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MONTE CARLO METHODS FOR ESTIMATING THE DIAGONAL
OF A REAL SYMMETRIC MATRIX*

ERIC HALLMAN\dagger , ILSE C. F. IPSEN\dagger , AND ARVIND K. SAIBABA\dagger 

Abstract. For real symmetric matrices that are accessible only through matrix vector products,
we present Monte Carlo estimators for computing the diagonal elements. Our probabilistic bounds for
normwise absolute and relative errors apply to Monte Carlo estimators based on random Rademacher,
sparse Rademacher, and normalized and unnormalized Gaussian vectors and to vectors with bounded
fourth moments. The novel use of matrix concentration inequalities in our proofs represents a
systematic model for future analyses. Our bounds mostly do not depend explicitly on the matrix
dimension, target different error measures than existing work, and imply that the accuracy of the
estimators increases with the diagonal dominance of the matrix. Applications to derivative-based
global sensitivity metrics and node centrality measures in network science corroborate this, as do
numerical experiments on synthetic test matrices. We recommend against the use in practice of sparse
Rademacher vectors, which are the basis for many randomized sketching and sampling algorithms,
because they tend to deliver barely a digit of accuracy even under large sampling amounts.

Key words. concentration inequalities, Monte Carlo methods, relative error, Rademacher ran-
dom vectors, Gaussian random vectors

MSC codes. 15A15, 65C05, 65F50, 60G50, 68W20
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1. Introduction. We compute the diagonal elements of symmetric matrices\bfitA \in 
\BbbR n\times n with Monte Carlo estimators of the form

\widehat \bfitA =
1

N

N\sum 
k=1

\bfitA \bfitw k\bfitw 
\top 
k ,

where\bfitw k are independent random vectors. This approach is crucial when the elements
of \bfitA are available only implicitly via matrix vector products.

Estimating the diagonal elements of a matrix is important in many areas of sci-
ence and engineering: In electronic structure calculations, one computes the diagonal
elements of a projector onto the smallest eigenvectors of a Hamiltonian matrix [4].
In statistics, leverage scores for column subset selection can be computed from the
diagonals of the projector onto the column space. In Bayesian inverse problems, the
diagonal elements of the posterior covariance are computed with matrix-free estima-
tors. Diagonal, or Jacobi, preconditioners can accelerate the convergence of iterative
linear solvers [26]. More recently, diagonal estimators have been used to accelerate
second-order optimization techniques for machine learning [27]. In network science,
subgraph centrality measures rank the importance of the network nodes based on
the diagonal of a scaled exponential of the adjacency matrix. In sensitivity analy-
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 241

sis, Monte Carlo diagonal estimators efficiently compute the derivative-based global
sensitivity metrics [7, 13].

Diagonal estimation is related to trace estimation. Once the diagonal elements
are known, the trace can be computed from their sum. Therefore, estimators for the
diagonal of a matrix can be easily adapted to trace estimators. Monte Carlo methods
were first proposed by Hutchinson [11] and subsequently improved and expanded to
different distributions [2, 8, 19]. Applications of trace estimators, reviewed in [24],
include estimating density of states, log determinants, and Schatten p-norms.

Diagonal estimation has also been applied to the inverse of a matrix, with methods
based on domain decomposition [21] and deterministic probing vectors derived from
graph coloring [22].

Literature review. To our knowledge, Monte Carlo diagonal estimators were first
proposed by Bekas, Kokiopoulou, and Saad [4], who gave a sufficient condition for a
Monte Carlo estimator to be unbiased. They also pointed out that large off-diagonal
elements can result in large relative errors and developed probing methods to mitigate
the effects of the off-diagonal elements. This idea is further explored in [12, 14, 22].

We are aware of a recent paper [3] as the only other work to analyze the sam-
pling amount required to achieve a user-specified relative error with high probability.
In contrast to [3], our proofs are the first to exploit matrix concentration inequal-
ities to impose a systematic structure that can serve as a model for future analy-
ses and allow us to analyze the normwise errors in different norms. We analyze
more general distributions such as random vectors with bounded fourth moments and
sparse Rademacher vectors with a user-specified sparsity parameter, and---in con-
trast to [3]---focus on unnormalized estimators. Most of our bounds do not show
an explicit dependence on the matrix dimension, which is desirable for large-scale
problems.

1.1. Contributions and overview. After introducing notation, relevant con-
centration inequalities, and the setup for our analysis (section 2.1), we derive norm-
wise error bounds for Monte Carlo estimators based on Rademacher vectors (section
3), random vectors with bounded fourth moments and Gaussian vectors (section 4),
and componentwise bounds for Rademacher and Gaussian vectors (section 5) and ap-
ply Monte Carlo estimators to derivative-based global sensitivity metrics (section 6).
Numerical experiments (section 7) and implementations (Algorithms 7.1 and 7.2) il-
lustrate the accuracy and cost effectiveness of the Monte Carlo estimators. The novel
features of our contributions are the following:

1. Most of our bounds exhibit no explicit dependence on the matrix
dimension n, including the normwise (section 3) and elementwise (section
5) bounds for Rademacher-based estimators. Moreover, our bounds hold for
all symmetric matrices, whether positive definite or not.

2. Our normwise bounds suggest that Rademacher-based Monte Carlo estima-
tors are more accurate for matrices that are more strongly diagonally dom-
inant (Theorem 3.2). In particular, the least sampling amount required for
the Monte Carlo estimators to achieve a user-specified relative error decreases
with increasing diagonal dominance of \bfitA in the relative sense (Corollaries 3.3
and 4.2).

3. We introduce Monte Carlo estimators based on Rademacher vectors that are
parameterized in terms of sparsity levels (Definition 3.4) and show that they
lose accuracy with increasing sparsity (Theorem 3.5, Corollary 3.6). Numeri-
cal experiments (section 7) confirm that, even for large sampling amounts, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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242 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

estimators barely achieve a single digit of accuracy. Therefore, we recommend
against their use in practice.

4. Our componentwise bounds suggest that the accuracy for computing a diag-
onal element aii depends only on the diagonal dominance of column/row i of
\bfitA (Corollaries 5.4 and 5.6).

5. In the context of derivative-based global sensitivity metrics, we design and
analyze Monte Carlo estimators based on random vectors from a problem-
specific probability distribution (Theorem 6.1, Corollary 6.2). Furthermore,
we illustrate the accuracy of Rademacher-based Monte Carlo estimators for
node centrality measures in network science (section 7.8).

2. Background. After reviewing notation (section 2.1) and relevant concentra-
tion inequalities (section 2.2), we present the setup for our analysis (section 2.3).

2.1. Notation. The Schur product (or Hadamard , or elementwise, product) of
\bfitA ,\bfitB \in \BbbR m\times n is denoted by \bfitC =\bfitA \circ \bfitB \in \BbbR m\times n and has elements

cij = aijbij 1\leq 1\leq m, 1\leq j \leq n.

For \bfitA ,\bfitB ,\bfitC \in \BbbR m\times n, the Schur product is commutative and distributive,

\bfitA \circ \bfitB =\bfitB \circ \bfitA , \bfitA \circ (\bfitB +\bfitC ) =\bfitA \circ \bfitB +\bfitA \circ \bfitC .

Following MATLAB convention, we define diag(\bfitA ) =
\bigl[ 
a11 \cdot \cdot \cdot ann

\bigr] \top \in \BbbR n as the
column vector of diagonal elements of \bfitA \in \BbbR n\times n. The operator diag is overloaded,
and diag(\bfitx ) \in \BbbR n\times n represents a diagonal matrix whose diagonal elements are the
elements of the vector \bfitx \in \BbbR n. In particular,

\scrD (\bfitA )\equiv diag(diag(\bfitA )) = \bfitI \circ \bfitA =

\left[   a11 . . .

ann

\right]   \in \BbbR n\times n.(2.1)

In other words, \bfitI \circ \bfitA zeros out the off-diagonal elements of \bfitA .
If the first factor in a Schur product is a square matrix \bfitM \in \BbbR n\times n and the second

factor an outer product involving \bfitx ,\bfity \in \BbbR n, then

\bfitM \circ (\bfitx \bfity \top ) = diag(\bfitx )\bfitM diag(\bfity ).(2.2)

For symmetric matrices \bfitA ,\bfitB \in \BbbR n\times n, the partial order \bfitA \preceq \bfitB or, equivalently,
\bfitB \succeq \bfitA says that \bfitB  - \bfitA is positive semidefinite. If \bfitA and \bfitB are positive semidefinite,
then \bfitA \preceq \bfitB implies that \bfitA 1/2 \preceq \bfitB 1/2.

The intrinsic dimension of a nonzero symmetric positive semidefinite matrix \bfitA \in 
\BbbR n\times n is

intdim(\bfitA )\equiv trace(\bfitA )

\| \bfitA \| 2
with 1\leq intdim(\bfitA )\leq rank(\bfitA )\leq n.

If, additionally, \bfitA is a diagonal matrix, then

intdim(\bfitA ) =

\sum n
i=1 aii

max1\leq i\leq n aii
.

The columns of \bfitA =
\bigl[ 
\bfita 1 \cdot \cdot \cdot \bfita n

\bigr] 
\in \BbbR m\times n are \bfita j \in \BbbR m, 1\leq j \leq n, and the columns

of the identity \bfitI =
\bigl[ 
\bfite 1 \cdot \cdot \cdot \bfite n

\bigr] 
\in \BbbR n\times n are \bfite j \in \BbbR n. The transpose of \bfitA is \bfitA \top .

We denote by \BbbP [\scrE ] the probability of an event \scrE and by \BbbE [Z] the expectation of
a random variable Z, which can be a scalar-, vector-, or matrix-valued.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

1/
23

 to
 1

52
.7

.2
55

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 243

2.2. Concentration inequalities. We rely on two scalar and two matrix con-
centration inequalities.

Markov's inequality [18, section 3.1] bounds the probability that a random vari-
able exceeds a constant.

Theorem 2.1 (Markov's inequality). If Z is a nonnegative random variable,
then for t > 0,

\BbbP [Z \geq t]\leq \BbbE [Z2]

t2
.

Hoeffding's inequality for general bounded random variables [25, Theorem 2.2.6]
bounds the probability that a sum of scalar random variables exceeds its mean.

Theorem 2.2 (Scalar Hoeffding inequality). Let Z1, . . . ,ZN be independent ran-
dom variables, bounded by mk \leq Zk \leq Mk, 1\leq k \leq N , with sum Z \equiv 

\sum N
k=1Zk. Then

for t > 0,

\BbbP [| Z  - \BbbE [Z]| \geq t]\leq 2exp

\Biggl( 
 - 2t2\sum N

k=1 (Mk  - mk)2

\Biggr) 
.

Next are two bounds for sums of independent symmetric matrix-valued random
variables. The first is a matrix Bernstein concentration inequality [23, Theorems 7.3.1
and 7.7.1] for sums of independent, symmetric, bounded, zero-mean random matrices.

Theorem 2.3 (Matrix Bernstein inequality). Let \bfitS 1, . . . ,\bfitS N \in \BbbR n\times n be inde-
pendent symmetric random matrices with

\BbbE [\bfitS k] = 0, \| \bfitS k\| 2 \leq L, 1\leq k\leq N.

Let \bfitS \equiv 
\sum N

k=1\bfitS k have a matrix-valued variance that is majorized by \bfitV \in \BbbR n\times n:

\bfitV \succeq Var(\bfitS ) =\BbbE [\bfitS 2] =

N\sum 
k=1

\BbbE [\bfitS 2
k].

Abbreviate \nu \equiv \| \bfitV \| 2 and d\equiv intdim(\bfitV ). Then for t > 0,

(2.3) \BbbP [\| \bfitS \| 2 \geq t]\leq 8d exp

\biggl( 
 - t2

2(\nu +Lt/3)

\biggr) 
.

Proof. In [23, Theorems 7.3.1 and 7.7.1], it is shown that (2.3) holds, provided
t\geq 

\surd 
\nu + L

3 . If t <
\surd 
\nu +L/3. Then the bound holds vacuously because the right-hand

side of (2.3) is less than 1 if and only if

t >
L\ell 

3
+

\sqrt{} 
(L\ell /3)

2
+ 2\ell \nu , where \ell \equiv ln(8d).

Since \ell > 1, this lower bound on t is strictly greater than
\surd 
\nu +L/3.

The second matrix concentration inequality [6, Theorem 3.2] bounds the mean of
the squared norm of the sum of symmetric random matrices.

Theorem 2.4. Let \bfitS 1, . . . ,\bfitS N \in \BbbR n\times n with n\geq 3 be independent centered sym-
metric random matrices with zero mean. Then

\BbbE 

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

\bfitS k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  1/2

\leq 
\surd 
2e lnn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 

N\sum 
k=1

\BbbE [\bfitS 2
k]

\Biggr) 1/2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+ 4e lnn

\biggl( 
\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitS k\| 22

\biggr] \biggr) 1/2

.
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244 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

2.3. Setup for the analysis. Our Monte Carlo estimators compute the diag-
onal elements of a symmetric matrix \bfitA \in \BbbR n\times n by means of matrix vector products
with \bfitA . They sample N independent random vectors \bfitw k \in \BbbR n and approximate the
vector of diagonal elements diag(\bfitA )\in \BbbR n by the mean

diag(\widehat \bfitA ) =
1

N

N\sum 
k=1

((\bfitA \bfitw k) \circ \bfitw k)\in \BbbR n, where \widehat \bfitA \equiv 1

N

N\sum 
k=1

\bfitA \bfitw k\bfitw 
\top 
k \in \BbbR n\times n.

To see this, write the ith diagonal element of the estimator as

\widehat \bfitA ii =
1

N

N\sum 
k=1

(\bfitA \bfitw k\bfitw 
\top 
k )ii =

1

N

N\sum 
k=1

(\bfitA \bfitw k)i (\bfitw 
\top 
k )i

=
1

N

N\sum 
k=1

((\bfitA \bfitw k) \circ \bfitw k)i , 1\leq i\leq n.

We measure the cost of a diagonal estimator by the number N of samples and
assess the accuracy with normwise and componentwise relative errors. Section 7.1
presents pseudocodes for the estimators and a discussion of the computational cost.

3. Normwise bounds for Rademacher random vectors. We present norm-
wise bounds for Monte Carlo estimators based on standard (section 3.1) and on sparse
Rademacher vectors (section 3.2).

3.1. Standard Rademacher vectors. After defining Rademacher vectors
(Definition 3.1) and discussing their properties (Remarks 3.1 and 3.2), we present
a normwise absolute error bound (Theorem 3.2) and a bound on the minimal sam-
pling amount to achieve a user-specified relative error (Corollary 3.3).

Definition 3.1. A Rademacher random variable takes on the values \pm 1 with
equal probability 1/2. A Rademacher vector is a random vector whose elements are
independent Rademacher random variables.

Standard Rademacher vectors have the advantage of cheap matrix vector products
and the ability to immediately recover diagonal matrices.

Remark 3.1. The elements wj of a Rademacher vector \bfitw \in \BbbR n have the following
properties:

1. Zero mean: \BbbE [wj ] = 0, 1\leq j \leq n.
2. Constant square: w2

j = 1, 1\leq j \leq n.
3. Independence: \BbbE [wjwi] = 0 for i \not = j.

Remark 3.2. Standard Rademacher vectors recover a diagonal matrix with a
single sample, N = 1.

To see this, let \bfitA = \scrD (\bfitA ) \in \BbbR n\times n be diagona, and \bfitw \in \BbbR n be a Rademacher
vector. Remark 3.1 implies that \bfitA \bfitw \bfitw \top \in \BbbR n\times n has diagonal elements aiiw

2
i = aii,

1\leq i\leq n.

As a consequence, we can focus the analysis of standard Rademacher-based es-
timators on nondiagonal matrices. The p-norm bound below is a special case of the
one for sparse Rademacher vectors in section 3.2.

Theorem 3.2. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric and

K1 \equiv \| \scrD (\bfitA 2) - \scrD (\bfitA )2\| p, K2 \equiv \| \bfitA  - \scrD (\bfitA )\| \infty ,

d\equiv trace
\bigl( 
\scrD (\bfitA 2) - \scrD (\bfitA )2

\bigr) 
/K1.
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 245

If \widehat \bfitA \equiv 1
N

\sum N
k=1\bfitA \bfitw k\bfitw 

\top 
k is a Monte Carlo estimator with independent Rademacher

vectors \bfitw k \in \BbbR n, 1\leq k \leq N , then the probability that the absolute error exceeds t > 0
is at most

\BbbP 
\Bigl[ 
\| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| p \geq t

\Bigr] 
\leq 8d exp

\biggl( 
 - Nt2

2(K1 + tK2/3)

\biggr) 
.

Proof. This is the special case s= 1 of Theorem 3.5.

Interpretation. The constants K1, K2, and d represent the deviation of \bfitA from
diagonality. More specifically, K1 and K2 represent the degree of diagonal dominance
of \bfitA in the absolute sense and d in the relative sense. Theorem 3.2 implies that the
Rademacher estimator has a small absolute error when applied to strongly diagonally
dominant matrices. In other words, the normwise absolute error in the Rademacher
estimator decreases with increasing diagonal dominance of \bfitA .

Remark 3.4 shows that K1 and d are equal to quantities in the probability (2.3),
while only K2 represents a bound.

We determine the least sampling amount required for a Rademacher-based Monte
Carlo estimator to achieve a user-specified normwise relative error \epsilon with a user-
specified success probability 1  - \delta . For convenience, Corollary 3.3 is expressed in
terms of a single norm.

Corollary 3.3. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric. Let

K1 \equiv \| \scrD (\bfitA 2) - \scrD (\bfitA )2\| \infty ,

\Delta 1 \equiv 
K1

\| \scrD (\bfitA )\| 2\infty 
, \Delta 2 \equiv 

\| \bfitA  - \scrD (\bfitA )\| \infty 
\| \scrD (\bfitA )\| \infty 

, d\equiv 
trace

\bigl( 
\scrD (\bfitA 2) - \scrD (\bfitA )2

\bigr) 
K1

,

and let \widehat \bfitA \equiv 1
N

\sum N
k=1\bfitA \bfitw k\bfitw 

\top 
k be a Monte Carlo estimator with independent

Rademacher vectors \bfitw k \in \BbbR n, 1 \leq k \leq N . Pick \epsilon > 0 and 0 < \delta < 1. If the
sampling amount is at least

(3.1) N \geq 2

3\epsilon 2
(3\Delta 1 + \epsilon \Delta 2) ln (8d/\delta ),

then \| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| \infty \leq \epsilon \| \scrD (\bfitA )\| \infty holds with probability at least 1 - \delta .

Proof. This is the special case s= 1 of Corollary 3.6.

Interpretation. The constants \Delta 1 and \Delta 2 in Corollary 3.3 represent the respec-
tive relative counterparts of K1 and K2 in Theorem 3.2: They represent the relative
deviation of \bfitA from diagonality and more specifically the degree of diagonal domi-
nance of \bfitA in the relative sense. Corollary 3.3 implies that if \bfitA is strongly diagonally
dominant in the relative sense, then a small sampling amount suffices to achieve a
normwise relative error with user-specified probability. As with many randomized
sampling algorithms, the lower bound for N is proportional to 1/\epsilon 2.

3.2. Sparse Rademacher vectors. For Rademacher vectors that are parame-
terized in terms of sparsity (Definition 3.4, Remark 3.3), we derive a normwise absolute
error bound (Theorem 3.5) and comment on the constants and the sparsity (Remarks
3.4 and 3.5), followed by the minimal sampling amount to achieve a user-specified
error relative error (Corollary 3.6).

The random vectors in [1] have elements that assume values from the discrete
distribution \{  - 

\surd 
3 ,0 ,

\surd 
3\} with respective probability \{ 1

6 ,
2
3 ,

1
6\} . This concept was

extended in [17, equation (2)] to Rademacher vectors that are parameterized in terms
of a sparsity parameter s.
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246 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

Definition 3.4. A sparse Rademacher random variable with parameter s \geq 1
takes the values \{  - 

\surd 
s, 0,

\surd 
s\} with probability \{ 1

2s , 1 - 
1
s ,

1
2s\} , respectively.

A sparse Rademacher vector is a random vector whose elements are independent
sparse Rademacher random variables.

The properties of sparse Rademacher vectors are almost the same as those of the
standard Rademacher vectors in Remark 3.1.

Remark 3.3. The elements of a sparse Rademacher vector \bfitw \in \BbbR n with parameter
s\geq 1 have the following properties:

1. Zero mean: \BbbE [wj ] = 0, 1\leq j \leq n.
2. Unit variance: \BbbE [w2

j ] = 1, 1\leq j \leq n.
3. Fourth moment: \BbbE [w4

j ] = s, 1\leq j \leq n.
4. Independence: For i \not = j and integer \ell \geq 1.

\BbbE [w2
iw

2
j ] = 1, \BbbE [w\ell 

iwj ] =\BbbE [wiw
\ell 
j ] = 0.

The case s= 1 corresponds to the standard Rademacher vectors (Definition 3.1),
while s= 3 corresponds to the choice in [1].

Below is the extension of the p-norm bound in Theorem 3.2 to sparse Rademacher
vectors with integer parameters s.

Theorem 3.5. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric, and let

K1(s)\equiv \| \scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2\| p, K2(s)\equiv \| s\bfitA  - \scrD (\bfitA )\| \infty ,

d(s)\equiv trace
\bigl( 
\scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2

\bigr) 
/K1(s).

Let \widehat \bfitA \equiv 1
N

\sum N
j=1\bfitA \bfitw k\bfitw 

\top 
k be a Monte Carlo estimator with independent sparse

Rademacher random vectors \bfitw k \in \BbbR n with integer parameter s\geq 1. Then the proba-
bility that the absolute error exceeds t > 0 is at most

\BbbP 
\Bigl[ 
\| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| p \geq t

\Bigr] 
\leq 8d(s) exp

\biggl( 
 - Nt2

2(K1(s) + tK2(s)/3)

\biggr) 
.

Proof. Define the random diagonal matrices

\bfitS k \equiv 
1

N

\bigl( 
\bfitI \circ (\bfitA \bfitw k\bfitw 

\top 
k ) - \bfitI \circ \bfitA 

\bigr) 
, 1\leq k\leq N,(3.2)

and their sum

\bfitZ \equiv 
N\sum 

k=1

\bfitS k = \bfitI \circ \widehat \bfitA  - \bfitI \circ \bfitA =\scrD (\bfitA ) - \scrD (\widehat \bfitA ).(3.3)

Before applying Theorem 2.3, we need to verify the assumptions for the Bernstein
inequality.

1. Expectation. Remark 3.3 implies that \BbbE [\bfitw k\bfitw 
\top 
k ] = \bfitI , and from the linearity of

the expectation follows

\BbbE [\bfitS k] =\BbbE 
\biggl[ 
1

N

\bigl( 
\scrD (\bfitA \bfitw k\bfitw 

\top 
k ) - \scrD (\bfitA )

\bigr) \biggr] 
=

1

N

\bigl( 
\scrD (\bfitA \BbbE [\bfitw k\bfitw 

\top 
k ]) - \scrD (\bfitA )

\bigr) 
= 0, 1\leq k\leq N.
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 247

2. Boundedness. From (3.2) follows that the diagonal matrices \bfitS k have diagonal
elements

(\bfitS k)ii =
1

N
((\bfitA \bfitw k)i(\bfitw k)i  - aii) =

1

N

\left(  (\bfitw k)i

n\sum 
j=1

aij(\bfitw k)j  - aii

\right)  (3.4)

=
1

N

\left(  aii((\bfitw k)
2
i  - 1) + (\bfitw k)i

\sum 
j \not =i

aij(\bfitw k)j

\right)  , 1\leq i\leq n, 1\leq k\leq N.

Because s\geq 1 is an integer, we have | ((\bfitw k)
2
i  - 1)aii| \leq (s - 1)| aii| and

| (\bfitS k)ii| \leq 
1

N

\left(  (s - 1)| aii| + s
\sum 
j \not =i

| aij | 

\right)  
=

1

N
(s\| \bfita i\| 1  - | aii| ) , 1\leq i\leq n, 1\leq k\leq N.

Since \bfitS k is diagonal, its 2-norm is bounded by

\| \bfitS k\| 2 = max
1\leq i\leq n

| (\bfitS k)ii| \leq 
1

N
max
1\leq i\leq n

(s\| \bfita i\| 1  - | aii| )

=
1

N
\| s\bfitA  - \scrD (\bfitA )\| \infty =

K2(s)

N
, 1\leq k\leq N.

Set L(s)\equiv K2(s)/N , where K2(s)> 0 since \bfitA is not diagonal.
3. Variance. Since \bfitS k is diagonal, so is \bfitS 2

k. Unraveling the individual diagonal
elements in (3.4) and abbreviating \bfitu \equiv \bfitw k gives

N2(\bfitS 2
k)ii =

\left(  ui

n\sum 
j=1

aijuj  - aii

\right)  2

= u2
i

n\sum 
j=1

n\sum 
j
\prime 
=1

aijaij\prime ujuj
\prime  - 2aiiui

n\sum 
j=1

aijuj + a2ii.

Repeated application of the properties in Remark 3.3 leads to

\BbbE [N2(\bfitS 2
k)ii] =\BbbE 

\left[  a2iiu4
i +

\sum 
j \not =i

a2iju
2
iu

2
j  - 2a2iiu

2
i + a2ii

\right]  
= sa2ii +

\sum 
j \not =i

a2ij  - 2a2ii + a2ii

= \| \bfita i\| 22 + (s - 2)a2ii.

Sum up the individual variances:

\bfitV (s)\equiv Var[\bfitZ ] =

N\sum 
k=1

\BbbE [\bfitS 2
k] =

1

N2

N\sum 
k=1

\bigl( 
\scrD (\bfitA 2) + (s - 2)\bfitD 2

\bigr) 
=

1

N

\bigl( 
\scrD (\bfitA 2) + (s - 2)\bfitD 2

\bigr) 
.

Since \bfitV (s) is diagonal, all p-norms are the same,

\nu (s)\equiv \| \bfitV (s)\| 2 =
1

N
\| \scrD (\bfitA 2) + (s - 2)\bfitD 2\| p =

K1(s)

N
,
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248 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

where K1(s)> 0 since \bfitA is not diagonal. The intrinsic dimension of \bfitV (s) is

d(s)\equiv intdim(\bfitV ) =
trace(\scrD (\bfitA 2) + (s - 2)\bfitD 2)

N\nu (s)
.

4. Apply Theorem 2.3. Substituting L(s) = K2(s)/N and \nu (s) = K1(s)/N into
Theorem 2.3, exploiting the fact that the p-norms of a diagonal matrix are all the
same, and remembering that the sum \bfitZ in (3.3) has zero mean gives

\BbbP [\| \bfitZ \| p \geq t] = \BbbP 
\Bigl[ 
\| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| p \geq t

\Bigr] 
\leq 8d(s) exp

\biggl( 
 - Nt2

2(K1(s) + tK2(s)/3)

\biggr) 
.

Interpretation. In the special case s= 1 of standard Rademacher vectors, Theo-
rem 3.5 reduces to Theorem 3.2. However, sparse Rademacher Monte Carlo estimators
with s > 1 do, in general, not recover a diagonal matrix with a single sample, N = 1.

As s increases, so do the constants K1(s) and K2(s) and the upper bound as a
whole. In other words, the sparser the vectors \bfitw k, the less accurate the Monte Carlo
estimate \scrD (\widehat \bfitA ).

Remark 3.4 (tightness of the bounds). The constants in Theorem 3.5 arise natu-
rally in the concentration inequality in Theorem 3.3. Specifically, K1(s) and d(s) are
equal to quantities in the probability (2.3), and only K2(s) represents a bound.

To see this, note that K1(s) and d(s) are part of expressions---not bounds---for
the variance norm and intrinsic dimension:

\bfitV =Var(\bfitS ) =
1

N

\bigl( 
\scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2

\bigr) 
,

\nu = \| \bfitV \| p =
1

N
K1(s),

d(s) = intdim(\bfitV ) =
1

K1(s)
trace

\bigl( 
\scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2

\bigr) 
.

Remark 3.5 (noninteger sparsity levels). The restriction to integers s in Theorem
3.5 is relevant only for 1 < s < 2. More generally, Theorem 3.5 holds for s = 1 and
any real number s\geq 2.

The extension below of Corollary 3.3 presents the minimal sampling amount so
that the sparse Rademacher Monte Carlo estimator achieves a user-specified normwise
relative error \epsilon at a user-specified success probability 1 - \delta . For ease of understanding,
Corollary 3.3 is expressed in terms of a single norm.

Corollary 3.6. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric, and let

K1(s)\equiv \| \scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2\| \infty , \Delta 1(s)\equiv 
K1(s)

\| \scrD (\bfitA )\| 2\infty 

\Delta 2(s)\equiv 
\| s\bfitA  - \scrD (\bfitA )\| \infty 

\| \scrD (\bfitA )\| \infty 
, d(s)\equiv 

trace
\bigl( 
\scrD (\bfitA 2) + (s - 2)\scrD (\bfitA )2

\bigr) 
K1(s)

.

Let \widehat \bfitA \equiv 1
N

\sum N
j=1\bfitA \bfitw k\bfitw 

\top 
k be a Monte Carlo estimator with independent sparse

Rademacher random vectors \bfitw k \in \BbbR n with integer parameter s \geq 1. Pick \epsilon > 0
and 0< \delta < 1. If the sampling amount is at least

(3.5) N \geq 2

3\epsilon 2
(3\Delta 1(s) + \epsilon \Delta 2(s)) ln(8d(s)/\delta ),

then \| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| \infty \leq \epsilon \| \scrD (\bfitA )\| \infty holds with probability at least 1 - \delta .
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 249

Proof. Set p =\infty for the norms, denote the bound for the failure probability in
Theorem 3.5 by

\delta \equiv 8d(s) exp

\biggl( 
 - Nt2

2(K1(s) + tK2(s)/3)

\biggr) 
,

and solve it for N :

N \geq 2

t2
(K1(s) + tK2(s)/3) ln(8d(s)/\delta ).

With probability at least 1  - \delta , the normwise absolute error is bounded above by
\| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| \infty \leq t. Set t= \epsilon \| \scrD (\bfitA )\| \infty to convert the absolute error to a relative
one.

Interpretation. As in Corollary 3.3, the constants \Delta 1(s) and \Delta 2(s) are respective
relative counterparts of K1(s) and K2(s) in Theorem 3.5, namely, the relative devia-
tion of \bfitA from diagonality and more specifically the degree of diagonal dominance of
\bfitA in the relative sense. Corollary 3.6 implies that if \bfitA is strongly diagonally dominant
in the relative sense, then a small sampling amount suffices to achieve a user-specified
error with a user-specified probability.

Furthermore, Corollary 3.6 suggests that increasing the sparsity parameter s could
on the one hand lower the computational cost per sample but on the other increase
the sampling amount for the same accuracy.

4. Gaussian vectors. We present normwise bounds for random vectors with
bounded fourth moment (section 4.1) and standard Gaussian vectors (section 4.2).

4.1. Random vectors with bounded fourth moment. We bound the ex-
pectation of the squared absolute error (Theorem 4.1) for Monte Carlo estima-
tors based on random vectors \bfitw k with independent entries that have zero mean,
variance 1, and bounded fourth moment:

(4.1) \BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 
<+\infty .

These include standard Rademacher (section 3.1) and sparse Rademacher vectors
(section 3.2) as well as standard Gaussian vectors (section 4.2).

Theorem 4.1. Let \bfitA \in \BbbR n\times n with n\geq 3 be symmetric, and let

\widehat \bfitA \equiv 1

N

N\sum 
j=1

\bfitA \bfitw k\bfitw 
\top 
k

be a Monte Carlo estimator with independent random vectors \bfitw k \in \BbbR n, 1 \leq k \leq N ,
that have independent elements with zero mean, unit variance, and bounded fourth
moment (4.1). Then

\BbbE 
\Bigl[ 
\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| 2p

\Bigr] 1/2
\leq \| \bfitA \| \infty 

\Biggl( \sqrt{} 
8e lnn

N
+

8e lnn

N

\Biggr) \biggl( 
\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] \biggr) 1/2

.

Proof. We make use of matrix concentration inequalities but follow the spirit of
the analysis in [6].
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1. Symmetrization. Write the normwise error in terms of Schur products with
diagonal matrices (2.1),

\scrD (\widehat \bfitA ) - \scrD (\bfitA ) = \bfitI \circ \widehat \bfitA  - \bfitI \circ \bfitA =
1

N

N\sum 
k=1

\bigl( 
\bfitI \circ (\bfitA \bfitw k\bfitw 

\top 
k ) - \bfitI \circ \bfitA 

\bigr) 
,

and take expectations of the squared norms

\BbbE 
\biggl[ \bigm\| \bigm\| \bigm\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
=

1

N2
\BbbE 

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

\bigl( 
\bfitI \circ (\bfitA \bfitw k\bfitw 

\top 
k ) - \bfitI \circ \bfitA 

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  .
From \bfitw k having independent elements with zero mean and unit variance follows that
\BbbE [\bfitI \circ (\bfitA \bfitw k\bfitw 

\top 
k )] = \bfitI \circ \bfitA . Hence, the matrix random variables

\bfitX k \equiv \bfitI \circ (\bfitA \bfitw k\bfitw 
\top 
k ) - \bfitI \circ \bfitA , 1\leq k\leq N,

have zero mean. We use symmetrization [25, Lemma 6.4.2] to create symmetric ran-
dom variables \varepsilon k\bfitX k, where \varepsilon k are independent symmetric Bernoulli random vari-
ables, in other words, Rademacher variables in Definition 3.1. The Rademacher
variables \varepsilon k are independent of each other and also independent of the random vectors
\bfitw k. Remark 3.1 implies that \BbbE [\varepsilon k] = 0. Hence,

(4.2) \BbbE 

\Biggl[ 
N\sum 

k=1

\varepsilon k \bfitI \circ \bfitA 

\Biggr] 
= 0.

Then the symmetrization [25, Lemma 6.4.2], followed by (4.2) and (2.2), implies that

\BbbE 
\biggl[ \bigm\| \bigm\| \bigm\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
=

1

N2
\BbbE 

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

\bfitX k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  \leq 2\BbbE 

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

\varepsilon k \bfitI \circ (\bfitA \bfitw k\bfitw 
\top 
k )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  
= 2\BbbE 

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

\bfitY k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  , where \bfitY k \equiv \varepsilon k diag(\bfitA \bfitw k)diag(\bfitw k)(4.3)

are symmetric random matrices and the second and third expectations above range
over all random vectors \bfitw k and all Rademacher variables \varepsilon k.

2. Concentration inequality . Applying the Cauchy--Schwartz inequality and The-
orem 2.4 to the sum \bfitZ \equiv 

\sum N
k=1\bfitY k gives

\BbbE [\| \bfitZ \| 22]1/2 \leq 
\surd 
2e lnn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 

N\sum 
i=1

\BbbE [\bfitY 2
k]

\Biggr) 1/2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+ 4e lnn\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitY k\| 22

\biggr] 1/2
.(4.4)

We bound separately the expectations that represent the matrix variance and the
maximal 2-norm.

3. Variance. As in item 3 of the proof of Theorem 3.5, abbreviate

\bfitD k \equiv diag(\bfitA \bfitw k), \bfitW k \equiv diag(\bfitw k), \bfitO \equiv diag
\bigl( \bigl[ 
\| \bfita 1\| 1 \cdot \cdot \cdot \| \bfita n\| 1

\bigr] \bigr) 
so that \BbbE [\bfitY 2

k] =\BbbE [\bfitD 2
k\bfitW 

2
k]. Apply the H\"older inequality [10, equation (2.2.2)] to the

diagonal elements:

(\bfitD 2
k\bfitW 

2
k)ii =

\left(  n\sum 
j=1

aij(\bfitw k)j

\right)  2

(\bfitw k)
2
i \leq \| \bfita i\| 21\| \bfitw k\| 4\infty , 1\leq i\leq n.
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 251

For the diagonal matrices as a whole, this implies that \bfitD 2
k\bfitW 

2
k \preceq \| \bfitw k\| 4\infty \bfitO 2, and the

symmetry of \bfitA gives \bfitO \preceq \| \bfitA \| \infty \bfitI . Combine the two inequalities in the expectation,

\BbbE [\bfitY 2
k] =\BbbE [\bfitD 2

k\bfitW 
2
k]\preceq \| \bfitA \| 2\infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 
\bfitI ;(4.5)

take the square root of the sum,\Biggl( 
N\sum 

k=1

\BbbE [\bfitY 2
k]

\Biggr) 1/2

\preceq 
\surd 
N \| \bfitA \| \infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 1/2
\bfitI ;

and bound the norm,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 

N\sum 
k=1

\BbbE [\bfitY 2
k]

\Biggr) 1/2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\surd 
N \| \bfitA \| \infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 1/2
.(4.6)

4. Maximal 2-norm. In analogy to (4.5), we derive

\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitY k\| 22

\biggr] 
\leq \| \bfitA \| 2\infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 
and its square root

\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitY k\| 22

\biggr] 1/2
\leq \| \bfitA \| \infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 1/2
.(4.7)

5. Putting everything together . Substitute the variance bound (4.6) and the norm
bound (4.7) into the expectation (4.4) for the sum

\BbbE [\| \bfitZ \| 2]1/2 \leq 
\Bigl( \surd 

2e lnnN1/2 + 4e lnn
\Bigr) 
\| \bfitA \| \infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 1/2
;

substitute this, in turn, into the expectation (4.3) for the absolute error,

\BbbE 
\Bigl[ 
\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| 22

\Bigr] 1/2
\leq 2

N
\BbbE [\| \bfitZ \| 2]1/2

\leq 2

N

\Bigl( \surd 
2e lnnN1/2 + 4e lnn

\Bigr) 
\| \bfitA \| \infty \BbbE 

\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] 1/2
;

and simplify. Exploit the fact that all the p-norms are the same for diagonal
matrices.

Interpretation. Theorem 4.1 bounds the expected absolute error of Monte Carlo
estimators based on a large class of random vectors. The bound depends logarith-
mically on the matrix dimension. The expected error in the Monte Carlo estimator
decreases with more sampling, a decrease in matrix norm, or a decrease in the fourth
moment of the random vectors.

4.2. Gaussian vectors. Gaussian vectors are a special case of random vectors
(4.1) whose elements have bounded fourth moment. For Monte Carlo estimators
based on Gaussian vectors, we determine the minimal sampling amount to achieve a
user-specified error \epsilon at at user-specified success probability 1 - \delta .
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Corollary 4.2. Let \bfitA \in \BbbR n\times n with n\geq 3 be symmetric, and let

\widehat \bfitA \equiv 1

N

N\sum 
j=1

\bfitA \bfitw k\bfitw 
\top 
k

be a Monte Carlo estimator with independent Gaussian random vectors \bfitw k \sim \scrN (0,\bfitI )
in \BbbR n, 1 \leq k \leq N . Pick \epsilon > 0 and 0 < \delta < 1. If the sampling amount N satisfies
8e lnn\leq N \leq n and is at least

N \geq 128 (e lnn)3

\epsilon 2 \delta 

\biggl( 
\| \bfitA \| \infty 

\| \scrD (\bfitA )\| \infty 

\biggr) 2

,(4.8)

then \| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| \infty \leq \epsilon \| \scrD (\bfitA )\| \infty holds with probability at least 1 - \delta .

Proof. For Gaussian random vectors \bfitw k \sim \scrN (0,\bfitI ), [6, (3.7)] implies that\biggl( 
\BbbE 
\biggl[ 
max

1\leq k\leq N
\| \bfitw k\| 4\infty 

\biggr] \biggr) 1/2

\leq e ln (nN) max
1\leq i,j\leq n

| \bfitI ij | = e ln (nN).

Set p=\infty . Substituting this into Theorem 4.1 gives\Bigl( 
\BbbE 
\Bigl[ 
\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| 2\infty 

\Bigr] \Bigr) 1/2
\leq 

\Biggl( \sqrt{} 
8e lnn

N
+

8e lnn

N

\Biggr) 
e ln (nN) \| \bfitA \| \infty .

Square both sides, and apply Markov's inequality (Theorem 2.1) to the random vari-
able Z \equiv \| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| \infty using t\equiv \epsilon \| \scrD (\bfitA )\| \infty :

\BbbP 
\Bigl[ 
\| \scrD (\widehat \bfitA ) - \scrD (\bfitA )\| \infty \geq \epsilon \| \scrD (\bfitA )\| \infty 

\Bigr] 
(4.9)

\leq 

\Biggl( \sqrt{} 
8e lnn

N
+

8e lnn

N

\Biggr) 2

(e ln (nN))2
\| \bfitA \| 2\infty 

\epsilon 2 \| \scrD (\bfitA )\| 2\infty 
.

Substituting the assumption 8e lnn\leq N \leq n into the relevant part of the above bound
gives\Biggl( \sqrt{} 

8e lnn

N
+

8e lnn

N

\Biggr) 2

(e ln (nN))2 \leq 

\Biggl( 
2

\sqrt{} 
8e lnn

N

\Biggr) 2

(2e lnn)2 =
128 (e lnn)3

N
.

Substitute this, in turn, into (4.9); set the failure probability equal to

\delta \equiv 128 (e lnn)3

\epsilon 2N

\biggl( 
\| \bfitA \| \infty 

\| \scrD (\bfitA )\| \infty 

\biggr) 2

;

and solve for the sampling amount N .

5. Elementwise bounds. We present elementwise bounds for Monte Carlo es-
timators based on standard Rademacher vectors (section 5.1) as well as on standard
Gaussian (section 5.2) and normalized Gaussian vectors (section 5.3).

5.1. Standard Rademacher vectors. We start with an elementwise worst-
case absolute error bound (Corollary 5.1), consider products of Rademacher variables
(Lemma 5.2), and present a bound on the absolute error of individual diagonal ele-
ments (Theorem 5.3), followed by a bound on the minimal sampling amount required
for a specific diagonal element (Corollary 5.4).

We express Theorem 3.2 as a worst-case elementwise bound.
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 253

Corollary 5.1. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric, and let

K1 \equiv \| \scrD (\bfitA 2) - \scrD (\bfitA )2\| p, K2 \equiv \| \bfitA  - \scrD (\bfitA )\| \infty , d\equiv 
trace

\bigl( 
\scrD (\bfitA 2) - \scrD (\bfitA )2

\bigr) 
K1

.

If \widehat \bfitA \equiv 1
N

\sum N
k=1\bfitA \bfitw k\bfitw 

\top 
k is a Monte Carlo estimator with independent Rademacher

vectors \bfitw k \in \BbbR n, 1\leq k \leq N , then the probability that the absolute error exceeds t > 0
is at most

\BbbP 
\biggl[ 
max
1\leq i\leq n

| aii  - \widehat aii| \geq t

\biggr] 
\leq 8d exp

\biggl( 
 - Nt2

2(K1 + tK2/3)

\biggr) 
.

Proof. In Theorem 3.2, the p-norm of the diagonal matrix \scrD (\bfitA )  - \scrD (\widehat \bfitA ) is a
largest magnitude diagonal element.

Given n independent Rademacher variables, pick a (n+1)st independent variable,
and multiply it with each of the n variables. We show below that the resulting n
products are again independent.

Lemma 5.2. If Z1,W1,W2, . . . ,Wn are independent Rademacher variables, then
the products X1 \equiv ZW1, . . . ,Xn \equiv ZWn are also independent Rademacher variables.

Proof. For any x1, . . . , xn \in \{  - 1,+1\} , the law of total probability implies that the
joint probability mass function satisfies

\BbbP [\cap n
i=1 \{ Xi = xi\} ] =

\sum 
z\in \{  - 1,+1\} 

\BbbP [\cap n
i=1 \{ Xi = xi\} | Z = z]\BbbP [Z = z]

=
1

2
\BbbP [\cap n

i=1 \{ Wi = - xi\} ] +
1

2
\BbbP [\cap n

i=1 \{ Wi = xi\} ]

= 2 - n =

n\prod 
i=1

\BbbP [Xi = xi] .

This factorization of the joint probability mass function implies that X1, . . . ,Xn are
independent.

In contrast to Corollary 5.1, the following bound for the diagonal element aii
depends only on row/column i. In the special case where all off-diagonal elements in
row/column i are zero, the estimator recovers aii with a single sample.

Theorem 5.3. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric, and let

\widehat \bfitA \equiv 1

N

N\sum 
k=1

\bfitA \bfitw k\bfitw 
\top 
k

be a Monte Carlo estimator with independent Rademacher vectors \bfitw k \in \BbbR n, 1\leq k \leq 
N . The probability that the absolute error exceeds t > 0 is at most

(5.1) \BbbP [| \widehat aii  - aii| \geq t]\leq 2exp

\biggl( 
 - Nt2

2 (\| \bfita i\| 22  - a2ii)

\biggr) 
, 1\leq i\leq n.

In the special case where aij = 0 for j \not = i, we have \widehat aii = aii for all N \geq 1.
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254 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

Proof. Fix i for some 1 \leq i \leq n. Remark 3.1 allow us to split off the diagonal
element from the estimator as follows:

\widehat aii = 1

N

N\sum 
k=1

\bigl( 
\bfitA \bfitw k\bfitw 

\top 
k

\bigr) 
ii
=

1

N

N\sum 
k=1

n\sum 
j=1

aij (\bfitw k)j (\bfitw k)i

= aii +

N\sum 
k=1

\sum 
j \not =i

aij
N

(\bfitw k)j (\bfitw k)i\underbrace{}  \underbrace{}  
Z

(i)
kj

.

Thus, if aij = 0 for i \not = j, then \widehat aii = aii for all N \geq 1.

Lemma 5.2 implies that for fixed i, the Z
(i)
kj are independent, while Remark 3.1

implies that they have zero mean and are bounded by

 - | aij | 
N \leq Z

(i)
kj \leq | aij | 

N , 1\leq k\leq N, 1\leq j \leq n, j \not = i.

Hence, the absolute error \widehat aii - aii is a sum of independent bounded zero-mean random
variables, and we can apply Hoeffding's inequality in Theorem 2.2:

\BbbP [| \widehat aii  - aii| \geq t]\leq 2exp

\Biggl( 
 - 2t2\sum N

k=1

\sum 
j \not =i

\bigl( 
2
N | aij | 

\bigr) 2
\Biggr) 
= 2exp

\Biggl( 
 - Nt2

2
\sum 

j \not =i a
2
ij

\Biggr) 
.

Since the matrix elements are real, we can write
\sum 

j \not =i a
2
ij = \| \bfita i\| 22  - a2ii.

Interpretation. Theorem 5.3 implies that the accuracy of any estimated di-
agonal element \widehat aii depends only on the magnitude of the off-diagonal el-
ements in row/column i. The smaller the off-diagonal mass in row/
column i, the smaller the probability that \widehat aii has a large error. In the special case
where aii is the only nonzero element in row/column i, the estimator recovers it in a
single sample.

Note that the estimator is oblivious about the desired diagonal elements and that
the bound in Theorem 5.3 applies to all diagonal elements. However, if one wants to
estimate only a single diagonal element akk, then it can be extracted exactly with the
targeted matrix vector product \bfitA \bfite k.

However, if one wants to estimate several diagonal elements, then the sampling
amounts required to achieve a user-specified relative error \epsilon for a specific element
depend on its associated off-diagonal mass. The bound below coincides with [3, (40)],
but the proof is different.

Corollary 5.4. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric, and let

\widehat \bfitA \equiv 1

N

N\sum 
k=1

\bfitA \bfitw k\bfitw 
\top 
k

be a Monte Carlo estimator with independent Rademacher vectors \bfitw k \in \BbbR n, 1\leq k \leq 
N . Pick a diagonal element aii \not = 0, \epsilon > 0, and 0< \delta < 1. If the sampling amount is
at least

N \geq 
\biggl( 
\| \bfita i\| 22  - a2ii

a2ii

\biggr) 
2 ln(2/\delta )

\epsilon 2
,

then | aii  - \widehat aii| \leq \epsilon | aii| holds with probability at least 1 - \delta .
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 255

Proof. Define the 2-norm off-diagonal column sum for diagonal element aii by

offi \equiv (\| \bfita i\| 22  - a2ii)
1/2,

denote the bound for the failure probability in Theorem 5.3 by

\delta \equiv 2exp

\biggl( 
 - Nt2

2off2
i

\biggr) 
,

and solve it for t,

t=

\sqrt{} 
2off2

i

N
ln(2/\delta ).

Restate Theorem 5.3 in terms of the failure probability: With probability at most
1 - \delta , the absolute error in diagonal element aii is bounded by

| aii  - \widehat aii| \leq t=

\sqrt{} 
2off2

i

N
ln(2/\delta ).

Converting the absolute error to a relative error requires t \leq \epsilon | aii| , which implies
that

N \geq 
\biggl( 
offi

aii

\biggr) 2
2 ln(2/\delta )

\epsilon 2
.

Interpretation. The minimal sampling amount for the estimated \widehat aii depends on
the relative off-diagonal mass of column/row i. The smaller this off-diagonal mass,
the lower the sampling amount to achieve the user-specified relative error \epsilon with the
user-specified success probability 1 - \delta .

5.2. Gaussian vectors. We present an elementwise absolute error bound (The-
orem 5.5) for Gaussian-based Monte Carlo estimators and a bound on the minimal
sampling amount to achieve a user-specified relaive error at a user-specified probabil-
ity (Corollary 5.6). The bounds are derived from and identical to bounds for trace
estimators in [8].

Theorem 5.5. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric,

L1i \equiv | aii| + \| \bfita i\| 2, Li2 \equiv | aii| 2 + \| \bfita i\| 22, 1\leq i\leq n,

and let \widehat \bfitA \equiv 1
N

\sum N
k=1\bfitA \bfitw k\bfitw 

\top 
k \in \BbbR n\times n be a Monte Carlo estimator with independent

Gaussian vectors \bfitw k \sim \scrN (0,\bfitI ) in \BbbR n, 1\leq k\leq N . If t > 0, then

(5.2) \BbbP [| \widehat aii  - aii| > t]\leq 2exp

\biggl( 
 - Nt2

2(Li2 + tLi1)

\biggr) 
, 1\leq i\leq n.

Proof. Fix i for some 1\leq i\leq n. Write the diagonal element as an inner product

(\bfitA \bfitw k\bfitw 
\top 
k )ii =

n\sum 
j=1

aij(\bfitw k)j(\bfitw k)i =\bfitw \top 
k \bfitB i\bfitw k, 1\leq k\leq N,
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256 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

involving the symmetric matrix

\bfitB i \equiv 

\left[        

0 1
2a1i 0
...

1
2ai1 \cdot \cdot \cdot aii \cdot \cdot \cdot 1

2ain
...

0 1
2ani 0

\right]        \in \BbbR n\times n with trace(\bfitB i) = aii.

We can interpret

\widehat aii =\Biggl( 1

N

N\sum 
k=1

\bfitA \bfitw k\bfitw 
\top 
k

\Biggr) 
ii

=
1

N

N\sum 
k=1

\bigl( 
\bfitA \bfitw k\bfitw 

\top 
k

\bigr) 
ii
=

1

N

N\sum 
k=1

\bfitw \top 
k \bfitB i\bfitw k

as a Monte Carlo estimator for trace(\bfitB i) and apply the bound for Gaussian trace
estimators [8, Theorem 1]

\BbbP [| \widehat aii  - aii| \geq t]\leq 2exp

\biggl( 
 - Nt2

4\| \bfitB i\| 2F + 4t\| \bfitB i\| 2

\biggr) 
,

where

\| \bfitB i\| 2F =
1

2

\bigl( 
| aii| 2 + \| \bfita i\| 22

\bigr) 
=

Li2

2
, \| \bfitB i\| 2 =

1

2
(| aii| + \| \bfita i\| 2) =

Li1

2
.

Interpretation. Theorem 5.5 implies that the accuracy of any single diagonal el-
ement \widehat aii from a Gaussian-based Monte Carlo estimator depends on the norm of the
corresponding row/column. Thus, the smaller the norm of row/column i, the smaller
the probability that \widehat aii has a large error.

In contrast, the bounds for Rademacher-based Monte Carlo estimators in Theo-
rem 5.3 depend only on the magnitude of the off-diagonal elements.

Corollary 5.6. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric,

\Delta 1i \equiv 1 +
\| \bfita i\| 2
| aii| 

, \Delta i2 \equiv 1 +

\biggl( 
\| \bfita i\| 2
| aii| 

\biggr) 2

, 1\leq i\leq n,

and let \widehat \bfitA \equiv 1
N

\sum N
k=1\bfitA \bfitz k\bfitz 

\top 
k \in \BbbR n\times n be a Monte Carlo estimator with independent

Gaussian vectors \bfitz k \sim \scrN (0,\bfitI ) in \BbbR n, 1\leq k \leq N . Pick aii \not = 0, \epsilon > 0, and 0< \delta < 1.
If the sampling amount is at least

N \geq (\Delta 2i +\Delta 1i\epsilon )
2 ln (2/\delta )

\epsilon 2
,

then | \widehat aii  - aii| \leq \epsilon | aii| holds with probability at least 1 - \delta .

Proof. This follows immediately from the lower bound for N in [8, Theorem 1].

The required sampling amount for computing aii with the Gaussian Monte Carlo
estimator depends on \| \bfita i\| 2/| aii| , which can be interpreted as the 2-norm deviation
of column/row i of \bfitA from diagonality. The more diagonal row/column i, the smaller
the sampling amount.
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MONTE CARLO METHODS FOR DIAGONAL ESTIMATORS 257

5.3. Normalized Gaussian vectors. We extend and complete the analysis in
[4] for Monte Carlo estimators based on normalized Gaussian vectors,

(5.3) \widehat \bfitA \equiv 

\Biggl( 
N\sum 

k=1

\bfitA \bfitw k\bfitw 
\top 
k

\Biggr) 
\oslash 

\Biggl( 
N\sum 

k=1

\bfitw k\bfitw 
\top 
k

\Biggr) 
,

where \bfitw k \in \BbbR n are independent Gaussian random vectors and \oslash denotes elementwise
division. We derive the distribution of the elementwise absolute errors (Lemma 5.7)
followed by a bound (Theorem 5.8).

We represent the distribution of the absolute errors in the diagonal elements in
terms of a Student t-distribution with N \geq 1 degrees of freedom [16, Definition 7.3.3],

(5.4) TN \equiv Z\sqrt{} 
U/N

,

where Z is a Gaussian \scrN (0,1) random variable and U an independent chi-square
random variable with N degrees of freedom.

Lemma 5.7. Let \bfitA \in \BbbR n\times n be symmetric and (5.3) be a Monte Carlo estimator
with independent Gaussian vectors \bfitw k \sim \scrN (0,\bfitI ) in \BbbR n, 1 \leq k \leq N . The absolute
errors in the diagonal elements are distributed as

\widehat aii  - aii \sim 
\sqrt{} 

\| \bfita i\| 22  - a2ii
N

TN , 1\leq i\leq n.

Proof. Due to the normalization in the denominator, we can extract the diagonal
elements of \bfitA from the diagonal elements of the Monte Carlo estimator \widehat \bfitA :

\widehat aii =\sum N
k=1

\sum n
j=1 aij(\bfitw k)i(\bfitw k)j\sum N
k=1 (\bfitw k)2i

= aii +

\sum N
k=1

\sum 
j \not =i aij (\bfitw k)i(\bfitw k)j\sum N
k=1 (\bfitw k)2i

, 1\leq i\leq n.

Normalize across the ith elements of the Gaussian vectors \bfitw k to unit vectors \bfitu i \in \BbbR N

with elements

(\bfitu i)k \equiv 
(\bfitw k)i\sqrt{} \sum N
\ell =1 (\bfitw \ell )2i

, 1\leq k\leq N, 1\leq i\leq n.

Use the denominator to normalize the ith component in the ith absolute error:

(5.5) \widehat aii  - aii =

\sum N
k=1

\sum 
j \not =i aij (\bfitw k)j(\bfitu i)k\sqrt{} \sum N

\ell =1 (\bfitw \ell )2i

, 1\leq i\leq n.

The rotational invariance of the standard Gaussian distribution guarantees the

independence of the direction vectors \bfitu i and radial components
\sqrt{} \sum N

k=1(\bfitw k)2i ; see

[25, Exercise 3.3.6]. Hence, the numerator and denominator in (5.5) are independent.
With

Zi \equiv 
1\surd 
N

N\sum 
k=1

\sum 
j \not =i

aij (\bfitw k)j(\bfitu i)k, Ui \equiv 
N\sum 

k=1

(\bfitw k)
2
i , 1\leq i\leq n,

we can rewrite (5.5) as

\widehat aii  - aii =
Zi\sqrt{} 
Ui/N

.
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258 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

The random variable Ui has a chi-square distribution with N degrees of freedom. The
conditional distribution of Zi given \bfitu i is Gaussian [25, Exercise 3.3.3(a)]) with zero
mean and variance

1

N

N\sum 
k=1

\sum 
j \not =i

a2ij(\bfitu i)
2
k =

1

N

\left(  \sum 
j \not =i

a2ij

\right)  \Biggl( N\sum 
k=1

(\bfitu i)
2
k

\Biggr) 
=

1

N

\sum 
j \not =i

a2ij =
1

N
(\| \bfita i\| 22  - a2ii).

Therefore, Zi| \bfitu i \sim \scrN (0, 1
N (\| \bfita i\| 22  - a2ii)). However, the conditional distribution is

independent of \bfitu i, so this is also the unconditional distribution. The claim then
follows from (5.4).

Remark 5.1. The squared error (\widehat aii  - aii)
2 has a scaled F -distribution [3]. Note

that the squared Student t-distribution is specifically a scaled F -distribution with one
degree of freedom in the numerator. Moreover, for a single sample N = 1, the error
has a Cauchy distribution, which has undefined mean and variance.

If N is large, then the t-distribution TN can be approximated by a standard nor-
mal distribution. However, TN has wider tails and thus somewhat weaker tail bounds.
Existing tail bounds for the Student t-distribution imply the following concentration
inequality.

Theorem 5.8. Let \bfitA \in \BbbR n\times n be symmetric and (5.3) be a Monte Carlo estimator
with independent Gaussian vectors, where \bfitw k \sim \scrN (0,\bfitI ), 1\leq k \leq N . The probability
that the absolute error exceeds t > 0 is at most

\BbbP [| \widehat aii  - aii| > t]\leq 
\sqrt{} 

2 (\| \bfita i\| 22  - a2ii)

\pi N

1

t

\biggl( 
1 +

t2

\| \bfita i\| 22  - a2ii

\biggr)  - N - 1
2

, 1\leq i\leq n.

Proof. The probability density function of TN is [20]

fN (x) = cN

\biggl( 
1 +

x2

N

\biggr)  - N+1
2

, where cN \equiv \Gamma ((N + 1)/2)

\Gamma (N/2)
\surd 
N\pi 

and 1/\pi \leq cN \leq 1/
\surd 
2\pi . Let FN (x) be the cumulative distribution function for TN .

This implies with [20, Theorem 3.1],

\BbbP 

\Biggl[ 
| \widehat aii  - aii| >

\sqrt{} 
\| \bfita i\| 22  - a2ii

N
x

\Biggr] 
= 1 - FN (x)<

fN (x)

x

\biggl( 
1 +

x2

N

\biggr) 

=
cN
x

\biggl( 
1 +

x2

N

\biggr)  - N - 1
2

, 1\leq i\leq n.

Setting x= t
\sqrt{} 

N
\| \bfita i\| 2

2 - a2
ii

and bounding the upper tail with cN \leq 
\sqrt{} 

1
2\pi gives

\BbbP [| \widehat aii  - aii| > t]\leq 
\sqrt{} 

\| \bfita i\| 22  - a2ii
\pi N

1\surd 
2 t

\biggl( 
1 +

t2

\| \bfita i\| 22  - a2ii

\biggr)  - N - 1
2

, 1\leq i\leq n.

Since TN is symmetric about the origin, the lower tail has the same bound. Now take
a union bound over the two tails.

We determine a sampling amount sufficient to make the normalized Gaussian
Monte Carlo estimator a componentwise (\epsilon , \delta ) estimator.
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Corollary 5.9. Let \bfitA \in \BbbR n\times n be nondiagonal symmetric; let

\Psi i \equiv 
| aii| 

(\| \bfita i\| 22  - a2ii)
1/2

, 1\leq i\leq n;

and let \widehat \bfitA be defined as in (5.3). Pick \epsilon > 0 and a diagonal element aii \not = 0 of \bfitA . For
any 0< \delta < 1, if the sampling amount is positive and at least

N \geq 1 + 2 ln

\Biggl( \sqrt{} 
2/\pi 

\delta \epsilon \Psi i

\Biggr) 
/ ln(1 + \epsilon 2\Psi 2

i ),

then | \widehat aii  - aii| \leq \epsilon | aii| holds with probability at least 1 - \delta .

Proof. In Theorem 5.8, set t= \epsilon | aii| . If the sampling number satisfies the desired
bound, it follows that

\BbbP [(\widehat aii  - aii)> t]\leq 
\sqrt{} 

2 (\| \bfita i\| 22  - a2ii)

\pi N

1

t

\biggl( 
1 +

t2

\| \bfita i\| 22  - a2ii

\biggr)  - N - 1
2

=

\sqrt{} 
2/\pi 

\epsilon \Psi i

\surd 
N

\bigl( 
1 + \epsilon 2\Psi 2

i

\bigr)  - N - 1
2

\leq 
\sqrt{} 
2/\pi 

\epsilon \Psi i

\bigl( 
1 + \epsilon 2\Psi 2

i

\bigr)  - N - 1
2 ,

where the final inequality holds since N \geq 1 by assumption. Set the failure probability
\delta to the right-hand side as

\delta \equiv 
\sqrt{} 
2/\pi 

\epsilon \Psi i

\bigl( 
1 + \epsilon 2\Psi 2

i

\bigr)  - N - 1
2 ,

and solve for N .

The larger the value of \Psi i (the same measure of diagonal dominance that appears
in Corollary 5.4), the smaller the sampling amount for the (\epsilon , \delta ) estimator.

6. Application: Monte Carlo estimators for a derivative-based global
sensitivity metric. We bound the absolute error (Theorem 6.1) in a Monte Carlo
estimator for global sensitivity analysis and more specifically for a derivative-based
global sensitivity metric (DGSM) of a function f :\BbbR n \rightarrow \BbbR , whose partial derivatives
are square integrable with respect to a probability density function \rho \bfscrX (\bfitx ). The DGSM
is equal to the diagonal \scrD (\bfitC ) of the matrix

\bfitC =

\int 
\scrX 
\nabla f(\bfitx )[\nabla f(\bfitx )]\top \rho \bfscrX (\bfitx )d\bfitx .

The matrix \bfitC is well-defined and symmetric positive semidefinite and can be inter-
preted as a second moment matrix of the gradient. We compute the DGSM with the
Monte Carlo estimator

\widehat \bfitC \equiv 1

N

N\sum 
k=1

\bfitw k\bfitw 
\top 
k , where \bfitw k \equiv \nabla f(\bfitx k), 1\leq k\leq N,(6.1)

and \bfitx k are independent samples from the distribution \rho \bfscrX (\bfitx ). Below is a normwise
bound for the error in the DGSM computed by the Monte Carlo estimator (6.1). Its
derivation is related to the analysis in [15, section 4].
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260 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

Theorem 6.1. Let f : \BbbR n \rightarrow \BbbR have square integrable partial derivatives with
respect to the probability density function \rho \bfscrX (\bfitx ), \| \nabla f\| \infty \leq \beta almost surely; \widehat \bfitC be the
Monte Carlo estimator in (6.1), and

cmax \equiv \| \scrD (\bfitC )\| p, S1 \equiv \| \scrD (\bfitC )
\bigl( 
\beta 2\bfitI  - \scrD (\bfitC )

\bigr) 
\| p,

S2 \equiv cmax + \beta 2, d\equiv 
\sum n

i=1 cii(\beta 
2  - cii)

S1
.

If cmax > 0 and S1 > 0, then

\BbbP 
\Bigl[ 
\| \scrD (\bfitC ) - \scrD (\widehat \bfitC )\| p \geq t

\Bigr] 
\leq 8d exp

\biggl( 
 - t2/2

S1 + S2t/3

\biggr) 
.

Proof. Before applying the matrix Bernstein inequality in Theorem 2.3, we need
to verify the assumptions. The Monte Carlo estimate \scrD (\widehat \bfitC ) is an unbiased estimator
of the DGSM \scrD (\bfitC ) whose largest diagonal element is

cmax = \| \scrD (\bfitC )\| 2 = max
1\leq i\leq n

| cii| = max
1\leq i\leq n

\BbbE 
\bigl[ 
(\nabla f(\bfscrX ))2i

\bigr] 
\leq \beta 2.

The absolute error in the DGSM computed by the Monte Carlo estimator (6.1) is

\bfitZ =\scrD (\bfitC ) - \scrD (\widehat \bfitC ) =

N\sum 
k=1

\bfitS k, where \bfitS k \equiv 
1

N

\bigl( 
\scrD (\bfitC ) - \scrD (\bfitw k\bfitw 

\top 
k )
\bigr) 
.

The summands \bfitS k have zero mean and are bounded by

\| \bfitS k\| 2 \leq 
1

N

\bigl( 
\| \scrD (\bfitC )\| 2 + \| \scrD (\bfitw k\bfitw 

\top 
k )\| 2

\bigr) 
\leq \| \scrD (\bfitC )\| 2 + \beta 2

N
=

cmax + \beta 2

N
=

S2

N
, 1\leq k\leq N.

We let L= S2/N so that \| \bfitS k\| 2 \leq L. The variance is

(6.2) \BbbV ar[\bfitZ ] =

N\sum 
k=1

\BbbE [\bfitS 2
k] =

1

N2

N\sum 
k=1

\BbbE 
\Bigl[ \bigl( 
\scrD (\bfitC ) - \scrD (\bfitw k\bfitw 

\top 
k )
\bigr) 2\Bigr] 

.

Linearity of the expectation, the majorization \scrD (\bfitw k\bfitw 
\top 
k ) \preceq \beta 2\bfitI , the expectation

\BbbE [\scrD (\bfitw k\bfitw 
\top 
k )] = \scrD (\bfitC ), and commutativity of diagonal matrices imply for the sum-

mands

\BbbE 
\Bigl[ \bigl( 
\scrD (\bfitC ) - \scrD (\bfitw k\bfitw 

\top 
k )
\bigr) 2\Bigr] 

=\BbbE 
\bigl[ 
\scrD (\bfitC )2 + (\scrD (\bfitw k\bfitw 

\top 
k ))

2  - 2\scrD (\bfitC )\scrD (\bfitw k\bfitw 
\top 
k )
\bigr] 

=\BbbE 
\bigl[ 
(\scrD (\bfitw k\bfitw 

\top 
k ))

2
\bigr] 
 - \scrD (\bfitC )2

\preceq \beta 2\scrD (\bfitC ) - \scrD (\bfitC )2, 1\leq k\leq N.

Substitute the above into (6.2),

\BbbV ar[\bfitZ ]\preceq \bfitV \equiv 1

N

\bigl( 
\beta 2\scrD (\bfitC ) - \scrD (\bfitC )2

\bigr) 
,

and apply Theorem 2.3 with \nu = \| \bfitV \| 2 = S1/N and d = intdim(\bfitV ). Finally, use the
fact that all the p-norms are all the same for diagonal matrices.

Below is the minimal sampling amount required for the Monte Carlo estimator
(6.1) to achieve a user-specified relative error \epsilon with a user-specified success probability
1 - \delta .
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Corollary 6.2. Let f : \BbbR n \rightarrow \BbbR have square-integrable partial derivatives with
respect to the probability density function \rho \bfscrX (\bfitx ), \| \nabla f\| \infty \leq \beta almost surely; \widehat \bfitC be the
Monte Carlo estimator in (6.1), and

cmax \equiv \| \scrD (\bfitC )\| \infty , S1 \equiv \| \scrD (\bfitC )
\bigl( 
\beta 2\bfitI  - \scrD (\bfitC )

\bigr) 
\| \infty ,

S2 \equiv cmax + \beta 2, d\equiv 
\sum n

i=1 cii
S1

.

Pick \epsilon > 0 and 0 < \delta < 1. If cmax > 0 and S1 > 0 and if the sampling amount is at
least

N \geq S2

3\epsilon 2

\biggl( 
2\epsilon +

6S1

cmax S2

\biggr) 
ln(8d/\delta ),

then \| \scrD (\bfitC ) - \scrD (\widehat \bfitC )\| \infty \leq \epsilon \| \scrD (\bfitC )\| \infty holds with probability at least 1 - \delta .

Proof. The proof is similar to that of Corollary 3.3 but is based instead on The-
orem 6.1 with p=\infty .

6.1. Illustrative examples. We determine the constants in Corollary 6.2 for
two different functions f : \BbbR n \rightarrow \BbbR and random variables \bfscrX \in \BbbR n from a uniform
distribution over \scrX = [ - 1,1]n.

Linear Function. Let f(\bfitx ) = \bfith \top \bfitx with \bfith \in \BbbR n. Then \| \nabla f\| \infty \leq \beta \equiv \| \bfith \| \infty 
almost surely. The second moment matrix \bfitC = \bfith \bfith \top has a largest diagonal entry
cmax = \| \bfith \| 2\infty . Let \bfitv \in \BbbR n have entries vi = h2

i (\| \bfith \| 2\infty  - h2
i ) for 1 \leq i \leq n. The

constants in Corollary 6.2 are

S1 = \| \bfitv \| \infty , S2 = 2\| \bfith \| 2\infty , d=

\sum n
i=1 vi
S1

.

Quadratic function. Let f(\bfitx ) = 1
2\bfitx 

\top \bfitS \bfitx , where \bfitS \in \BbbR n\times n with \bfitS = \bfitS \top is a
symmetric square root of the positive semidefinite matrix \bfitM = \bfitS 2. Then \| \nabla f\| \infty \leq 
\beta \equiv \| \bfitS \| \infty almost surely. The second moment matrix \bfitC = 1

3\bfitM has a largest diagonal
element cmax = 1

3\| \scrD (\bfitM )\| \infty . Let \bfitv \in \BbbR n have entries vi =
1
3mii(\| \bfitS \| 2\infty  - 1

3mii) for
1\leq i\leq n. The constants in Corollary 6.2 are

S1 = \| \bfitv \| \infty , S2 =
1

3
\| \scrD (\bfitM )\| \infty + \| \bfitS \| 2\infty , d=

\sum n
i=1 vi
S1

.

7. Numerical Experiments. After presenting our algorithm (section 7.1) and
describing our test matrices (section 7.2), we present four different types of numerical
experiments to illustrate the accuracy of the Monte Carlo estimators: Rademacher
Monte Carlo estimators applied to the test matrices (section 7.3), accuracy of dif-
ferent Monte Carlo estimators (section 7.4), effect of the sparsity on the accuracy of
Rademacher Monte Carlo estimators (section 7.5), and accuracy of the DGSM Monte
Carlo estimator (section 7.6). Its applications to circuit models (section 7.7) and an
application to node centrality (section 7.8).

7.1. Algorithm. We present pseudocodes for Monte Carlo estimators based
on general random vectors (Algorithm 7.1) and for estimators based on normalized
Gaussian vectors (Algorithm 7.2).

Algorithm 7.1 applies to standard and sparse Rademacher vectors and to vectors
with bounded fourth moments, including Gaussian vectors.

Algorithm 7.2 requires a slight modification for normalized Gaussians.
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262 ERIC HALLMAN, ILSE C. IPSEN, AND ARVIND K. SAIBABA

Algorithm 7.1 Monte Carlo diagonal estimation.
Input: Matrix \bfitA \in \BbbR n\times n, sampling amount N , distribution \scrS on \BbbR n

Output: Diagonal estimator \^\bfita diag \in \BbbR n

1: Initialize \^\bfita diag = 0
2: for k= 1 :N do
3: Sample \bfitw k from \scrS 
4: \^\bfita diag = \^\bfita diag + (\bfitA \bfitw k) \circ \bfitw k

5: end for
6: \^\bfita diag =

1
N
\^\bfita diag

Algorithm 7.2 Monte Carlo diagonal estimation: Normalized Gaussian.
Input: Matrix \bfitA \in \BbbR n\times n, sampling amount N
Output: Diagonal estimator \^\bfita diag \in \BbbR n

1: Initialize \^\bfita diag = 0 and \^\bfitz = 0
2: for k= 1 :N do
3: Sample \bfitw k from \scrN (0,\bfitI )
4: \^\bfita diag = \^\bfita diag + (\bfitA \bfitw k) \circ \bfitw k

5: \^\bfitz = \^\bfitz +\bfitw k \circ \bfitw k

6: end for
7: \^\bfita diag = \^\bfita diag \oslash \^\bfitz 

The computational cost of Algorithms 7.1 and 7.2 is similar. Denote by T\bfitA the
cost in floating point operations (flops) of a matrix-vector product with \bfitA and by
T\scrS the cost of generating a random vector from the distribution \scrS on \BbbR n. Both
algorithms require N(T\bfitA + T\scrS +\scrO (n)) flops.

In contrast, the na\"{\i}ve approach, which computes matrix-vector products with the
canonical basis vectors \bfite j and extracts diagonal element ajj from \bfitA \bfite j , 1 \leq j \leq n,
requires nT\bfitA flops. Algorithms 7.1 and 7.2 are faster if N \ll n and T\scrS \ll T\bfitA .

7.2. Test Matrices. We perform numerical experiments on three symmetric
test matrices from [19] of dimension n= 100 that depend on a parameter \theta . We use
sampling amounts up to N = 10n samples merely to illustrate the features of the
analysis and the algorithms. We present more realistic test cases in sections 7.7 and
7.8:

1. Identity plus rank-1,

\bfitA = \bfitI + \theta \bfite \bfite \top , where .01\leq \theta \leq 0.1,

where \bfite \in \BbbR n is a vector of ones. The constants in Corollary 3.3 are

K1 = (n - 1)\theta 2, K2 = (n - 1)\theta , \| \scrD (\bfitA )\| \infty = 1+ \theta 

so that

\Delta 1 =
K1

(1 + \theta )2
, \Delta 2 =

(n - 1)\theta 

1 + \theta 
, d= n.

2. Rank-1 with decaying elements

\bfitA =
\bfitx \bfitx \top 

\| \bfitx \| 22
, where \bfitx j = e - j(1 - \theta ), 1\leq j \leq n, 0.1\leq \theta \leq 1.
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The constants in Corollary 3.3 are

K1 =

\biggl( 
x1

\| \bfitx \| 2

\biggr) 2
\Biggl( 
1 - 

\biggl( 
x1

\| \bfitx \| 2

\biggr) 2
\Biggr) 
, K2 =

x1

\| \bfitx \| 22

\sum 
j>1

xj ,

and \| \scrD (\bfitA )\| \infty =
\Bigl( 

x1

\| \bfitx \| 2

\Bigr) 2
so that

\Delta 1 =

\biggl( 
\| \bfitx \| 2
x1

\biggr) 2

 - 1, \Delta 2 =

\sum 
j>1 xj

x1
, d=

\sum n
i=1 x

2
i

\bigl( 
\| \bfitx \| 22  - x2

i

\bigr) 
x2
1(\| \bfitx \| 22  - x2

1)
.

3. Tridiagonal Toeplitz matrix,

\bfitA =

\left[      
1 \theta 

\theta 1
. . .

. . .
. . . \theta 
\theta 1

\right]      , where 0.1\leq \theta \leq 1.

The constants in Corollary 3.3 are

K1 = 2\theta 2, K2 = 2\theta , \| \scrD (\bfitA )\| \infty = 1

so that

\Delta 1 = 2\theta 2, \Delta 2 = 2\theta , d=
2(n - 1)\theta 2

2\theta 2
= (n - 1).

For all the test matrices, the constants \Delta 1 and \Delta 2 increase with increasing \theta as the
off-diagonal elements become larger in magnitude relative to the diagonal elements.
Therefore, we expect the Rademacher Monte Carlo estimators to lose accuracy with
increasing \theta , as measured by the normwise relative error (NRE) in the computed
diagonal \scrD (\widehat \bfitA ),

NRE\equiv \| \scrD (\bfitA ) - \scrD (\widehat \bfitA )\| \infty 
\| \scrD (\bfitA )\| \infty 

,

in Figures 7.1--7.5.

7.3. Experiment 1: Accuracy of Rademacher Monte Carlo estimator
on test matrices. Figures 7.1--7.3 show the NRE of the Rademacher Monte Carlo
estimator applied to the test matrices in section 7.2 and the bounds from Corollary
3.3.

The big left panel displays the NRE versus the sampling amount N . This NRE
represents the average of the NREs over 10 different independent runs. The small
panels on the right show the bound \epsilon for the normwise estimators from Corollary 3.3
with failure probability \delta = 10 - 16.

For Corollary 3.3, we solve for \epsilon from the simpler bound

N \geq \Delta 2

3\epsilon 2
(2 + 6\Delta 3) ln(8d/\delta ), \Delta 3 \equiv 

\Delta 1

\Delta 2
,

to obtain

\epsilon =

\sqrt{} 
\Delta 2

3N
(2 + 6\Delta 3) ln(8d/\delta ), \Delta 2 =

\| \bfitA  - \scrD (\bfitA )\| \infty 
\| \scrD (\bfitA )\| \infty 

, \Delta 3 =
K1

\| \bfitA  - \scrD (\bfitA )\| \infty 
.

(7.1)

The big left panels illustrate that, for a fixed sampling amount N , the NRE for
Test Matrices 1 and 3 increases with \theta . This is because the off-diagonals become more
dominant as \theta becomes larger.
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Fig. 7.1. Rademacher Monte Carlo estimator applied to Test Matrix 1. Big left panel: NRE
for different values of \theta versus sampling amount N . Small panels on the right: NRE (solid black
line) and bound (7.1) (blue dotted line) versus sampling amount N with failure probability \delta = 10 - 16.
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Fig. 7.2. Rademacher Monte Carlo estimator applied to Test Matrix 2. Big left panel: NRE
for different values of \theta versus sampling amount N . Small panels on the right: NRE (solid black
line) and bound (7.1) (blue dotted line) versus sampling amount N with failure probability \delta = 10 - 16.

7.4. Experiment 2: Different Monte Carlo estimators. We compare the
accuracy of the following Monte Carlo estimators on Test Matrix 1 with \theta = 0.01:
Rademacher, Gaussian, sparse Rademacher with s= 3, and normalized Gaussian.

For each estimator, Figure 7.4 shows the mean of the NRE and variance over 100
runs with the shaded regions representing the 2.5\% and 97.5\% quantiles.

The normalized Gaussian estimator is about as accurate as the Rademacher esti-
mator, while the sparse Rademacher with s= 3 is about as accurate as the Gaussian
estimator. The Gaussian and sparse Rademacher estimators are less accurate than the
Rademacher and normalized Gaussian estimators. The shaded regions illustrate that,
as expected, the sample variance of all estimators decreases with increasing sampling
amount N .

7.5. Experiment 3: Effect of sparsity in Rademacher vectors. We apply
the Rademacher Monte Carlo estimator to Test Matrix 1 with \theta = .01 with four
different sparsity levels: s= 1 (standard Rademacher), s= 3 [1], s= 10, and s= 50.

For each sampling amount N , Figure 7.5 shows the mean and the variance of the
NRE over 100 runs. It suggests that sparse Rademacher estimators (s > 1) may not
be able to achieve a single digit of accuracy unless the sampling amount is so large as
to exceed the matrix dimension.
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Fig. 7.3. Rademacher Monte Carlo estimator applied to Test Matrix 3. Big left panel: NRE
for different values of \theta versus sampling amount N . Small panels on the right: NRE (solid black
line) and bound (7.1) (blue dotted line) versus sampling amount N with failure probability \delta = 10 - 16.
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Fig. 7.4. Rademacher, Gaussian, sparse Rademacher with s = 3, and normalized Gaussian
Monte Carlo estimators applied to Test Matrix 1 with \theta = 0.01. Big left panel: NRE mean versus
sampling amount N for different estimators. Small right panels: NRE mean (styled lines) and 2.5\%
and 97.5\% quantiles (shaded regions) versus sampling amount N .

7.6. Example 4: Bounds for DGSM Monte Carlo estimator. We apply
the DGSM Monte Carlo estimator (6.1) to the diagonal matrix

(7.2) \bfitS \equiv diag(\bfits )\in \BbbR n\times n, sj \equiv exp( - 10j/n), 1\leq j \leq n,

from the quadratic function in section 6.1 for n = 100 and illustrate the accuracy of
Corollary 6.2.

The left panel of Figure 7.6 shows the normwise relative error

NRE\equiv \| \scrD (\bfitC ) - \scrD ( \widehat \bfitC )\| 2
\| \scrD (\bfitC )\| 2

,

which represents the the average of the NREs over 100 independent runs.
For Corollary 6.2, we fix the sample size N and solve for \epsilon from the simpler bound

N \geq S2

3\epsilon 2
(2 + 6S3) ln(8d/\delta ), S3 \equiv 

S1

cmaxS2
,
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Fig. 7.5. Sparse Rademacher Monte Carlo estimators with sparsity levels s = 1,3,10,50
applied to Test Matrix 1 with \theta = 0.01. NRE (dotted lines) and 2.5\% and 97.5\% quantiles (shaded
regions).

Fig. 7.6. DGSM Monte Carlo estimator (6.1) applied to \bfitS \in \BbbR 100\times 100 in (7.2). Left panel:
NRE mean (solid line) and 2.5\% and 97.5\% quantiles (shaded regions) versus sampling amount N .
Right panel: NRE and bounds (7.3) for different failure probabilities \delta versus sampling amount.

to obtain

(7.3) \epsilon =

\sqrt{} 
S2

3N
(2 + 6S3) ln(8d/\delta ).

The expressions for S1, S2, cmax, and d for this example have been derived in section
6.1.

The right panel of Figure 7.6 illustrates that with less stringent failure probabil-
ities \delta , the relative bounds (7.3) move closer to the NRE.
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Fig. 7.7. DGSM Monte Carlo estimator (6.1) applied to the circuit model. NRE mean (solid
line) and 2.5\% and 97.5\% quantiles (shaded regions) versus sampling amount N .

7.7. Example 5: DGSM on the circuit model. We apply the Monte Carlo
DGSM estimator (6.1) to the circuit model from [7]. The quantity of interest is
the midpoint voltage of a transformerless push-pull circuit, which depends on six
parameters through a nonlinear closed-form algebraic expression.

As in [7], we normalize the parameter space to \scrX = [ - 1,1]6 and scale the partial
derivatives appropriately.1

Figure 7.7 shows the mean of the NRE and variances over 100 independent runs
per sampling amount N with the shaded regions representing 2.5\% and 97.5\% quan-
tiles. Since the exact expressions for the DGSMs are unavailable, we use as the
exact value a tensor product Gauss--Legendre quadrature-based approximation with
15 points per dimension (i.e., 15n total points).

7.8. Example 6: Node centrality. In network science, the centrality of a node
quantifies its relative importance and can serve as a criterion for ranking the nodes.
Many notions of centrality can be computed from the diagonal elements of a function
of a matrix [5]. Here we consider the ``resolvent subgraph centrality"" measure for
a graph represented by a symmetric adjacency matrix \bfitA and compute the diagonal
elements of

\bfitK (\alpha )\equiv (\bfitI  - \alpha \bfitA ) - 1, where 0<\alpha < 1/\| \bfitA \| 2

is a resolvent parameter. A Neumann series expansion of \bfitK shows that \bfitK \rightarrow \bfitI as
\alpha \rightarrow 0.

Experimental setup. We test the accuracy of the Monte Carlo estimators on
the matrices in Table 7.1. They correspond to all the symmetric networks in the
SNAP (Stanford Network Analysis Platform) collection of the SuiteSparse matrix
collection [9]. The resolvent parameters are

(7.4) \alpha 1 =
0.9

\| \bfitA \| 2 + 1
and \alpha 2 =

0.5

\| \bfitA \| 2 + 1

with \| \bfitA \| 2 estimated via the MATLAB command normest.

1MATLAB codes are available at https://bitbucket.org/paulcon/global-sensitivity-metrics-from-
active-subspaces/src/master/.
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Table 7.1
Relative errors for resolvent-based centrality measures on 100 randomly selected nodes. The

columns represent: adjacency matrix of the graph, its node and edge counts, average and maximal
node degree, and relative errors (7.5) for the two different resolvent parameters in (7.4).

Name Nodes Edges davg dmax RelErr (α1) RelErr (α2)

as-735 7716 1.3× 104 3.4 1459 2.5× 10−2 5.1× 10−3

as-Skitter 1696415 1.1× 107 13.1 35455 1.2× 10−2 1.5× 10−3

ca-AstroPh 18772 1.9× 105 21.1 504 2.7× 10−2 1.1× 10−3

ca-CondMat 23133 9.3× 104 8.1 280 5.3× 10−2 2.5× 10−2

ca-GrQc 5242 1.5× 104 5.5 81 4.2× 10−2 8.0× 10−3

ca-HepPh 12008 1.2× 105 19.7 491 5.5× 10−2 5.0× 10−3

ca-HepTh 9877 2.6× 104 5.3 65 1.9× 10−2 8.0× 10−3

email-Enron 36692 1.8× 105 10.0 1383 1.1× 10−2 1.2× 10−2

roadNet-CA 1971281 2.7× 106 2.8 12 7.0× 10−2 4.6× 10−2

roadNet-PA 1090920 1.5× 106 2.83 9 1.1× 10−1 4.8× 10−2

roadNet-TX 1393383 1.9× 106 2.8 12 1.2× 10−1 3.9× 10−2

The Rademacher-based Monte Carlo estimators use N = 100 samples. Matrix
vectors products with \bfitK are computed with the conjugate gradient algorithm with
tolerance 10 - 6 and maximal iteration count 128. Since estimating all diagonal ele-
ments is time consuming, we determine the relative error

(7.5) RelErr \equiv maxi\in \scrI | \bfitK ii  - \widehat \bfitK ii| 
maxi\in \scrI | \bfitK ii| 

only for 100 diagonal elements with randomly selected indices in the set \scrI .
Table 7.1. For the parameter \alpha 1, all errors are on the order of 10 - 1 or 10 - 2,

meaning one or two accurate digits regardless of the connectivity or size of the net-
works.

For the parameter \alpha 2, all errors are on the order of 10 - 2 or 10 - 3, meaning two
or three accurate digits. The consistently smaller errors compared to those for the
larger parameter \alpha 1 confirm that accuracy increases with diagonal dominance of \bfitK 
and closeness to \bfitI .

8. Conclusion and future work. Our normwise and elementwise probabilistic
bounds for Rademacher- and Gaussian-based Monte Carlo diagonal estimators suggest
that the accuracy increases with the diagonal dominance of the matrix and that sparse
random vectors deliver less accuracy.

Avenues for future work include (i) diagonal estimators for matrix functions that
are approximated by polynomials or rational functions and (ii) extension to Monte
Carlo estimators for selected matrix elements, including off-diagonal elements.

9. Acknowledgements. The authors thank Alen Alexanderian for helpful dis-
cussions and the Associate Editor and two reviewers for their constructive recommen-
dations.
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