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Abstract. In this paper we review classical results by Ben-Israel, Boggs, and Tanabe on algorithms for rank-deficient
nonlinear least squares problems and compare them to our recent perturbation theory results for such problems. Using a simple
example, we show how sufficiently large perturbations can lead to poor convergence or even incorrect results, and how the
application of subset selection can solve some of these problems.
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1. Introduction. Rank-deficient nonlinear least squares problems arise when nonlinear models have
more free parameters than the model can resolve or when the parameters are dependent in ways that are
difficult for the modeler to detect. Such problems occur, for example, in the life sciences [6,10,16,17], which
provided the motivation for our work in [11].

If the Jacobian is Lipschitz continuous and has constant rank, then classical results [1, 2, 13, 18, 19] say
that the Moore-Penrose inverse [3] of the Jacobian can be used in a Gauss-Newton or Levenberg-Marquardt
iteration to converge to the manifold of solutions, at least in exact arithmetic. The perturbation theory in
our recent paper [11] shows that this algorithm also works well if the rank of the Jacobian can be clearly
identified, i. e. there is a sufficiently large gap in the computed singular values between the smallest singular
value of interest and the rest, and the nonlinear residual and Jacobian are computed sufficiently accurately.

If the errors in the computed residual and Jacobian are too large for the classical results to hold, then the
algorithm can fail to converge [17] or, as we will see in § 3, produce incorrect results. One remedy is to use
subset selection [7–9] to identify a useful subset of the parameters, set the remainder to nominal values, and
solve a smaller problem for the subset. One would hope that the smaller problem has a full-rank Jacobian
and is well-conditioned.

In § 2 we discuss the nonlinear least squares problem of interest in this paper and our assumptions on
the rank-deficiency. We then state one version of the classical results and our recent perturbation result.
The perturbation analysis identifies conditions in which the results can be poor in practice, and we discuss
those possibilities. Finally in § 3 we present a variation of the study from [11].

2. Theory. We consider a class of rank-deficient nonlinear least squares problems of the form

min ‖R(p)‖2/2 (2.1)

where the norm is the Euclidean norm, all minimizations are over R
N , R : R

N → R
M , M > N , and the rank

of the Jacobian R′ is k < N . We assume that the rank of R′(p) is independent of p.

2.1. Results in Exact Arithmetic. The classical Gauss-Newton [5, 13] method for nonlinear least
squares problems updates a current approximation to the optimal point pc by adding the Gauss-Newton
step s which solves the linearized problem

min ‖R′(pc)s + R(pc)‖2, (2.2)

and then updates pc to a new iteration

p+ = pc + s.
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In the full rank k = N case, we obtain the standard Gauss-Newton formula

s = −(R′(pc)
T R′(pc))

−1R′(pc)
T R(pc).

If k < N , then (2.2) does not have a unique solution. The natural thing to do is take the minimum norm
solution of (2.2)

s = −R′(pc)
†R(pc),

where R′(pc)
† is the Moore-Penrose [8] inverse of R′.

The Gauss-Newton model Hessian will be singular if R′ is rank-deficient and this will create problems
in convergence if the initial iterate is far from the solution. A remedy for this is to add a multiple of the
identity to obtain the Levenberg-Marquardt [5, 13–15] iteration

s = (νcI + R′(pc)
T R′(pc))

−1R′(pc)
T R(pc).

Here νc is the Levenberg-Marquardt parameter at the current point. The Levenberg-Marquardt parameter
ν may be held constant or varied as the iteration progresses.

The classical results describe the convergence of the iteration for certain rank-deficient problems. We
will examine a subset of that class in this work, and present our assumptions before stating a version of the
classical results.

In [11] we assumed that R could be factored as the composition of two Lipschitz continuously differen-
tiable functions R̃ and B. We formalize this as

Assumption 2.1. Assume that

R(p) = R̃(B(p)), (2.3)

where R̃′ : R
k → R

M has full column rank k and B′ : R
N → R

k has full row rank k, and the smallest singular

value of R̃ and smallest non-zero singular value of B are bounded away from zero.

The idea is that the nonlinear model will receive N parameters, but the internal dependencies in the
parameters or lack of sensitivity lead to only k fittable parameters. We express this for theoretical purposes
by using the reduction function B. The reader should keep in mind that the solvers only see R and that the
factors R̃ and B are only used in the analysis. Assumption 2.1 implies that the set of local minimizers of
‖R̃‖2 consists of isolated points. Moreover, if b∗ is a local minimizer of R̃ and ‖R̃(b∗) is sufficiently small,
then the Gauss-Newton iteration will be locally convergent.

For convenience we set

f(p) = ‖R(p)‖/2.

We will assume for convenience that b∗ is the unique minimizer of ‖R̃‖ and let

Z = {p | f(p) = f∗} = {p |B(p) = b∗}. (2.4)

Following [13] we define

d(p) = min
z∈Z

‖z − p‖.

We seek algorithms that drive d(p) to zero.
Our regularity assumptions on R̃ and B imply that R′ has rank k < N everywhere, and hence the

smallest singular value of R′ is bounded away from zero on any compact set.
As an example we state the result from [1] for the Gauss-Newton iteration for the special case where

Assumption 2.1 holds. Similar results for damped the Levenberg-Marquardt iteration (with fixed Levenberg-
Marquardt parameter) are reported in [2, 18,19].

Theorem 2.1. Let Assumption 2.1 hold and assume that b∗ is the unique minimizer of R̃. If ‖R̃(b∗)‖
is sufficiently small and p0 is sufficiently near Z then the regularized Gauss-Newton iteration

pn+1 = pn − R′(pn)†R(pn) (2.5)
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converges to p∗ ∈ Z. Moreover

d(pn+1) = O(d(pn)2 + ‖R̃(b∗)‖d(pn)). (2.6)

In [11] we extended the classical results to include a standard trust-region approach to managing the
Levenberg-Marquardt parameter [4, 5, 13]. In this approach we take a trial Levenberg-Marquardt step from
pc to obtain

st = −(νcI + R′(pc)
T R′(pc))

†R′(p − c)T R(pc)

Then we compute the actual reduction in the objective function

ared = f(pc) − f(pc + st),

and compare it to the reduction predicted by the quadratic model

pred = −∇f(pc)
T st/2 = −(R′(pc)

T R(pc))
T st/2.

The algorithm which decides to accept or reject the step and to decrease or increase νc is standard. One
begins with several parameters:

0 < ωdown < 1 < ωup, ν0 ≥ 0, and 0 ≤ µ0 < µlow ≤ µhigh < 1.

Typical values, which we use in the computations we report in this section are

µ0 = 10−4, µlow = 1/4, µhigh = 3/4, ωdown = 1/2, and ωup = 2. (2.7)

We express the outcome interms of the current values of the point and the Levenberg parameter pc and
νc and, if the step is successful the new point and new Levenberg parameter p+ and ν+. The decision process
is:

• If ared/pred < µ0 then set νc = max(ωupνc, ν0), keep the current point, and recompute the trial
point with the new value of νc.

• If µ0 ≤ ared/pred < µlow, then accept the step and set p+ = pt and ν+ = max(ωupνc, ν0).
• If µlow ≤ ared/pred, then accept the step and set p+ = pt and ν+ = νc.

If µhigh < ared/pred, then set ν+ = ωdownνc.
If νc < ν0 then set ν+ = 0.

We will refer to the Levenberg-Marquardt iteration with the algorithm outlined above for managing ν as the
standard Levenberg-Marquardt algorithm.

In the full rank case [4, 5] one can show that if f has bounded level sets, then

lim inf ‖∇f(pn)‖ = 0.

In particular, lim sup νn < ∞. In the rank-deficient case, it is less clear that the Levenberg-Marquardt
parameter remains bounded. In [11] we proved a local convergence result that includes boundedness of ν.

Theorem 2.2. Let Assumption 2.1 hold and assume that b∗ is the unique minimizer R̃. The if ‖R̃(b∗)‖
is sufficiently small and p0 is sufficiently near Z then lim sup νn < ∞ and the standard Levenberg-Marquardt

Gauss-Newton iteration converges to p∗ ∈ Z.

Theorem 2.2 does not have a convergence estimate like (2.6) because we were unable to show in that
paper that νn → 0.

2.2. Perturbation Theory and the Truncated SVD Method. If there are errors in the evaluation
of R, then the computed R may have N non-zero singular values, even though R itself has only k. If one
has knowledge of the correct value of k or there is a clear gap in the the singular values of the computed R,
one can simply replace the N − k smallest singular values by zero. In [11] we considered errors in R′ and
not R. The reason for this is that errors in R can be considered to be errors in the data. However, errors in
the data can create failure in the iteration, as we will see in § 3.2.
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We assume that we have an error E in the computation of R′ and let

J = R′ + E (2.8)

be the computed Jacobian. Suppose we know that R′ has exactly k non-zero singular values. We will then
take the SVD of J

J = UΣV T

where

Σ = diag(σ1, . . . , σk, σk+1, . . . σN ).

We let

Σ̃ = diag(σ1, . . . , σk, 0, . . . 0),

and define

J̃ = U Σ̃V T . (2.9)

Our truncated SVD Levenberg-Marquardt iteration is the same as the standard iteration except
that we replace R′ by J̃ throughout. The perturbation result compares the truncated SVD Levenberg-
Marquardt step for the computed R′

s̃ = −(ν + J̃T J̃)†J̃T R(p) (2.10)

with the standard Levenberg-Marquardt step for an exact computation of R′

st = −(ν + R′(p)T R′(p))†R′(p)T R(p).

The bound on ‖s̃ − st‖ is technical and depends on bounds for the singular values. Assumption 2.1
implies that the k non-zero singular values of R′ are bounded from below by σ̄k > 0 and from above by σ̄1.
For ν ≥ 0 define

η(ν) = max
σ̄k≤σ≤σ̄1

σ

ν + σ2
. (2.11)

Theorem 2.3. Let Assumption 2.1 hold and assume that b∗ is the unique minimizer of R̃. Let k < N
and let J , E and J̃ be given by (2.8) and (2.9). If

θ‖E‖F < 1, where θ =
2

σ̄k − 2‖E‖ < 1,

then

‖st − s̃‖ ≤
[

2η(ν)‖s̃‖ +

(

1

ν + σ̄2
k

+ 2η(ν)θ

)

‖R̃‖
]

‖E‖F + ω‖E‖2
F , (2.12)

where

ω =
‖s̃‖

ν + σ̄2
k

+ 2η(ν)θ2‖R̃‖.

One consequence of the theorem is that if p is sufficiently near Z, ‖E‖ and ‖R̃(b∗)‖ are sufficiently small,
then s̃ is a good approximation to st, and one should expect the numerical observations to conform to the
theory. The condition

θ‖E‖ =
2‖E‖F

σ̄k − 2‖E‖ < 1 (2.13)
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requires that E be small enough so that there is a clear gap between the smallest nonzero singular value
of R′ and the N − k smaller singular values of J . The presence of ‖E‖2

F on the right of (2.12) limits the
accuracy of the approximation to the range ‖E‖F = O(‖s̃‖), which is a common limit on the resolution of
the solution of a nonlinear equation [12] if the error in the Jacobian is no larger than the square root of the
error in the evaluation of the residual (which for us would be ‖R̃(b∗)‖). So, while ‖E‖F = O(‖s̃‖), we obtain

‖st − s̃‖ ≤ O(‖s̃‖2 + ‖s̃‖‖R‖), (2.14)

which is the same order as the error term in (2.6) if p is sufficiently near Z.

On the other had, as we will see in the examples, the truncated SVD Levenberg-Marquardt method is
very sensitive to large ‖R̃(b∗)‖.

2.3. Subset Selection. Subset selection chooses k linearly independent columns from the Jacobian. In
the context of this paper, this amounts to identifying the “best” k of the N original set of design parameters,
setting the remaing N − k to nominal values, and then solving for the smaller design vector. The result of
this is that the nonlinear least squares problem we actually solve has a Jacobian of full rank (k).

Subset selection on the matrix R′ produces a permutation matrix Π, which brings the k columns J1

to the front, i.e. R′Π =
(

J1 J2

)

. We use the strong rank revealing QR (SRRQR) algorithm by Gu and
Eisenstat [9, Algorithm 4] in the exact version (with parameter f = 1). This SRRQR algorithm assures,
among other things, for the singular values σi(J1) of J1 that

σi
√

1 + k(N − k)
≤ σi(J1) ≤ σi, 1 ≤ i ≤ k. (2.15)

The reader should keep in mind that there need not be a unique way to select the columns. For the example
in § 3 subset selection could select columns (1, 2, 4) or (1, 3, 4).

We assume that ‖E‖ is small enough so that J = R′ + E has rank at least k and that subset selection
picks the same set of k columns (as we must if we are to compare results directly). Hence

JΠ =
(

J̃1 J̃2

)

,

where J̃1 has k columns.

In either case, the step is now in R
k, and we can express it by

st = (νI + J1J
T
1 )−1JT

1 R, (2.16)

and for the perturbed case

ŝ = (νI + J̃1J̃
T
1 )−1J̃T

1 R. (2.17)

The perturbation theory is now more favorable.

Theorem 2.4. Let Assumption 2.1 hold and assume that b∗ is the unique minimizer of R̃. Let k < N
and let J , E and J̃ be given by (2.8) and (2.9). Let subset selection be applied to R and J in such a way that

the same k columns are selected and (2.15) holds. Let st and ŝ be given by (2.16) and (2.17). Then

‖s̃ − ŝ‖ ≤
[

η̃(ν)‖s̃‖ +
‖R‖

ν + σ̄2
k/(1 + k(N − k))

]

‖E‖,

where

η̃(ν) = max
σ̄k/

√
1+k(N−k)≤σ≤σ̄1

σ

ν + σ2
.
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3. Example. As an example we consider a parameter identification problem for a driven harmonic
oscillator. The equation is the the second order initial value problem

my′′ + cy′ + k0y = A sin(ωt), y(0) = y0, y
′(0) = y′

0. (3.1)

Here m is the mass, c is the damping coefficient, and k0 is the spring constant. We integrate the initial value
problem from t = 0 to t = 10. The data are samples of the exact solution at the 100 equally spaced points
t = j/10, 1 ≤ j ≤ 100.

We seek to identify c, k0, and a small perturbation of the mass. Think of a unit mass with an insect
sitting on it; our task is to weigh that insect. In particular, we set m = 1+10−3δm and seek to find δm. As it
stands the nonlinear least squares problem would not be rank deficient. We will add the effects of modeling
error by assuming that the modeler has replaced the damping constant c by a sum c1 + c1. Hence our model
equation is

(1 + 10−3δm)y′′ + (c1 + c2)y
′ + k0y = A sin(ωt), y(0) = y0, y

′(0) = y′
0. (3.2)

The parameter vector is p = (δm, c1, c2, k0)
T ∈ R

4. So in this example, N = 4, M = 100, and k = 3.
If we let y(t : p) be the solution of (3.2) with parameter vector p and let p∗ be the “exact data”, then the
residual R ∈ R

100 has components

Ri(p) = y(ti : p) − y(ti : p∗).

We will compute the columns of R′ by solving the sensitivity equations. The ijth entry of R′ is

∂y(ti : p)/∂pj

and we can compute ∂y/∂pj by differentiating (3.2) with respect to pj . For example, if we differentiate (3.2)
with respect to p2 = c1 we see that w2 = ∂y/∂c1 is the solution of the linear initial value problem

(1 + 10−3δm)w′′ + (c1 + c2)w
′ + k0w = −y′, y(0) = y′(0) = 0,

which is also the equation satisfied by w3 = ∂y/∂c2.
In the computations for this section we solved a coupled system for the solution y and the four sensi-

tivities. We converted the five second-order equations into a first-order system of ten equations, and solved
that with the MATLAB ode15s integrator. In all our experiments we set

p∗ = (1.23, 1, 0, 1)T

and varied the tolerances for the integration and noise in the data to illustrate the theory from § 2.
We assign equal relative and absolute error tolerances to ode15s.m.

atol = rtol = τivp. (3.3)

The tolerance for the initial value problem determines both the termination criterion for the nonlinear least
squares solver and, most of the time, the number of columns requested from subset selection. We terminate
the least squares iteration when the Levenberg-Marquardt iterates {pn}n≥0 satisfy

‖∇f(pn)‖ = ‖J(pn)T R(pn)‖ ≤ 10τivp or |f(pn) − f(pn−1)| < 100τ2
ivp. (3.4)

Here J is the computed approximation of R′.
In each of the subsections that follow we report the results of parameter fits both with the truncated

SVD approach where we discard the smallest singular value and a subset selection approach where we
determine that there are only three non-zero singular values at the beginning of the optimization, identify
three parameters, and fit only those, setting the other to zero.

In all cases p0 =
(

0 1 1 .3
)T

.
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3.1. High-Accuracy Integration and Data. Here we show that the performance of the iteration
and the quality of the results are good if (1) the residual is small and (2) the Jacobian is evaluated accurately.
In this case we set

τivp = 10−8

and use the values of the analytic solution for the data.
For this example both methods converge to the correct solution. The truncated SVD iteration converged

to (1.22, .5, .5, 1.0)T , which is on the manifold. The version where subset selection eliminated c1 and converged
to (1.23, 1, 1)T is a slightly better result. Figure 3.1 shows that both iterations converge rapidly, with subset
selection about 20% faster.

Fig. 3.1. Forced Oscillator: High Accuracy
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3.2. High-Accuracy Integration and Perturbed Data. In this example, taken from [11], we con-
tinue to use tight tolerances, but perturb the data by 1 + 10−4r, where r is a uniformly distributed random
vector obtained with the MATLAB rand command.

This is a small residual, but not a zero-residual problem, which causes problems for the truncated SVD
method. The truncated SVD method completely misses δm, obtaining a final result of (.091, .5, .5, .998)T .
Subset selection, on the other hand, obtained a reasonable fit of (1.28, 1, 1)T .

The iteration statistics in Figure 3.2 show that subset selection seems to be converging more rapidly in
the terminal phase, as one would expect from a full-rank problem.

Fig. 3.2. Forced Oscillator: Noisy Data
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4. Conclusions. There is a classical local convergence theory for rank-deficient nonlinear least squares
problems. We show that this theory predicts the outcome of computations well if the errors in the residual
and Jacobian are small relative to the smallest non-zero singular value of the Jacobian. We show how subset
selection can make the computations more robust if the errors are large and present computational evidence.
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