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UNIFORM STABILITY OF MARKOV CHAINS*

ILSE C. F. IPSEN AND CARL D. MEYER:

Abstract. By deriving a new set of tight perturbation bounds, it is shown that all stationary
probabilities of a finite irreducible Markov chain react essentially in the same way to perturbations
in the transition probabilities. In particular, if at least one stationary probability is insensitive in a

relative sense, then all stationary probabilities must be insensitive in an absolute sense. New measures
of sensitivity are related to more traditional ones, and it is shown that all relevant condition numbers
for the Markov chain problem are small multiples of each other. Finally, the implications of these
findings to the computation of stationary probabilities by direct methods are discussed, and the
results are applied to stability issues in nearly transient chains.
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perturbation theory, stability of a Markov chain, condition numbers
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1. Introduction. The purpose of this paper is to analyse the sensitivity of
individual stationary probabilities to perturbations in the transition probabilities of
finite irreducible Markov chains. In addition to providing perturbation bounds that
are much sharper than the traditional bounds, our analysis demonstrates that all
stationary probabilities in an irreducible chain react in a somewhat uniform manner
to perturbations in the transition probabilities. This property of uniform sensitivity
markedly distinguishes Markov problems from general linear systems. Examples are

presented in 3 to illustrate why a Markov problem should not be treated as just
another linear system.

Previous perturbation theory for irreducible chains focused on the derivation of
norm-based bounds of the following kind. Let P and /5 p + E be transition prob-
ability matrices with respective stationary probability vectors 7T and -T satisfying

For suitable vector and matrix norms, it is known that

where values for the condition number a can be derived in various ways. Schweitzer
(1968) derives a value for a from the fundamental matrix of Kemeny and Snell (1960)
whereas the group inverse A# of A I- P is used by Meyer (1980), Golub and
Meyer (1986), Funderlic and Meyer (1986), Meyer (1994), Meyer and Stewart (1988),
narlow (199a), and Stewart (1991). Seneta (1991) suggests using a coefficient of
ergodicity for a.
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1062 i.c.F. IPSEN AND C. D. MEYER

These norm-based bounds are not satisfying for two reasons. First, there exist
irreducible chains for which the bounds are not tight, so the condition number a may
seriously overestimate the sensitivity to perturbations. Secondly, the bounds generally
provide little information about the relative error Izrj-#jl/zry in individual stationary
probabilities. We remedy this situation in 4 by derivingtight perturbation bounds for
individual stationary probabilities. On the basis of these bounds, we prove a uniform
sensitivity theorem saying that if at least one stationary probability has low relative
sensitivity, or if at least one large stationary probability has low absolute sensitivity,
then all probabilities have low absolute sensitivity.

In 5 we relate our measure of sensitivity to the traditional condition numbers for
the Markov problem, and we prove that all relevant condition numbers for the problem
7rTA 0 are small multiples of each other. After discussing the ramifications of the
perturbation results on direct methods for computing the stationary probabilities, we
consider the case of nearly transient chains in 6 and 7. We show that under special
perturbations even small stationary probabilities may have low relative sensitivity. In
addition, we give conditions under which a nearly transient chain is absolutely stable
under general perturbations.

2. Norms and notation. Throughout the article the infinity-norm is exclu-
sively used for matrices and column vectors, and the one-norm is used for row vectors.
Since it will always be clear from the context whether a quantity is a matrix, column,
or row, the subscripts on * ][oo and * [[1 are suppressed. Row vectors will always
be transposed (e.g., 7rT ), and column vectors will be untransposed. The jth column
of the identity matrix I is denoted by ej and the column of all ones is denoted
by e. The matrix P denotes the transition probability matrix of an n-state irre-
ducible Markov chain with stationary distribution zrT whose entries satisfy ri > 0
and zr- 1. We define A I-P and A# denotes the group inverse of A,
properties of which can be found in Campbell and Meyer (1991), Meyer (1975), and
Meyer (1982). The matrix P P + E is a perturbation of P that represents the
transition matrix of another irreducible chain with stationary distribution #T. The
perturbation matrix E is not necessarily constrained to be small. We use E(J) to
denote the matrix obtained by deleting the jth column of E, and A denotes the
principal submatrix obtained by deleting the jth row and column from A I- P.
Finally, we let N denote the matrix obtained by replacing the last column of A by
a column of ones.

3. Absolutely stable chains. The solution of a general ill-conditioned lin-
ear system Ax b need not be uniformly sensitive to small perturbations. Some
components of x can be sensitive while others are not. Furthermore, as shown in
Chandrasekaran and Ipsen (1992), the sensitivity of the xi’s need not be a result of
their size. Our purpose is to demonstrate that this cannot happen for Markov chains,
but first it is important to distinguish between absolute sensitivity and relative sensi-
tivity in the Markov chain setting.

Example 3.1. For the three-state chain whose transition matrix is

P(e) 1 e 0 e
1 0 0

the associated stationary distribution is

1

(2 +
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UNIFORM STABILITY OF MARKOV CHAINS 1063

If P P(10-s) is perturbed to become /5 P(10-4), then the magnitude of the
perturbation E P- P is

IIEII- 2(10-4- 10-8)

Consider the change in the respective stationary distributions

7r
T 7T(10-8) and #T 7rT(10-4).

The absolute change (the change relative to 1) in 73 is

10-8 10-4
1 + 10-8 1 + 10-4

10-4- 10-8 IIEII10-4 10-8=
(1 + 10-4) (1 + 10-s) 2

but the relative change (the change relative to the original value) is

1-
10-4 (1 + 10-s)
10-8 (1 + 10-4)

If the change in probabilities is assessed in an absolute sense by comparing it to 1,
then r3 is not at all sensitive to the perturbation because the change of magnitude
[IE[[ in the transition probabilities produces a change in r3 of only [JEll/2. We say
that 3 is absolutely insensitive. But if the change in probabilities is assessed in a
relative sense then the change in r3 is large, so r3 is relatively sensitive. As for the
sensitivity of the other two probabilities rl and r2, if a is element (i, j) in the
group inverse A# of A I- P, then, as shown by Funderlic and Meyer (1986), the
absolute error in the jth stationary probability is bounded by

In this example, maxi,j [a[ < 1, so all three stationary probabilities are insensitive in
the absolute sense. Because rl and r2 are both very close to .5, they are insensitive
in the relative sense as well. This example motivates the following definition.

DEFINITION 3.1. An irreducible chain is said to be absolutely stable whenever
each rj is insensitive to perturbations in P in the absolute sense; i.e., whenever
there is a small constant a such that for all perturbations E,

where the term "small" is to be interpreted in the context of the underlying application.
Sufficient conditions for absolute stability are well-known. The results in Barlow

(1993), Funderlic and Meyer (1986), Golub and Meyer (1986), Meyer (1980), Meyer
(1994), Meyer and Stewart (1988), Stewart (1991), for instance, use the fact that a
chain is absolutely stable if the group inverse A# of A I- P has no large entries

(relative to 1). The results of 5 will establish that the converse of this statement is
also true.
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1064 I.c.F. IPSEN AND C. D. MEYER

4. Componentwise analysis. In this section we derive tight upper bounds
on the relative change in individual stationary probabilities, and we prove that all
stationary probabilities show essentially the same sensitivity to perturbations in the
transition probabilities.

We make use of the following properties of M-matrices, details of which can be
found in the text by Berman and Plemmons (1979). If P is an irreducible stochastic
matrix of order n, then A I- P is a singular M-matrix of rank n- 1. Moreover,
if Aj is the principal submatrix of A obtained by deleting the jth row and column
from A, then Aj is a nonsingular M-matrix. Hence A-I > 0, and if e is the column

vector of all ones, then IIA-flell IIA-III. The following theorem demonstrates that

the entries in A-I determine the relative sensitivity of the jth stationary probability
to perturbations in the transition probabilities.

THEOREM 4.1. If E(J) denotes the matrix obtained by deleting the j th column
of E, then

7j j TE(J)A- e.

Furthermore,

and there always exists a perturbation E (dependent on j) for which equality is at-
tained.

Proof. By applying a symmetric permutation to P, the states may be reordered
so that a particular stationary probability occurs in the last position of T. Thus it
suffices to prove the theorem for j n. With the partitioning

T T n A=
cT 5

7rTA 0T implies T _TrncTA-. Replacing the last column of A by the vector
of all ones produces a nonsingular matrix

(An e) (Al(/-eT)
with inverse N-N

cT 1 T rn

The stationary distribution of the original chain is the solution of the system

T where T7rTN--en en (0 0 1),

and the stationary distribution for the perturbed chain is the solution of

T where F (E(n) 0).#T(N F) e,

Consequently,

(4.1) 7T T _TFN-,
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UNIFORM STABILITY OF MARKOV CHAINS 1065

and therefore
71"n ’n .T]-,(n)A-

7rn
eo

Applying HSlder’s inequality and IIAlell IIA111 yields

71-n 71-n

7rn

To see that equality is always attainable, let k be the position where the largest
component of Ale occurs so that

eTA e A e A
and let E ee(ek -en)T. Then rTE(n) e" and IIE(n)ll e, so that

7rn 7r rTE(n)A-e eeA-le ellAlll IIE(n)ll IIAII
7rn

COROLLARY 4.1. An irreducible chain is absolutely stable if and only if 7rjl[Alll
is small for every 1 <_ j <_ n.

The resUlts of Theorem 4.1 and its corollary suggest the following definitions.
DEFINITION 4.1. Let Aj be the principal submatrix obtained by deleting the j th

row at. ,2 column from A, and let rj denote the j th stationary probability. The relative
condition number for rj is defined to be

p IIA-II and we set p m!n{pj}.

The absolute condition number for rj is defined to be

and we set c m.ax{cj}.

In terms of his notation, Theorem 4.1 states

_< py lIE(Y)II, Iry 1 -< cy IIEII, and

so c is the absolute condition number for the entire chain.
Notice that if a stationary probability is relatively well-conditioned, then it is

absolutely well-conditioned but not conversely, cf., Example 3.1. It may be of interest
to note that the existence of a small pj means that the (n 1)st singular value of A
is large (Barlow (1993)).

We now arrive at one of our principal conclusions which states that the sensitivity
of the stationary distribution is uniform in the sense that all 71"j ’S are absolutely well-
conditioned if and only if at least one rj is relatively well-conditioned.

THEOREM 4.2. For every 1 <_ j <_ n,

Consequently, an irreducible chain is absolutely stable if and only if at least one 7rj is
relatively well-conditioned.
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1066 I.C.F. IPSEN AND C. D. MEYER

Proof. As in the proof of Theorem 4.1, assume that the states have been permuted
so the best relatively conditioned stationary probability is in the last position; i.e.,
Pn P. If

N= cr 1

is the matrix obtained by replacing the last column of A by ones then, as in (4.1),

From

7r
T rT ---rTFN-1, where F E(n) 0 ).

(4.2) Y-1 ( dl(I- eT) -TrnAle) (dl O) (I-eT -Trne)T 71.n 0 1 KT rn
it follows that

7rj #j _#TFN-
-#TE(n)A-I(ej 7rje) if

ej
-rTE(n)Al(-rJe) if

Since Ile rjell max{rj, 1 rj} < 1 and IIAeII IIA-III Pn, we have that

l<_j<_n.

Therefore, if at least one stationary probability is relatively well-conditioned, then all
stationary probabilities are absolutely well-conditioned. The converse follows from
Corollary 4.1 because at least one rj must be greater than or equal to 1/n. D

The following two statements are direct consequences of Theorem 4.2, but they are
important to state because they drive home the extent to which there exists uniform
stability in Markov chains.

COROLLARY 4.2. If any stationary probability is relatively well-conditioned, then
all large stationary probabilities are relatively well-conditioned.

COROLLARY 4.3. If any large stationary probability is absolutely well-conditioned,
then the chain is absolutely stable.

A natural question arises at this point. We know that the existence of one rela-
tively well-conditioned rj implies the chain is absolutely stable, but does the existence
of one absolutely well-conditioned rj insure absolute stability? Unfortunately, the
answer is "no," and this can be seen by considering

e/2
P= e/2 1-e e/2 rT= 1

(1 1 e)
o

for small 0 < e < 1. The absolute and relative condition numbers are

1 (_ 4) 2 2 4 2
-}- O3 Pl P2 + --, and P3 -,O1 O2 2 + 2 +e e

so, for small e, 71"3 is absolutely well-conditioned, but rl and r2 are not. The chain
is not absolutely stable, and no rj is relatively well-conditioned.

Small stationary probabilities are the ones that appear least likely to be relatively
well-conditioned. Therefore it makes sense to try to determine features that may be
responsible for the small size. The following theorem shows that those rj whose
associated submatrix Aj is well-conditioned cannot be small. It also shows that a
nearly reducible matrix A that is far from being uncoupled produces small rj.
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UNIFORM STABILITY OF MARKOV CHAINS 1067

THEOREM 4.3. If Q is a permutation matrix such that

QTAQ-- (AJ bJ I
then

<r<

Proof. Let rTQ cT (-T -Trj). Since eTA 0 implies
Hblder’s inequality gives the lower bound

-TrjcyA;1

-T1-Trj e rjlcyA-lel <_ rjpj.

--TTo obtain the upper bound, use Ilcyll -cye 5j and 5jrj - bj, and again
apply HSlder’s inequality,

5. Condition numbers and linear systems. It was demonstrated in the
previous section that the sensitivity of the stationary distribution is governed by p.
We now compare this measure of sensitivity to other condition numbers, and we relate
these results to numerical techniques for computing stationary probabilities by solving
certain linear systems.

The nonsingular matrix

(An e) TN
cT 1

and the associated system 7rTN en

are focal points of the development. The expression (4.2) together with the fact that
Pn IIAlll > 1 (because e =-Alb) produces

(5.1) 1 < [IN-Ill < 2pn.

T is a well-This means that if rn is relatively well-conditioned, then 7rTN en
conditioned nonsingular system and therefore any stable algorithm can accurately

T should be attemptedsolve it. But it is not clear that the solution of 7rTN en
when Pn is large, even if the chain is absolutely stable. Theorem 4.1 insures that
some pj must be small, but, as Example 3.1 demonstrates, it need not be Pn. Of
course, safety can be guaranteed if one is willing to determine a value of k such that

T
Pk P because the same logic that produced (5.1) insures that the system 7rTj ek
is well-conditioned where is the nonsingular matrix obtained by replacing the kth
column of A by e. But determining p (or its position) is prohibitively expensive, and
this may be why this approach is dismissed as "naive" by Paige, Styan, and Wachter
(1975) and not included in their comparisons.

Surprisingly, it does not matter which column of A is replaced by e. This is a
consequence of the next theorem that relates N-x to the group inverse A#.
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1068 I.C.F. IPSEN AND C. D. MEYER

THEOREM 5.1. For the numbers a and p given in Definition 4.1,

A#
< I[N-111 < 2 I]A# + x

2

and
o < IIA#11 < 4p.
2

Proof. We derive the upper bounds first. It is easily verified (Meyer (1975)) that

A# (I eTrT) ( AIO O0 ) (I eT)

{ (I eT)AI(I eT)
_TA (i eT

7rnTA- e

A symmetric permutation can bring any principal submatrix Aj of A to the upper
left-hand corner of QTAQ. Then (QTAQ)# QTA#Q, and

.Q (’ .)
imply

QTA#Q (I- eT) ( AIO
( (I- e-T)A-I(I- --rJ(I-- e-T)A-le)-1_-TA_ (I e-T) 7rio Aj e

The second upper bound is now immediate because

IIA#11 IIQTA#QII <_ 4pj for all j.

The first upper bound follows from

--CT --6

which can be verified by using (5.2), so that IIN-II _< 211AII + 1. To establish the
lower bounds, use the expressions for A# and QTA#Q to write

and rjA I --e QTA#Q ( jI
Hence [[AII <_ 211N-II and, for every j,

The group inverse is relevant because

(.3) r # #EA# and
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UNIFORM STABILITY OF MARKOV CHAINS 1069

(Meyer (1980)), so if IIA#11 is small, then the chain is absolutely stable. While
conjectured, the converse of this statement has never been proven. However, on the
basis of Theorems 4.2 and 5.1, the converse is now evident.

The logic used in proving Theorem 5.1 dictates that replacing any column of A
by e results in a well-conditioned matrix when the chain is absolutely stable, and when
the chain is not absolutely stable, all such matrices are ill-conditioned. Consequently,
it does not matter which column of A is replaced by l’s, so the problem addressed
by Harrod and Plemmons (1984) and Barlow (1986, 1993) of having to locate a well-
conditioned principal submatrix Ay in order to build a well-conditioned system is
obviated. Furthermore, since N is nonsingular, standard numerical techniques can

Tbe applied to solve 7rTN en
So far we have viewed the stationary distribution 7TT aS a solution to two different

Tlinear systems; the singular system rTA 0 and the nonsingular system rTN en
There is a yet a third linear system of which 71"T is & solution, namely

(5.4) 7rTM Ten+ where M (A e).

The augmented matrix M is of order n x (n-t- 1) and has full row rank. The perturbed
system is .T(M -t-- E) eTn-t-1 so

7TT TT TEMt,

where Mt is the Moore-Penrose pseudo-inverse (Campbell and Meyer (1991)), and

Hence IIMt is a condition number for measuring absolute stability. Another such
number is IIZII where z (A is the Kemeny and Snell (1960) fundamental
matrix because rT- #T #TEZ and Irj -#jl <- I11111EII IIZII (Schweitzer (1968)).
The following lemma shows that IIMtll and IlZll re small multiples of each other
and that they are not significantly different from IIA# II.

LEMMA 5.1. For the matrices M and Z defined above,

llzll < IIM*II < e IlZll and
3 IIA II- 1 _< Ilzll _< IIA II / 1.

Proof. The first set of inequalities follows from the identities

Z= ((I- erT) e)M and T Z,

each of which is straightforward to verify. The second set of inequalities is a conse-
quence of the fact that Z A# + eTrT (Meyer (1975)). [l

Combining the results of Lemma 5.1 with those of Theorems 4.2 and 5.1 produces
the following complete statement concerning the stability of irreducible Markov chains.

Gaussian elimination with exact arithmetic generates positive pivots, but floating-point arith-
metic may produce a zero or negative pivot (Funderlic and Mankin (1981)). This can be avoided
with diagonal adjustment schemes as discussed by Grassmann, Taksar, and Heyman (1985), Stewart
and Zhang (1991), and Barlow (1993).
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1070 i.c.F. IPSEN AND C. D. MEYER

THEOREM 5.2. For an n-state irreducible Markov chain, the following statements
are equivalent.

At least one stationary probability is relatively well-conditioned.
The chain is absolutely stable.
All entries of the group inverse A# are small.
The matrix N and the system TN eTn are well-conditioned.
The matrix M and the system 7TM Ten+ are well-conditioned.
All entries in the Kemeny and Snell fundamental matrix Z are small.

6. Sensitivity of nearly transient chains. In this section we examine the
sensitivity of stationary probabilities of irreducible chains with nearly transient states;
i.e., irreducible chains in which the states can be ordered so that the transition matrix
is almost block triangular in the sense that

(6.1) p (Pll P19. with "P21 <<1"P. P.\ /

We prove two results, one for structured perturbations and one for more general
perturbations.

The first theorem establishes a result similar to the one by Stewart (1992b). It
says that small stationary probabilities of an absolutely stable chain are relatively
well-conditioned if only the states corresponding to these probabilities are perturbed
and all other states remain unaffected.

THEOREM 6.1. If E can be symmetrically permuted so that

o) IIEII= ,E=
E2

and if roT= (rr rT2 is partitioned conformably, then

_< 4ep, 1 _<j _< n.

Proof. Combine (5.3) with the fact IIA#II <_ 4p from Theorem 5.1.
The second theorem concerns nearly transient chains, but no restriction is placed

on the structure of the perturbation matrix.

THEOREM 6.2. Suppose P in (6.1) is s s, and let

(An b) An___ (Bll B12) and b- (bl)A cT 5 B21 B22 b2

where Bll is s s,
rn is bounded by

b is s 1, and bi 0 for each i.

2 max { Bi-11 II, B-21 }
Pn <

The relative condition of

so the chain is absolutely stable whenever BI and B22 have small inverses.
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UNIFORM STABILITY OF MARKOV CHAINS 1071

Proof.

A,-
0 B22 0)0 T + K= T(I + T-1K)"

If ]IT-1K]I < 1, then, from results in 2.3.4 in Golub and Van Loan (1989),

Pn IIAIII <_ liT-ill ]l(I + T-1K)-lll <_

Since A is an M-matrix, B > 0, Bij <_ O, and b <_ 0. Consequently, Ae 0
implies

0 <_ -BllB12e e + Bi-llbl _< e.

By assumption, bl 0, so Bi-1lbl < 0, and thus

liB{-11B12ll IIB1B12ell < 1.

A similar argument shows that IIIBIII < 1. Since

T_I= (B- -B11B12B; ) (I-B11BI2) ( Bfl 0 )o o o

we have

liT-111 (1 + IlBi-11B1211)max{lIB5111, IlBlll } < 2max{llBi-lll[, IlBll }.

Similarly,

implies

T_1K=(-B11B12B21B21 O)BB21 0

T-1K II <_ max{ B11B12B2B2111, IIB2-2B2111} < B2B2111,

so
2 max { IIBi- I1, IIB }

7. Small probabilities in nearly transient chains. Let 7rT (1T
the stationary distribution of the nearly transient matrix P in (6.1), and set

2T be

A= I-P= (AIA21 A22A12) where IIA2111-- IIP2II-- e.

Since T -A21A- implies IIffll -< llAi-lll, we see that the trailing stationary
probabilities dominate the leading ones provided IIAI is not too large. For nearly
transient chains with a finer block structure, say

(7.1) A

All A12 A13 Alk
F21 A22 A23 A2k
F31 F32 A33 Aak r 3

Fkl Fk2 Fk3 Akk rk

Fj+ I,j

Fj+2,j
Fj+3,j

Fe,y

D
ow

nl
oa

de
d 

01
/0

6/
19

 to
 1

52
.1

.2
53

.2
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1072 I. C. F. IPSEN AND C. D. MEYER

1 <_ j <_ k- 1, the same should be true; i.e., the trailing stationary probabilities
tend to be larger than the leading ones. We will quantify this statement by providing
bounds in terms of ej on the probabilities j associated with each block.

The strategy is to proceed inductively by applying the above 2 2 case to
successive diagonal blocks. This is accomplished by applying the following lemma that
provides a perturbation of size e that essentially uncouples All from the remaining
blocks. In particular, the lemma shows that the remaining probabilities are the exact
probabilities of a perturbed problem of the same form (the only difference being that
the sum of the probabilities is less than one).

LEMMA 7.1. Let

A_(AllA21 A22
with IIA2111

_
e. If

A A2eTA2
2TA21e

then A22 + A is a singular M-matrix such that

2T(A22 +/%) 0, (A22 + A)e O, and IIAII <_ .
Proof. We first verify that A satisfies the required equations. From 7TA 0

and Ae 0 we get rT =2-TA22 =--TA and r2 A2e =-A2e, so one can
write

A-- r2r
T2 r2"

Since A -rT it follows that 2T(A22 -t- A) 0, and thus A satisfies the first
equation. To prove that A satisfies the second equation, observe that TA 0 and
Ae 0 imply

Thus,

A r2rT

so Ae --r2 and (A2 + A)e 0. As for the bound on the norm of A, notice that
rl and r2 both consist entirely of nonnegative elements since A is an M-matrix so
A consists entirely of nonpositive elements. This means

Moreover, since all elements of A are nonpositive, the off-diagonal elements in A.2+A
are more negative than those of A22. This implies with (A22 + A)e 0 that the
diagonal elements must be nonnegative. From > 0 it follows that A22 +/% must be
irreducible, for otherwise a component of #2 would be zero. According to Corollary 1
in 3.5 of Varga (1962), the signs of the matrix elements and the irreducibility imply
that every principal submatrix of A22 +/k is an M-matrix. Therefore, A.u + A is a
singular M-matrix. V1

Now we can prove the following theorem that says that in a nearly transient chain,
the size of the i in the jth block is controlled by the smallness of the preceding off-
diagonal columns 1,..., j- 1, and by the condition of a perturbed jth diagonal block.
The size of this perturbation is again determined by the smallness of the off-diagonal
columns 1,... ,j- 1. This implies that the trailing solution components tend to be
larger than the leading ones.
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UNIFORM STABILITY OF MARKOV CHAINS 1073

THEOREM 7.1. If A is partitioned as indicated in (7.1), then IlsrT <_ (1;1 with
IIAIlI. Furthermore, there exist matrices Xj+I,j+I such that

[[Aj+,j+ Xj+I,j+ - 1 -}-""-[- j, 1 <_ j <_ k 2,

and
-< (1 -]- -]" j+l)/’i;j+l, where IIx -  ll,

Proof. The statement8 for follow from the 2 2 block partitioning.
apply the same argument recursively to the matrix

Now

A22 *
F32 A33 * *

A22 ". -- A,Ak-l,k- *
Fk2 Fk3 Fk,k-1 Akk

where A is given by Lemma 7.1. For instance, X2 is the leading diagonal block
of fi22 with IIX-lll a2. Lemma 7.1 insures IIAII _< e and IIA22 X211 _< A <_ e.
Since the norm of the first off-diagonal column is bounded above by e +e2, Lemma 7.1
 ives I1  11 <- +

8. Concluding remarks. Our goal was to better understand how individual
stationary probabilities are affected by unstructured perturbations to the transition
probabilities. Consequentiy, we measured all perturbations relative to 1 rather than
relative to A I- P or relative to the structure of P. In other words, we mea-
sured the magnitude of a perturbation by ]]EI]/[[P[I ]]El[ instead of []E][/I]A[] or

maxij ]eij I/Pij. The latter two measures result in significantly different interpretations
of sensitivity. For example, perturbations that are small relative to 1 can greatly affect
the stationary probabilities of

1 -e e )P= e<<l,
e 1-e

but measured relative to IIAII- or measured by maxj I  jl/p j, small pertur-
bations cannot have a drastic effect (Meyer (1980), O’Cinneide (1993), and Zhang
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