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The sampling strategies in many randomized matrix algorithms are, either ex-
plicitly or implicitly, controlled by statistical quantities called leverage scores. We
present bounds for the sensitivity of leverage scores.

Leverage Scores. Statistical leverage scores were introduced in 1978 by Hoaglin
and Welsch [8] to detect outliers when computing regression diagnostics, see also
[3, 12]. To be specific, consider the least squares problem minx ‖Ax− b‖2, where A is
a real m× n matrix with rank(A) = n. The so-called hat matrix H ≡ A(ATA)−1AT

is the orthogonal projector onto range(A), and determines the fit b̂ ≡ Hb.
The diagonal elements of the hat matrix are called leverage scores of A,

ℓj(A) ≡ Hjj , 1 ≤ j ≤ m,

because ℓj(A) reflects the leverage of the jth point bj on the corresponding fit b̂j . To

see this, suppose that ℓk(A) = 1 for some k. Then b̂k = bk. Because bk has maximal
leverage, it completely determines the corresponding element of the fit. That is, a
degree of freedom has been sacrificed to completely fit bk. In contrast, if ℓk(A) = 0

then bk has zero leverage on the fit b̂k.
Leverage scores can be stably computed from a thin QR decomposition A = QR,

where Q is m × n with orthonormal columns, via ℓj(A) = ‖eTj Q‖2
2
. Leverage scores

can also be expressed in terms of those left singular vectors of A that are associated
with the non-zero singular values.

Leverage scores are the basis for many sampling strategies in randomized ma-
trix computations [10], including low rank approximations [6], CUR decompositions
[7], subset selection [1], Nyström approximations [11], least squares [5], and matrix
completion [2].

Coherence. The largest leverage score is called coherence of A,

µ(A) ≡ max
1≤j≤m

ℓj(A).

The general notion of mutual coherence between two bases was introduced in 2001 by
Donoho and Huo [4], to capture the difficulty of recovering a matrix from sampling.

The above quantity µ(A) reflects the mutual coherence between an orthonormal
basis for range(A) and a canonical basis. In the extreme case of µ(A) = 1 at least one
basis vector must be a canonical vector. At the other extreme, if µ(A) = n/m, then
all leverage scores are identical, and orthonormal bases for range(A) can be expressed
in terms of columns of a Hadamard matrix.
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Low coherence is crucial for the effectiveness of sampling, because it means that
all leverage scores are almost identical and the “mass” of an orthonormal basis is
uniformly distributed. For instance, suppose we want to uniformly sample c ≥ n
rows from a m × n matrix Q with orthonormal columns. What is the probability
that the resulting c × n matrix Qs also has columns that are close to orthonormal?
In [9] we show that with probability at least δ, the two-norm condition number is
‖Qs‖2‖Q

†
s‖2 ≤ 10, provided the number of sampled rows is at least

c ≥ 2.7mµ(Q) ln (2n/δ).

In the case of minimal coherence µ(Q) = n/m, we need to sample only O(n lnn) rows.
However, if a column of Q is a canonical vector then µ(Q) = 1, and a randomized
algorithm based on uniform sampling is unlikely to extract a full-rank matrix Qs.

Sensitivity of Leverage Scores. In order to gauge the sensitivity of leverage
scores, we consider a real m × n matrix B of full column rank, and compare the
leverage scores of B to those of A. Since the leverage scores of A are the diagonal
elements of the orthogonal projector H , they are basis-independent. Therefore we
bound ℓj(B) in terms of the principal angles between range(A) and range(B).

We start with the simple case where both A and B have orthonormal columns.
In the SVD ATB = UΣV T the matrices U and V are n×n orthogonal matrices, and
Σ = diag

(

cos θ1 . . . cos θn
)

. The singular values cos θ1 ≥ · · · ≥ cos θn ≥ 0 are the
canonical correlations, and 0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2 are the principal angles between
range(A) and range(B).

The SVD implies ÂT B̂ = Σ where Â ≡ AU and B̂ ≡ BU are the canonical
vectors. Right multiplication by orthogonal matrices does not change the leverage
scores, hence ℓj(Â) = ℓj(A) and ℓj(B̂) = ℓj(B). Thus it suffices to work with the
leverage scores of the canonical vectors. Then we can show that

ℓj(B) ≤

(

cos θ1

√

ℓj(A) + sin θn

√

1− ℓj(A)

)2

, 1 ≤ j ≤ m

ℓj(A) ≤

(

cos θ1

√

ℓj(B) + sin θn

√

1− ℓj(B)

)2

.

In the special case where range(B) = range(A), the two inequalities imply that
ℓj(B) = ℓj(A), 1 ≤ j ≤ m. This suggests that the leverage scores of two orthonormal
matrices are close if and only if the angles between their column spaces are small.

For the coherence the above inequalities imply

µ(A)/γ1 ≤ µ(B) ≤ γ1 µ(A), where γ1 ≡
(

cos θ1 + sin θn

√

m
n
− 1

)2

.

This suggests that the sensitivity of the coherence increases in proportion to the largest
angle between the column spaces, and the aspect ratio of the matrix dimensions.

In the case of large leverage scores, where ℓk(A) ≥ 1/2 and ℓk(B) ≥ 1/2 for some
k, we obtain

ℓk(A)/γ2 ≤ ℓk(B) ≤ γ2 ℓk(A), where γ2 ≡ (cos θ1 + sin θn)
2
.

This suggests that large leverage scores tend to be less sensitive than small ones.
At the other extreme, if ℓk(A) = 0 for some k, then ℓk(B) ≤ sin2 θn, which

suggests that small leverage scores are sensitive in the presence of large principal
angles between the column spaces.
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Conclusions. The above bounds imply that leverage scores of two matrices with
orthonormal columns are close if the principal angles between the column spaces
are small, and that large leverage scores tend to be less sensitive than small ones.
Furthermore, the coherence tends to be more sensitive for tall and skinny matrices,
and in the presence of perturbations that cause a large rotation of the column space.

It is not clear what the above bounds imply for the numerical stability of im-
portance sampling strategies based on leverage scores. On the one hand, since the
sampling strategies favour rows with large leverage scores, they should be numerically
stable when the matrix contains a well-defined set of large leverage scores.

On the other hand, though, importance sampling strategies are most efficient for
tall and skinny matrices with large aspect ratios m/n, but they amplify the sensitivity
of the coherence. Furthermore many randomized algorithms preprocess the matrix
with a fast transform whose purpose is to uniformize all the leverage scores, and in
particular remove all the large ones.

To gain more insight, we will consider bounds for almost uniform leverage scores
whose values vary in a small neighbourhood of n/m; and also for a set of well-defined
set of large leverage scores separated by a definite gap from the smaller ones.

We will also extend the above results to general m× n full-column rank matrices
A and A+ E, and express the bounds in terms of the perturbation E. Furthermore,
given a general rank parameter k, we will determine the sensitivity of leverage scores
computed from the best rank-k approximation of A.
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