’s Theorem (2.6),

9c⊥ − a⊥9
p/2
p/2 =

m−k∑

j=1

∣∣σk+j(CCT )− σk+j(AAT )
∣∣p/2

≤
√
m− k

√√√√
m−k∑

j=1

|σk+j(CCT )− σk+j(AAT )|p

≤
√
m− k

√√√√
m∑

j=1

|σj(CCT )− σj(AAT )|p

≤
√
m− k 9 CCT −AAT 9p/2

p .

Take the p/2 square root on both sides,

9c⊥ − a⊥9p/2 ≤ p
√
m− k 9 CCT −AAT9p,

and substitute this into (2.11), so that

9C⊥92
p ≤ 9A⊥ 92

p +
p
√
m− k 9 CCT −AAT 9p .

The above, in turn, substitute into (2.10) to obtain the second term in the
minimum,

9(I−CkC
†
k)A92

p ≤ 9A⊥ 92
p +2 p

√
m− k 9 CCT −AAT 9p .

3. Frobenius norm. This is the special case p = 2 with 9A92 = ‖A‖F and
9A91 = ‖A‖∗.

3. Approximation errors and angles between subspaces. We consider ap-
proximations where the rank of the orthogonal projector is at least as large as the
dimension of the dominant subspace, and relate the low-rank approximation error to
the subspace angle between projector and target space. After reviewing assumptions
and notation (Section 3.1), we bound the low-rank approximation error in terms of
the subspace angle from below (Section 3.2) and from above (Section 3.3).

3.1. Assumptions. Given A ∈ R
m×n with a gap after the kth singular value,

‖A‖2 = σ1(A) ≥ · · · ≥ σk(A) > σk+1(A) ≥ · · · ≥ σr(A) ≥ 0, r ≡ min{m,n}.

The gap assures that the k-dimensional dominant subspace is well-posed. Partition
the full SVD A = UΣVT in Section 1.1

U =
(
Uk U⊥

)
, V =

(
Vk V⊥

)
, Σ = diag

(
Σk Σ⊥

)
,

where the dominant parts are

Σk ≡ diag
(
σ1(A) · · · σk(A)

)
∈ R

k×k, Uk ∈ R
m×k, Vk ∈ R

n×k,

and the subdominant ones

Σ⊥ ∈ R
(m−k)×(n−k), U⊥ ∈ R

m×(m−k), V⊥ ∈ R
n×(n−k).
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Thus A is a ”direct sum”

A = Ak +A⊥ where Ak ≡ UkΣkV
T
k , A⊥ ≡ U⊥Σ⊥V⊥

and

A⊥A
†
k = 0 = A⊥A

T
k . (3.1)

The goal is to approximate the k-dimensional dominant left singular vector space,

Pk ≡ UkU
T
k = AkA

†
k. (3.2)

To this end, let P ∈ R
m×m be an orthogonal projector as in (1.3), whose rank is at

least as large as the dimension of the targeted subspace,

rank(P) ≥ rank(Pk).

3.2. Subspace angle as a lower bound for the approximation error. We
bound the low-rank approximation error from below by the subspace angle and the
kth singular value of A, in the two-norm and the Frobenius norm.

Theorem 3.1. With the assumptions in Section 3.1, let p ≥ 1 be an integer.
Then

9(I−P)A9p ≥ σk(A) 9 sinΘ(P,Pk) 9p .

Proof. From Lemma 1.5, (3.2), (3.1) and Lemma 1.3 follows

9 sinΘ(P,Pk)9p = 9(I−P)Pk9p = 9(I−P)AkA
†
k 9p

= 9(I−P) (Ak +A⊥)A
†
k9p = 9(I−P)AA†

k 9p

≤ ‖A†
k‖2 9 (I−P)A9p = 9(I−P)A 9p /σk(A).

3.3. Subspace angle as upper bound for the approximation error. We
present upper bounds for the low-rank approximation error in terms of the subspace
angle, the two norm (Theorem 3.2) and Frobenius norm (Theorem 3.3).

The bounds are guided by the following observation. In the ideal case, where P
completely captures the target space, we have range(P) = range(Pk) = range(Ak),
and

‖ sinΘ(P,Pk)‖2,F = 0, ‖(I−P)A‖2,F = ‖A⊥‖2,F = ‖Σ⊥‖2,F ,

thus suggesting an additive error in the general, non-ideal case.
Theorem 3.2 (Two-norm). With the assumptions in Section 3.1,

‖(I−P)A‖2 ≤ ‖A‖2 ‖ sinΘ(P,Pk)‖2 + ‖A−Ak‖2 ‖ cosΘ(I−P, I−Pk)‖2.

If also k ≤ rank(P) < m− k, then ‖ cosΘ(I−P, I−Pk)‖2 = 1.

Proof. From A = Ak +A⊥ and the triangle inequality follows

‖(I−P)A‖2 ≤ ‖(I−P)Ak‖2 + ‖(I−P)A⊥‖2. (3.3)
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• Bound for the first summand in (3.3):
Since rank(P) ≥ rank(Pk), Lemma 1.5 implies

‖(I−P)Ak‖2 ≤ ‖(I−P)Uk‖2‖Σk‖2 = ‖A‖2 ‖(I−P)Pk‖2
= ‖A‖2 ‖ sinΘ(P,Pk)‖2

Substitute this into (3.3),

‖(I−P)A‖2 ≤ ‖A‖2 ‖ sinΘ(P,Pk)‖2 + ‖(I−P)A⊥‖2. (3.4)

• Bound for the second summand in (3.3):
Submultiplicativity implies

‖(I−P)A⊥‖2 ≤ ‖(I−P)U⊥‖2 ‖Σ⊥‖2 = ‖A−Ak‖2 ‖(I−P)U⊥‖2.
For the last factor, apply the full SVD of A in Section 3.1,

range(U⊥) = range(U⊥U
T
⊥) = range(UkU

T
k )

⊥ = range(Pk)
⊥

= range(I−Pk)

so that

‖(I−P)U⊥‖2 = ‖(I−P) (I−Pk)‖2 = ‖ cosΘ(I−P, I−Pk)‖2.
Thus,

‖(I−P)A⊥‖2 ≤ ‖A−Ak‖2 ‖ cosΘ(I−P, I−Pk)‖2.
Substitute this into (3.4) to obtain the first bound.

• Special case k ≤ rank(P) < m− k:

Setting I − Pk = Z⊥Z
T
⊥ and I − P = Ẑ⊥Ẑ

T
⊥ in Corollary A.2 implies

‖ cosΘ(I−P, I−Pk)‖2 = 1.

Theorem 3.3 (Schatten p-norm). With the assumptions in Section 3.1, let p ≥ 1
be an integer and Γ ≡ cosΘ(I−P, I−Pk). Then

9(I−P)A‖9p ≤ ‖A‖2 9 sinΘ(P,Pk) 9p

+min {‖A−Ak‖2 9 Γ9p, 9A−Ak 9p ‖Γ‖2} .
If also k ≤ rank(P) < m− k, then

9(I−P)A9p ≤ ‖A‖2 9 sinΘ(P,Pk) 9p + 9 A−Ak 9p .

Proof. With Lemma 1.3, the analogue of (3.4) is

9(I−P)A9p ≤ ‖A‖2 9 sinΘ(P,Pk) 9p + 9 (I−P)A⊥ 9p . (3.5)

There are two options to bound 9(I−P)A⊥9p = 9(I−P)U⊥Σ⊥9p, depending on
which factor gets the two norm. Either

9(I−P)U⊥Σ⊥9p ≤ 9(I−P)U⊥ 9p ‖Σ⊥‖2 = ‖A−Ak‖2 9 (I−P)U⊥9p,

or

9(I−P)U⊥Σ⊥9p ≤ ‖(I−P)U⊥‖2 9 Σ⊥9p = 9A−Ak 9p ‖(I−P)U⊥‖2.
As in the proof of Theorem 3.2 one shows

9(I−P)U⊥9p = 9 cosΘ(I −P, I−Pk)9p,

as well as the expression for the special case k ≤ rank(P) < m− k.
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Appendix A. CS Decompositions. We review expressions for the CS decom-
positions from [20, Theorem 8.1] and [29, Section 2].

Consider two subspaces range(Z) and range(Ẑ) whose dimensions sum up to less

than the dimension of the host space. Specifically, let
(
Z Z⊥

)
,
(
Ẑ Ẑ⊥

)
∈ R

m×m

be orthogonal matrices where Z ∈ R
m×k and Ẑ ∈ R

m×ℓ. The CS decomposition of
the cross product is

(
Z Z⊥

)T (
Ẑ Ẑ⊥

)
=

(
ZT Ẑ ZT Ẑ⊥
ZT
⊥Ẑ ZT

⊥Ẑ⊥

)
=

(
Q11

Q12

)
D

(
Q21

Q22

)

where Q11 ∈ R
k×k, Q12 ∈ R

(m−k)×(m−k), Q21 ∈ R
ℓ×ℓ and Q22 ∈ R

(m−ℓ)×(m−ℓ) are
all orthogonal matrices.

Theorem A.1. If k ≤ ℓ < m− k then

D =

r s ℓ− (r + s) m− (k + ℓ) + r s k − (r + s)





Ir 0 r
C S s

0 Ik−(r+s) k − (s+ r)
0 −Im−(k+ℓ)+r m− (k + ℓ) + r

S −C s
Iℓ−(r+s) 0 ℓ− (r + s)

.

Here C2 + S2 = Is with

C = diag
(
cos θ1 · · · cos θs

)
, S = diag

(
sin θ1 · · · sin θs

)
,

and

r = dim
(
range(Z) ∩ range(Ẑ)

)
, m− (k + ℓ) + r = dim

(
range(Z⊥) ∩ range(Ẑ⊥)

)

ℓ− (r + s) = dim
(
range(Z⊥) ∩ range(Ẑ)

)
, k − (r + s) = dim

(
range(Z) ∩ range(Ẑ⊥)

)
.

Corollary A.2. From Theorem A.1 follows

‖ sinΘ(Z, Ẑ)‖2,F = ‖ZT Ẑ⊥‖2,F =
∥∥∥
(
S

Ik−(r+s)

)∥∥∥
2,F

‖ cosΘ(Z, Ẑ)‖2,F = ‖ZT Ẑ‖2,F =
∥∥∥
(
Ir

C

)∥∥∥
2,F

‖ cosΘ(Z⊥, Ẑ⊥)‖2,F = ‖ZT
⊥Ẑ⊥‖2,F =

∥∥∥
(
Im−(k+ℓ)+r

cosΘ(Z, Ẑ)

)∥∥∥
2,F

.
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