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Abstract. The Bayesian Conjugate Gradient method (BayesCG) is a probabilistic generalization3
of the Conjugate Gradient method (CG) for solving linear systems with real symmetric positive4
definite coefficient matrices. Our CG-based implementation of BayesCG under a structure-exploiting5
prior distribution represents an ’uncertainty-aware’ version of CG. Its output consists of CG iterates6
and posterior covariances that can be propagated to subsequent computations. The covariances have7
low-rank and are maintained in factored form. This allows easy generation of accurate samples to8
probe uncertainty in downstream computations. Numerical experiments confirm the effectiveness of9
the low-rank posterior covariances.10
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1. Introduction. The solution of linear systems15

(1.1) Ax∗ = b,16

with symmetric positive definite coefficient matrix A ∈ Rn×n is an important prob-17

lem in computational science and engineering. For large and sparse matrices A, the18

preferred solver is the Conjugate Gradient method (CG) [26, 31]. This is a Krylov19

subspace method that, starting from a user-specified initial guess x0, produces iter-20

ates xm that, the user hopes, ultimately converge to the solution x∗. In practice, CG21

is terminated early, once the residual ‖b −Axm‖ is sufficiently small in some norm.22

Early termination introduces a source of uncertainty since the solution x∗ has not23

been exactly computed.24

We seek to create an ‘uncertainty aware’ version of CG that models the uncer-25

tainty in our knowledge of x∗ due to early termination. From the UQ perspective,26

this represents an instance of model discrepancy with epistemic uncertainties. Our27

motivation is to understand how the accuracy of the CG output xm affects down-28

stream computations in a computational pipeline [12, Section 5], [25], that is, se-29

quences of computations where the output of one computation is the input to another30

[7, 23, 40, 43, 44]. Traditional normwise CG error estimates are inadequate, because31

subsequent computations may not be able to make effective use of them. In contrast,32

a probabilistic model of the uncertainty, in the form of a distribution, can be prop-33

agated so that downstream computations can sample from the distribution to probe34

the effect of uncertainty on their own computations.35

This is the mission of probabilistic numerics1: Modelling the uncertainty in de-36
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terministic computations with a probabilistic treatment of the errors [25, 42]. The37

origins of probabilistic numerics can be traced back to Poincaré [42], while a rigor-38

ous modern perspective is established in [12]. Probabilistic numerical methods have39

been developed for Bayesian optimization [38], subsequently applied to hyperparam-40

eter optimization in machine learning [46]; numerical integration [4, 14, 29], sparse41

Cholesky decompositions [45], and solution of ordinary and partial differential equa-42

tions [8, 34, 41, 52].43

In the context of linear solvers, probabilistic solvers posit a prior distribution rep-44

resenting initial epistemic uncertainty about a quantity of interest, which can be the45

solution [1, 7, 9, 53] or the matrix inverse [1, 2, 24]. They then condition on the finite46

amount of information obtained during m iterations to produce a posterior distribu-47

tion that reflects the reduced uncertainty [9, Section 1.2], [42]. The interpretation of48

CG as a probabilistic solver was pioneered in the context of optimization [24], followed49

by the development of the Bayesian Conjugate Gradient method (BayesCG) [9] as a50

general purpose solver in statistics. However, current versions of BayesCG have two51

drawbacks: they are computationally expensive; and their posterior distributions do52

not model the uncertainty accurately.53

1.1. Contributions and outline. We propose an efficient uncertainty-aware54

CG implementation in the form of BayesCG (Algorithm 3.1), and establish its proper55

foundation within probabilistic numerics (sections 2 and 3).56

We design a new Krylov prior distribution for BayesCG, which is motivated by57

the Krylov subspace prior [9, section 4.1], which is a non-singular structured prior58

based on Krylov spaces, whose posterior distributions are expensive and not always59

meaningful. In contrast, our new Krylov prior is generally singular, depends on quan-60

tities computed by CG, and produces low-rank posteriors that lend themselves to61

efficient sampling in downstream computations. We proceed in two steps.62

1. Extension of BayesCG to singular prior covariances (section 2).63

We show that under reasonable assumptions, the theoretical and computa-64

tional properties of BayesCG from [9] extend to prior covariances that are65

singular. This extension to singular priors paves the way for an efficient66

BayesCG implementation that produces meaningful posteriors. Auxiliary re-67

sults and technical proofs are postponed to the end (Appendices A and B).68

2. Introduction of the new Krylov prior and its properties (section 3).69

This singular prior covariance exploits structure and adapts to BayesCG,70

with posteriors whose means are identical to the corresponding CG iterates,71

and whose covariances describe a realistic level of uncertainty. The posterior72

covariances are maintained in factored form, and are therefore highly accurate73

and easy to approximate, as confirmed by numerical experiments (section 4).74

1.2. Notation. Bold uppercase letters, like A, represent matrices, with I de-75

noting the identity. The Moore-Penrose inverse of A is A†. Bold lowercase letters,76

like x∗, represent vectors; italic lowercase letters, like α, scalars; and italic uppercase77

letters, like X0, random variables. A multivariate Gaussian distribution with mean x78

and covariance Σ is denoted by N (x,Σ), and X ∼ N (x,Σ) is a Gaussian random79

variable. We assume exact arithmetic throughout the theoretical sections 2 and 3.80

2. Introduction to BayesCG with singular priors. We extend the appli-81

cability of BayesCG from definite to semi-definite prior covariances, and discuss the82

theory (section 2.1), recursive computation of posterior distributions (section 2.2),83

and choices for prior distributions (section 2.3).84
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2.1. Theoretical properties of BayesCG under singular priors. We derive85

expressions for the BayesCG posterior means and covariances under singular priors86

(Theorem 2.1), express the posteriors in terms of projectors (Theorem 2.4), and estab-87

lish the optimality of the posterior means (Theorem 2.6). The proofs are analogous88

to earlier proofs for non-singular priors in [1, 9], and relegated to Appendix A and89

the supplement.90

BayesCG computes posterior distributions N (xm,Σm) by conditioning the prior91

N (x0,Σ0) on information from m ≤ n linearly independent search directions Sm.92

Specifically, the posterior is the distribution of the random variable X ∼ N (x0,Σ0)93

conditioned on the random variable Y = ST
mAX taking the value ST

mAx∗. The94

conditioning relies on two properties of Gaussian distributions:95

(i) Stability: linear transformations of Gaussians remain Gaussian [39, Section 1.2].96

(ii) Conjugacy: posteriors from Gaussian priors conditioned under linear information97

remain Gaussian [51, Theorem 6.20].98

We start with the extension of BayesCG to singular priors.99

Theorem 2.1 (Extension of [9, Proposition 1]). Let N (x0,Σ0) be a prior with100

a symmetric positive semi-definite covariance Σ0 ∈ Rn×n. Let m ≤ rank(Σ0), and101

let the matrix of search directions Sm ≡
[
s1 · · · sm

]
∈ Rn×m have linearly inde-102

pendent columns so that Λm ≡ ST
mAΣ0ASm is non-singular. Then the BayesCG103

posterior N (xm,Σm) has mean and covariance104

xm = x0 + Σ0ASmΛ−1m ST
m(b−Ax0)(2.1)105

Σm = Σ0 −Σ0ASmΛ−1m ST
mAΣ0.(2.2)106107

Proof. See supplement.108

Remark 2.2. Theorem 2.1 requires the existence of search directions that produce109

a nonsingular Λm, and the purpose this theorem is to derive an expression for how110

to compute the posterior distribution resulting from any valid set of search directions.111

Section 2.2 presents the recursive computation of search directions that make Λm non-112

singular, while the supplement presents an example of a a non-recursive construction.113

Next we derive explicit expressions for the posterior covariances in terms of or-114

thogonal projectors onto range(Σ0ASm). To this end we exploit the close relation115

between Gaussian conditioning and orthogonal projections [1, Section 3]; and gener-116

alize the notion of projector [48, page 111] to semi-definite inner products to allow for117

singular priors Σ0,118

Definition 2.3 ([28, section 0.6.1]). Let B ∈ Rn×n be symmetric positive semi-119

definite, and P ∈ Rn×n. If P2 = P and (BP)T = BP, then P is a B-orthogonal120

projector, with (I−P)TBP = 0.121

Now we are ready to express the posterior distributions in Theorem 2.1 in terms122

of Σ†0-orthogonal projectors.123

Theorem 2.4 (Extension of [10, Proposition 3]). Under the assumptions of124

Theorem 2.1125

(2.3) Pm ≡ Σ0ASmΛ−1m ST
mAΣ0Σ

†
0126

is a Σ†0-orthogonal projector onto Km ≡ range(Σ0ASm).127
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If additionally x∗ − x0 ∈ range(Σ0), then the posterior satisfies128

xm = (I−Pm)x0 + Pmx∗129

Σm = (I−Pm)Σ0, PmΣm = 0.130131

Proof. See Appendix A.132

Theorem 2.4 expresses the posterior mean xm as the sum of two projections: the133

projection of the solution x∗ onto range(Pm), and the projection of the prior mean x0134

onto the complementary space range(Pm)⊥. As for the posterior covariance Σm, it is135

the projection of the prior covariance Σ0 onto the complementary space range(Pm)⊥.136

Remark 2.5. Theorem 2.4 implies that Pmxm = Pmx∗ and PmΣmPT
m = 0. As137

a consequence, if X ∼ N (xm,Σm), then the distribution of Pm(X − x∗) is Gauss-138

ian with mean Pmxm − Pmx∗ = 0 and covariance PmΣmPT
m = 0. Thus, within139

range(Pm), there is no uncertainty in our knowledge of x∗ We can interpret the pos-140

terior as a conjecture about the unknown location of x∗ in the complementary subspace141

range(Pm)⊥.142

Theorem 2.4 implies the following optimality for the posterior mean: It is the143

vector closest to the solution x∗ in the affine space x0 + Km, with Km as in Theo-144

rem 2.1.145

Theorem 2.6 (Extension of [1, Proposition 4]). Under all the assumptions of146

Theorem 2.4, the posterior mean satisfies147

xm = arg min
x∈x0+Km

(x∗ − x)TΣ†0(x∗ − x).(2.4)148

149

Additionally, (x∗ − xm)TΣ†0(x∗ − xm) = 0 if and only if xm = x∗.150

Proof. See Appendix A.151

Theorems 2.1, 2.4, and 2.6 assume that the search directions are chosen so that152

Λm is non-singular. The additional assumption x∗−x0 ∈ range(Σ0) in Theorems 2.4153

and 2.6 guarantees this nonsingularity for the specific search directions computed by154

BayesCG, as will be shown in Theorem 2.11.155

2.2. Recursive computation of BayesCG posteriors under singular pri-156

ors. We extend the recursions for posterior distributions under nonsingular prior157

covariances in [9] to singular ones, and present three results for the efficient imple-158

mentation of BayesCG: New recursions for the posterior covariances (Theorem 2.7)159

and the search directions (Theorem 2.8); and a proof that the search directions are160

well-defined (Theorem 2.11).161

The residuals of the posterior means are defined as162

(2.5) rm ≡ b−Axm, 0 ≤ m.163

Theorem 2.7 (Extension of Proposition 6 in [9]). Under the assumptions of164

Theorem 2.1 if, in addition, the search directions Sm are AΣ0A-orthogonal, then the165

posterior means and covariances admit the recursions166

(2.6) xj = xj−1 +
Σ0Asj

(
sTj rj−1

)
sTj AΣ0Asj

, 1 ≤ j ≤ m,167

and168

(2.7) Σj = Σj−1 −
Σ0Asj (Σ0Asj)

T

sTj AΣ0Asj
, 1 ≤ j ≤ m.169
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Proof. See Appendix A.170

The denominators (Λm)jj = sTj AΣ0Asj in (2.6) and (2.7) are non-zero because171

Theorem 2.1 assumes that Λm is non-singular.172

Next is a Lanczos-like recurrence for the AΣ0A-orthogonal search directions from173

[9, Proposition 7].174

Theorem 2.8 ([9, Proposition 7] and [11, Proof of Proposition 7, Proposition S4,175

and Section S2]). If the search directions176

(2.8) s1 = r0 6= 0, sj = rj−1 −
rTj−1rj−1

rTj−2rj−2
sj−1, 2 ≤ j ≤ m,177

satisfy the assumptions of Theorem 2.1, then they are an AΣ0A-orthogonal basis for178

the Krylov space179

(2.9) Km(AΣ0A, r0) ≡ span{r0,AΣ0Ar0, . . . , (AΣ0A)m−1r0},180

while the residuals r0, . . . , rm−1 are an orthogonal basis for Km(AΣ0A, r0).181

The maximal number of search directions in (2.8) can be less than n, because182

they are a basis for the Krylov subspace Km(AΣ0A, r0) whose maximal dimension183

can be less than n.184

Definition 2.9 (Section 2 in [3], Definition 4.2.1 in [31]). Let B ∈ Rn×n be185

symmetric positive semi-definite and let w ∈ Rn be a non-zero vector. The grade186

of w with respect to B, or the invariance index for (B,w) is the maximal dimension187

1 ≤ K ≤ n of the Krylov space,188

KK(B,w) = KK+i(B,w), i ≥ 1.189

Remark 2.10. In Theorem 2.8, if K is the grade of r0 with respect to AΣ0A,190

then sK+1 = 0, rK = 0, while sj 6= 0 and rj−1 6= 0 for 1 ≤ j ≤ K. Additionally,191

K ≤ rank(Σ0).192

In the following theorem, we show that with the additional assumption that x∗−193

x0 ∈ range(Σ0), the AΣ0A-orthogonal search directions from Theorem 2.8 satisfy194

the assumptions of Theorem 2.1.195

Theorem 2.11. Let N (x0,Σ0) be a prior with symmetric positive semi-definite196

Σ0 ∈ Rn×n, K the grade of r0 with respect to AΣ0A, and m ≤ K. If x∗ − x0 ∈197

range(Σ0), then the search directions from Theorem 2.1 produce a nonsingular Λm,198

and Sm is AΣ0A-orthogonal.199

Proof. Recursive computation of the BayesCG posteriors requires the search di-200

rections Sm =
[
s1 · · · sm

]
to be AΣ0A-orthogonal, so that Λm = ST

mAΣ0ASm201

is diagonal [9, Section 2.3]. Furthermore, if sj 6∈ ker(Σ0A), 1 ≤ j ≤ m, then Λm has202

non-zero diagonal elements and is nonsingular.203

In the following induction proof we show that the search directions are AΣ0A-204

orthogonal and that si 6∈ ker(Σ0A) and si 6= 0, 1 ≤ i ≤ m. Since A and Σ0 are205

symmetric, ker(Σ0A) = ker(ΣT
0 AT ) = ker

(
(AΣ0)T

)
is the orthogonal complement206

of range(AΣ0) in Rn. Therefore, we can show si 6∈ ker(Σ0A) by showing si ∈207

range(AΣ0) and si 6= 0, 1 ≤ i ≤ m.208

By assumption m ≤ K, so Remark 2.10 implies ri 6= 0, 1 ≤ i ≤ m− 1.209
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Induction basis. The assumption x∗ − x0 ∈ range(Σ0) implies210

r0 = b−Ax0 = A(x∗ − x0) ∈ range(AΣ0).211

Thus s1 = r0 ∈ range(AΣ0), and r0 6= 0 by assumption. Thus s1 6= 0, s1 6∈ ker(Σ0A),212

and Λ1 = sT1 AΣ0As1 6= 0.213

Induction hypothesis. Assume that si, ri ∈ range(AΣ0), si, ri 6= 0, and Λi is214

nonsingular, 1 ≤ i ≤ m− 1. This, along with Theorem 2.8 implies that s1, . . . , sm−1215

are AΣ0A-orthogonal so that Λm−1 is a diagonal matrix.216

Induction step. Applying the induction hypothesis sm−1, rm−1 ∈ range(AΣ0) to217

(2.8) gives218

sm = rm−1 −
rTm−1rm−1

rTm−2rm−2
sm−1.(2.10)219

220

Hence sm ∈ range(AΣ0). Multiply (2.10) on the left by rTm−1 and insert sTm−1rm−1 =221

0 from Lemma B.1 into the last summand to get rTm−1sm = rTm−1rm−1, where rm−1 6=222

0 implies sm 6= 0. Then sm ∈ range(AΣ0) and sm 6= 0 imply sm 6∈ ker(Σ0A).223

The induction hypothesis, Theorem 2.8, and (2.10) imply that the search di-224

rections s1, . . . , sm are non-zero and AΣ0A-orthogonal. Thus Λm is nonsingular225

diagonal, which implies that si 6∈ ker(Σ0A), 1 ≤ i ≤ m; and with Lemma A.1 that226

x∗ − xm ∈ range(Σ0), thus rm = A(x∗ − xm) ∈ range(AΣ0).227

Remark 2.12. The assumption x∗ − x0 ∈ range(Σ0) in Theorem 2.11, which228

holds automatically if the prior covariance Σ0 is nonsingular, is required to guarantee229

the nonsingularity of the diagonal matrices Λm.230

The statistical interpretation of the assumption x∗ − x0 ∈ range(Σ0) is that the231

solution x∗ must live in the support of the prior, that is, in the subspace of Rn where232

the probability density function of N (x0,Σ0) is nonzero.233

Theorems 2.7, 2.8, and 2.11 form the basis for the BayesCG Algorithm 2.1, which234

differs from the original BayesCG [9, Algorithm 1] only in the computation of the235

posterior covariances as a sequence of rank-1 downdates rather than just a single236

rank-m downdate at the end. Algorithm 2.1 is a Krylov space method; for nonsingular237

priors Σ0 this was established in [9, Section 3], while for singular priors this follows238

from (2.9) and Theorem 2.6. To show the similarity of BayesCG Algorithm 2.1 to239

CG, we present the most common implementation of CG in Algorithm 2.2; it is the240

original version due to Hestenes and Stiefel [26, Section 3].241

The posterior means in Algorithm 2.1 are closely related to the CG iterates in242

Algorithm 2.2. In the special case Σ0 = A−1, the BayesCG posterior means are iden-243

tical to the CG iterates [9, Section 2.3]. The relationship between CG and BayesCG244

is discussed further in [5, 9, 10, 11, 30], and the results are summarized in the sup-245

plement.246

2.3. Choice of BayesCG prior distribution. The mean x0 in the prior247

N (x0,Σ0) corresponds to the initial guess in CG, while the covariance Σ0 can be248

any symmetric positive semi-definite matrix that satisfies x∗−x0 ∈ range(Σ0). Non-249

singular priors examined in [9, Section 4.1] include250

• Inverse prior Σ0 = A−1: The posterior means in Algorithm 2.1 are equal to251

the CG iterates.252

• Natural prior Σ0 = A−2: The posterior means in Algorithm 2.1 converge in253

a single iteration.254
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Algorithm 2.1 Bayesian Conjugate Gradient Method (BayesCG)

1: Input: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

2: spds Σ0 ∈ Rn×n so that x∗ − x0 ∈ range(Σ0)
3: r0 = b−Ax0 . define initial values
4: s1 = r0
5: m = 0
6: while not converged do . iterate through BayesCG Recursions
7: m = m+ 1
8: αm =

(
rTm−1rm−1

) / (
sTmAΣ0Asm

)
9: xm = xm−1 + αmΣ0Asm

10: Σm = Σm−1 −Σ0Asm (Σ0Asm)
T /

(sTmAΣ0Asm)
11: rm = rm−1 − αmAΣ0Asm
12: βm =

(
rTmri

) / (
rTm−1rm−1

)
13: sm+1 = rm + βmsm
14: end while
15: Output: xm, Σm

Algorithm 2.2 Conjugate Gradient Method (CG)

1: Input: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

2: r0 = b−Ax0 . define initial values
3: v1 = r0
4: m = 0
5: while not converged do . iterate through CG Recursions
6: m = m+ 1
7: γm = (rTm−1rm−1)

/
(vT

mAvm)
8: xm = xm−1 + γmvm

9: rm = rm−1 − γmAvm

10: δm = (rTmrm)
/

(rTm−1rm−1)
11: vm+1 = rm + δmvm

12: end while
13: Output: xm

• Identity prior Σ0 = I: The prior is easy to compute, but the posterior means255

in Algorithm 2.1 converge slowly.256

• Preconditioner prior Σ0 =
(
MTM

)−1
where M ≈ A: This prior approxi-257

mates the natural prior.258

• Krylov subspace prior Σ0: This prior is defined in terms of a basis for the259

Krylov space K(A, r0).260

Figure 2.1 illustrates the convergence of posterior means and covariances from261

Algorithm 2.1 under the priors Σ0 = A−1 and Σ0 = I. In both cases the posterior262

means converge faster than the posterior covariances, suggesting that the covariances263

are unreasonably pessimistic about the size of the error x∗−xm. Section 3.3 presents264

a detailed discussion of the relation between the trace of the posterior covariance and265

the error x∗ − xm in the posterior means.266

The example below presents a prior of minimal rank that comprises a maximal267

amount of information.268

Example 2.13. If x0 6= x∗, then Σ0 = (x∗ − x0)(x∗ − x0)T is is a rank-one269
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Figure 2.1. Convergence of BayesCG Algorithm 2.1 applied to the linear system in section 4.2
under different priors: inverse prior (left panel) and identity prior (right panel). Convergence of the
means is displayed as ‖x∗−xm‖2A, while convergence of the covariances is displayed as trace(AΣm).

covariance that satisfies x∗ − x0 ∈ range(Σ0). All rank-one prior covariances for270

BayesCG are multiples of this prior.271

To see this, note that Theorem 2.11 and A−1r0 = x∗ − x0 imply termination of272

Algorithm 2.1 under this prior in a single iteration,273

x1 = x0 +
1

rT0 A A−1r0r
T
0 A−1︸ ︷︷ ︸

Σ0

Ar0
A−1r0r

T
0 A−1︸ ︷︷ ︸

Σ0

Ar0(rT0 r0) = x0 + x∗ − x0 = x∗.274

275

3. Prior distributions informed by Krylov subspaces. Motivated by the276

‘Krylov subspace prior’ [9, section 4.1], we introduce a new ‘Krylov prior’ (section 3.1),277

derive expressions for the Krylov posteriors (section 3.2), ensure the Krylov posteri-278

ors accurately model uncertainty in x∗ (section 3.3), and develop a practical Krylov279

posterior and an efficient implementation of BayesCG as a uncertainty-aware version280

of CG (section 3.4).281

3.1. General Krylov prior. We introduce our new Krylov prior (Definition 3.1)282

and show that the BayesCG Krylov subspace under the Krylov prior is identical to283

the CG Krylov subspace (Lemma 3.2). This Krylov prior is impractical because its284

computation amounts to the direct solution of (1.1), however it is the foundation for285

the efficient low-rank approximations in section 3.4.286

The new Krylov prior is defined in terms of the maximal CG Krylov subspace287

KK(A, r0), where K is the grade of r0 with respect to A (Definition 2.9). The A-288

orthonormal versions of the search directions vm in Algorithm 2.2 are289

(3.1) ṽm ≡ vm/
√

vT
mAvm, 1 ≤ m ≤ K.290

As columns of291

(3.2) V ≡
[
ṽ1 · · · ṽK

]
∈ Rn×K with VTAV = IK292

they represent an A-orthonormal basis for range(V) = KK(A, r0) [26, Theorem 5.1].293

Definition 3.1. The (general) Krylov prior is N (x0,Γ0), where the mean x0 is294

an initial guess for x∗, and the covariance matrix is295

(3.3) Γ0 ≡ VΦVT ∈ Rn×n
296
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where V is as defined in (3.2) and Φ ≡ diag
(
φ1 φ2 · · · φK

)
∈ RK×K with φi > 0,297

1 ≤ i ≤ K. The Krylov prior is ‘general’ because the diagonal elements of Φ are298

unspecified.299

The results in this section and in section 3.2 are valid for any choice of posi-300

tive diagonal elements in Φ. A specific choice of diagonal elements is presented in301

section 3.3.302

The Krylov prior covariance has rank(Γ0) = K and is singular for K < n, hence303

the need for singular priors in section 2. Fortunately, Γ0 is a well-defined BayesCG304

prior, because it satisfies the crucial condition in Theorem 2.11,305

x∗ − x0 ∈ KK(A, r0) = range(V) = range(Γ0).306

Intuition. We give two different interpretations of the decomposition (3.3).307

1. Hermitian eigenvalue problem A1/2Γ0A
1/2 = WΦWT , where Φ contains the308

positive eigenvalues, and the eigenvector matrix W ≡ A1/2V has orthonor-309

mal columns with WTW = IK.310

2. Non-Hermitian eigenvalue problem Γ0AV = VΦ with eigenvalues and eigen-311

vectors312

(3.4) Γ0Aṽm = φmṽm, 1 ≤ m ≤ K.313

This is the property to be exploited in section 3.2.314

We show that the BayesCG Krylov subspace under the Krylov prior is identical315

to the CG Krylov subspace.316

Lemma 3.2. If Γ0 is the Krylov prior in Definition 3.1, then317

Km(A, r0) = Km(AΓ0A, r0), 1 ≤ m ≤ K.318

Consequently, K is also the grade of r0 with respect to AΓ0A is K.319

Proof. An induction proof shows that the Krylov subspaces are the same for the320

first K dimensions. Then we prove that the grade of r0 with respect to AΣA is K.321

Induction basis. Since one-dimensional Krylov subspaces are independent of the322

matrix,323

K1(A, r0) = span{r0} = K1(AΓ0A, r0).324

Induction hypothesis. Assume that325

Ki(A, r0) = Ki(AΓ0A, r0), 1 ≤ i ≤ m− 1.326

With V1:m−1 =
[
ṽ1 ṽ2 · · · ṽm−1

]
in (3.2) this implies327

(3.5) range(V1:m−1) = Km−1(A, r0) = Km−1(AΓ0A, r0).328

Induction step. From (3.5) follow the expressions for the direct sums,329

Km(A, r0) = span{r0} ⊕ range(AV1:m−1)(3.6)330

Km(AΓ0A, r0) = span{r0} ⊕ range(AΓ0AV1:m−1).(3.7)331

Then (3.4) and the non-singularity of Φ imply332

range(AΓ0AV1:m−1) = range(AV1:m−1Φ1:m−1) = range(AV1:m−1).333
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Combining this with (3.6) and (3.7) completes the induction,334

Km(A, r0) = span{r0} ⊕ range(AV1:m−1)335

= span{r0} ⊕ range(AΓ0AV1:m−1) = Km(AΓ0A, r0).336337

Maximal Krylov space dimension. If K′ is the grade of r0 with respect to AΓ0A,338

then the induction implies339

K′ ≥ dim(KK(AΣ0A, r0)) = dim(KK(A, r0)) = K.340

On the other hand, rank(AΓ0A) = K implies K′ ≤ K. Therefore K′ = K.341

3.2. General Krylov posteriors. We show (Theorem 3.3) that under the342

Krylov prior, the BayesCG posteriors have means that are identical to the CG it-343

erates, and covariances that can be factored as in Definition 3.1. This represents the344

foundation for an efficient implementation of BayesCG (Remark 3.4).345

Define appropriate submatrices of V and Φ,346

(3.8) Vi:j ≡
[
ṽi · · · ṽj

]
, Φi:j ≡ diag

(
φi · · · φj

)
, 1 ≤ i < j ≤ K.347

In particular, V = V1:K and Φ = Φ1:K .348

Theorem 3.3. Let N (x0,Γ0) be the Krylov prior in Definition 3.1, and let349

N (xm,Γm) be the posteriors from BayesCG Algorithm 2.1, 1 ≤ m ≤ K. Then the350

posterior means xm are identical to the corresponding CG iterates in Algorithm 2.2,351

and the posterior covariances can be factored as352

(3.9) Γm = Vm+1:KΦm+1:K(Vm+1:K)T , 1 ≤ m < K,353

and Γm = 0 for m = K.354

Proof. We first derive the equality of the posterior means, and then the factor-355

izations of the covariances.356

Posterior means. The idea is to show equality of the BayesCG posterior means357

under Krylov and inverse priors since, per the discussion in [9, Section 2.3] and sec-358

tion 2.3, BayesCG posterior means under the inverse prior are identical to CG iterates.359

From Theorem 2.1, and the ‘equivalence’ of Algorithm 2.1 under Σ0 = A−1 and360

Algorithm 2.2 follows that the BayesCG posterior means under the inverse prior are361

equal to362

(3.10) xm = x0 + V1:mVT
1:mr0.363

Similarly, Theorem 2.1 implies that the BayesCG posterior under the Krylov prior364

are equal to365

(3.11) xm = x0 + Γ0AS̃m(S̃T
mAΓ0AS̃m)−1S̃T

mr0,366

where the columns of S̃m are the search directions from Algorithm 2.1 under the367

Krylov prior. To show the equality of (3.10) and (3.11), we need to relate S̃m and368

V1:m and then include the Krylov prior Γ0.369

With the submatrices defined as in (3.8) we conclude from (3.2) and Lemma 3.2370

that371

range(S̃m) = Km(AΓ0A, r0) = range(V1:m),372
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where the columns of S̃m are AΓ0A-orthogonal. To show that the columns of V1:m373

are also AΓ0A-orthogonal, exploit the fact that they are A-orthonormal and apply374

Definition 3.1,375

VT
1:mAΓ0AV1:m = VT

1:mAVΦVTAV1:m = Φ1:m,376

which is a diagonal matrix. We have established that the columns of S̃m and V1:m377

are AΓ0A-orthogonal, with respective leading columns being multiples of r0, thus378

are AΓ0A-orthogonal bases of Km(AΓ0A, r0). Therefore the columns of V1:m are379

multiples of the columns of S̃m. That is380

(3.12) S̃m = V1:m∆381

for some non-singular diagonal matrix ∆ ∈ Rm×m. Substitute (3.12) into the third382

interpretation (3.4) of the Krylov prior,383

Γ0AS̃m = Γ0AV1:m∆ = V1:mΦ1:m∆384

and this in turn into the second summand of (3.11). Then the non-singularity and385

diagonality of both ∆ and Φ lead to the simplification386

xm = x0 + V1:mΦ1:m∆(∆Φ1:m∆)−1∆VT
1:mr0 = x0 + V1:mVT

1:mr0,(3.13)387388

which is (3.10).389

Posterior covariances. Substituting (3.12) into Theorem 2.1 and simplifying as390

in (3.13) gives391

Γm = Γ0 − Γ0AS̃m(S̃T
mAΓAS̃m)−1S̃TAΓ0392

= VΦVT −V1:mΦ1:mVT
1:m = Vm+1:KΦm+1:KVT

m+1:K.393394

Remark 3.4. Theorem 3.3 implies that the posteriors from BayesCG under the395

Krylov prior have means that can be computed with CG, and covariances can be main-396

tained in factored form without any arithmetic operations. This is the key to the397

efficient implementation of BayesCG in section 3.4.398

3.3. Krylov posteriors that capture CG convergence. We present a Krylov399

prior with specific diagonal elements (section 3.3.1), discuss the calibration of BayesCG400

under this prior (section 3.3.2) and its relation to existing CG error estimation theory401

(section 3.3.3).402

3.3.1. Specific Krylov prior. We choose a specific diagonal matrix Φ for the403

Krylov prior (Definition 3.6), so that the Krylov posteriors accurately model the un-404

certainty in our knowledge of x∗ due to the error x∗ − xm. We derive error estimates405

from samples of the posteriors (Lemma 3.5) and then relate them to CG errors (The-406

orem 3.7).407

Let us start with a general posterior distribution N (x,Σ). If it indeed accurately408

modeled the uncertainty in x∗ due to the approximation error x∗− x, then we would409

expect the difference between samples of N (x,Σ) and its posterior mean x to be close410

to the actual error,411

(3.14) E
[
‖X − x‖2A

]
= ‖x∗ − x‖2A where X ∼ N (x,Σ).412

The squared A-norm error ‖X − x‖2A is a quadratic form, whose expected value has413

an explicit expression.414
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Lemma 3.5. If X ∼ N (x,Σ) is a Gaussian random variable with mean x ∈ Rn415

and symmetric positive semi-definite covariance Σ ∈ Rn×n, then416

(3.15) E
[
‖X − x‖2A

]
= trace(AΣ).417

Proof. The proof relies on the expected value of a quadratic form in Appendix B.418

Set Z ≡ X − x ∼ N (0,Σ) and apply Lemma B.2 to ZTAZ,419

E
[
‖X − x‖2A

]
= E

[
‖Z‖2A

]
= E

[
ZTAZ

]
= trace(AΣ).420421

Thus, trace(AΣ) has the potential to be an error indicator. We present a spe-422

cific diagonal matrix for the Krylov prior Γ0 in Definition 3.1, so that its posterior423

covariances produce meaningful error estimates trace(AΓm).424

Definition 3.6. The (specific) Krylov prior is N (x0,Γ0), where the mean x0 is425

an initial guess for x∗, and the covariance matrix is426

(3.16) Γ0 ≡ VΦVT ∈ Rn×n
427

where V is defined in (3.2) and Φ ≡ diag
(
φ1 φ2 · · · φK

)
∈ RK×K has diagonal428

elements429

φi = γi‖ri−1‖22, 1 ≤ i ≤ K,430431

where γi = rTi−1ri−1/v
T
i Avi are the step sizes in line 7 of CG Algorithm 2.2.432

Now we show that the posterior covariances from BayesCG under the specific433

Krylov prior reproduce the CG error.434

Theorem 3.7. Let N (x0,Γ0) be the Krylov prior in Definition 3.6, and N (xm,Γm)435

be the posteriors from BayesCG Algorithm 2.1, 1 ≤ m ≤ K. Then436

trace(AΓm) = ‖x∗ − xm‖2A, 1 ≤ m ≤ K.437

Proof. Apply Lemma 3.5 to the specific Krylov prior in Definition 3.6. From the438

cyclic commutativity of the trace and A-orthonormality of the columns of V follows439

trace(AΓm) = trace(AVm:KΦm:K(Vm:K)T )440

= trace((Vm:K)TAVm:KΦm:K) = trace(Φm:K).(3.17)441442

The diagonal matrix Φ for the specific Krylov prior in Definition 3.6 is chosen so that443

trace(Φm:K) = ‖x∗ − xm‖2A. Remember that the reduction in the squared A-norm444

error from iteration m to m + d of Algorithm 2.2 equals [26, Theorem 6:1] and [31,445

Theorem 5.6.1]446

(3.18) ‖x∗ − xm‖2A − ‖x∗ − xm+d‖2A =

m+d∑
i=m+1

γi‖ri−1‖22, 0 ≤ m < m+ d ≤ K.447

Setting d = K−m gives xK = x∗ and448

‖x∗ − xm‖2A =

K∑
i=m+1

γi‖ri−1‖22, 0 ≤ m ≤ K.449

450

Combine this equality with (3.17) to conclude φi = γi‖ri−1‖22, 1 ≤ i ≤ K.451

Thus, the specific Krylov posteriors have covariances that converge at the same452

speed as their means.453

This manuscript is for review purposes only.



BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG 13

3.3.2. Calibration of BayesCG under the specific Krylov prior. A prob-454

abilistic numerical linear solver is considered calibrated if its posterior distribution455

accurately models the uncertainty in x∗ due to the approximation error x∗ − xm.456

Calibration of general probabilistic methods is discussed in [6] and of linear solvers457

in [7]. We briefly discuss how Lemma 3.5 and Theorem 3.7 contribute to better458

calibration of BayesCG under the specific Krylov prior.459

Previous probabilistic extensions of CG do not produce posteriors that accurately460

model the uncertainty in x∗ [1, Section 6.4], [9, Section 6.1], [53, Section 3]. For461

instance, Figure 2.1 illustrates that BayesCG under the priors Σ0 = A−1 and Σ0 = I462

has errors ‖x∗−xm‖2A that converge faster than trace(AΣm). Furthermore, according463

to Lemma 3.5, the estimators trace(AΣm) from posterior samples are inaccurate and464

do not reflect the true error ‖x∗ − xm‖2A. In other words, the posteriors do not465

accurately model uncertainty in x∗.466

Our approach towards designing posteriors that accurately model the uncertainty467

in x∗ relies a judicious choice of the diagonal matrix Φ for the specific Krylov prior,468

so that sampling from the posteriors produces accurate error estimates. This can be469

viewed as a scaling of the posterior covariance that forces trace(Φm:K) = ‖x∗−xm‖2A.470

Alternative approaches for improving posteriors via scaling of the posterior covariances471

include [9, Section 4.2], [13, Section 7], and [53, Section 3]472

Empirical evidence demonstrating that BayesCG under the specific Krylov prior473

produces posterior samples with accurate error estimates suggests but does not guar-474

antee that it accurately models the uncertainty in x∗. A rigorous investigation of the475

calibration of BayesCG under the specific Krylov prior is the subject of a separate476

paper.477

3.3.3. Relation to CG error estimation. The purpose of Lemma 3.5 is to478

motivate a choice of Φ so that BayesCG under the specific Krylov prior accurately479

models the uncertainty in x∗ due to the approximation error x∗ − xm.480

Effective CG error estimation is a well researched area, with most effort focused481

on the absolute A-norm error. One option [49] is to run d additional CG iterations482

and apply (3.18) to obtain the underestimate [49, Equation (4.9)],483

(3.19)

m+d∑
i=m+1

γi‖ri−1‖22 ≤ ‖x∗ − xm‖2A.484

The rationale is that the error after m+ d iterations has become negligible compared485

to the error after m iterations, especially in the case of fast convergence. The number486

of additional iterations d is usually called the ‘delay’ [37, Section 1], and larger values487

of d lead to more accurate error estimates.488

The estimate (3.19) also coincides with the lower bound from Gaussian quadra-489

ture [49, Section 3]. Other lower and upper bounds for the A-norm error based on490

quadrature formulas and tunable with a delay include [17, 18, 19, 35, 36, 37, 49, 50].491

3.4. Practical specific Krylov posteriors. We define low rank approxima-492

tions of specific Krylov posterior covariances (Definition 3.8), and present an efficient493

CG-based implementation of BayesCG (Algorithm 3.1). It approximates the Krylov494

posteriors from delay iterations, thereby avoiding explicit computation of the Krylov495

prior, and inherits the fast convergence of CG.496

The following low-rank approximations are based on the factored form of the497

Krylov posteriors in Theorem 3.3 and make use of the submatrices defined in (3.8).498
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Definition 3.8. Let N (x0,Γ0) be the specific Krylov prior from Definition 3.6499

with posteriors500

Γm = Vm+1:KΦm+1:K (Vm+1:K)
T
, 1 ≤ m < K.501

For 1 ≤ d ≤ K−m, extract the leading rank-d submatrices from Vm+1:K and Φm+1:K,502

and define the rank-d approximate Krylov posteriors as N (xm, Γ̂m) with503

(3.20) Γ̂m ≡ Vm+1:m+dΦm+1:m+d(Vm+1:m+d)T .504

Remark 3.9. We view (3.20) as approximations of the posteriors resulting from505

the full-rank prior. Instead, we could also view (3.20) as posteriors from rank-(m+d)506

approximations of the prior N (x0, Γ̂0) with Γ̂0 = V1:m+dΦ1:m+d(V1:m+d)T . This507

interpretation of (3.20) is discussed in the supplement. However, from a practical508

point of view, explicit computation of Γ̂0 is too expensive and it is not necessary.509

Following the same argument as Theorem 3.7, one can express the underesti-510

mate (3.19) for the CG error in terms of the posterior covariance,511

trace(AΓ̂m) =

m+d∑
i=m+1

γi‖ri−1‖22 ≤ ‖x∗ − xm‖2A.512

If the posterior distribution accurately models the uncertainty in the solution, then513

we expect (3.14) to hold. This means the accuracy of the uncertainty from the ap-514

proximate Krylov posterior is related to the accuracy of the underestimate (3.19).515

Algorithm 3.1 represents an efficient computation of BayesCG under rank-d ap-516

proximate Krylov posteriors, and consists of two loops2:517

1. Run CG until convergence in iteration m and compute the posterior mean518

xm519

2. Run d additional CG iterations and compute the factors Vm+1:m+d and520

Φm+1:m+d of the rank-d approximate posterior Γ̂m.521

Correctness. Theorem 3.3 asserts that posteriors of BayesCG under the Krylov522

prior have means that are identical to CG iterates, and covariances that can be main-523

tained in factored form involving submatrices of V and Φ from Definition 3.6. The524

rank d of Γ̂m has the same purpose as the ‘delay’ in CG error estimation: a small num-525

ber of additional iterations to capture the error, and trace(AΓ̂m) = trace(Φm+1:m+d)526

is equal to the error underestimate (3.19). As a termination criterion one can choose527

the usual residual norm, or a statistically motivated criterion.528

Computational cost. Algorithm 3.1 performs fewer arithmetic operations than529

Algorithm 2.1. Specifically, Algorithm 3.1 runs m+d iterations of Algorithm 2.2, and530

a total of m+ d matrix vector products with A and storage of at most d+ 2 vectors.531

This is less than Algorithm 2.1, which requires 2m matrix vector products with A, m532

matrix vector products with Σ0, and storage of m+ 2 vectors.533

In addition, Algorithm 2.1 requires reorthogonalization to ensure positive semi-534

definiteness of the posterior covariances [9, Section 6.1]. In contrast, Algorithm 3.1535

maintains the Krylov posteriors in factored form, thus (i) ensuring symmetric posi-536

tive semi-definiteness by design; and (ii) reducing the cost of sampling, because the537

factorizations Σm = FmFT
m are readily available without any computations. The538

2The partition of Algorithm 3.1 into two loops is for the purpose expositional clarity. Alterna-
tively, everything could have been merged into a single loop with a conditional.
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Algorithm 3.1 BayesCG under rank-d approximations of specific Krylov posterior
covariances

1: Inputs: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, d ≥ 1
2: r0 = b−Ax0 . define initial values
3: v1 = r0
4: m = 0
5: while not converged do . CG recursions for posterior means
6: m = m+ 1
7: ηm = vT

mAvm

8: γm = (rTm−1rm−1)
/
ηm

9: xm = xm−1 + γivi

10: rm = rm−1 − γiAvi

11: δm = (rTmrm)
/

(rTm−1rm−1)
12: vm+1 = rm + δmvm

13: end while
14: d = min{d,K−m} . compute full rank posterior if d > K−m
15: Vm+1:m+d = 0n×d . define posterior factor matrices
16: Φm+1:m+d = 0d×d
17: for j = m+ 1 : m+ d do . d additional iterations for posterior covariance
18: ηj = vT

j Avj

19: γj = (rTj−1rj−1)
/
ηj

20: Vj = vj

/
ηj . store column j of V

21: Φj = γj‖rj−1‖22 . store element j of Φ
22: rj = rj−1 − γjAvj

23: δj = (rTj rj)
/

(rTj−1rj−1)
24: vj+1 = rj + δjvj

25: end for
26: Output: xm, Vm+1:m+d, Φm+1:m+d

last point is important, since the posterior is propagated to subsequent computations539

which sample from it to probe the effect of the uncertainty in the linear solve. So far,540

analytical propagation of the posterior has proved elusive, and empirical propagation541

is our only option.542

4. Numerical experiments. We present numerical experiments to compare (i)543

Algorithm 3.1 under full or rank-d approximations of specific Krylov posteriors with544

(ii) Algorithm 2.1 under the inverse prior. After describing the experimental set up545

(section 4.1), we apply the algorithms to two matrices: a matrix of small dimension546

(section 4.2), and one of larger dimension (section 4.3).547

4.1. Set up of the numerical experiments. We describe the linear systems548

in the experiments, reorthogonalization in the algorithms, and sampling from the549

posterior distributions.3550

Linear systems. We consider two types of symmetric positive-definite linear sys-551

tems Ax∗ = b: one with a dense matrix A of dimension n = 100, and the other with552

a sparse preconditioned matrix A of dimension n = 11948. We fix the solution x∗,553

and compute the right hand side from b = Ax∗.554

3The Python code used in the numerical experiments can be found at https://github.com/treid5/
ProbNumCG Supp
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For n = 100, the matrix is A = QDQT [22, Section 2], where Q is a random4555

orthogonal matrix with Haar distribution [47, Section 3], and D is a diagonal matrix556

with eigenvalues [20]557

(4.1) dii = (103)(i−1)/99, 1 ≤ i ≤ 100.558

The condition number is κ(A) = 103, and the solution x∗ is sampled from N (0,A−1).559

For n = 11948, the matrix A = L−1BL−T is a sparse preconditioned matrix560

where B is BCSSTK18 from the Harwell-Boeing collection [33], and L is the incomplete561

Cholesky factorization [21, Section 11.1] of the diagonally shifted matrix562

B̃ = B + 9.0930 · 108 · diag(B) with max
1≤i≤n

−bii +
∑
j 6=i

bij

 = 9.0930 · 108.563

The shift forces B̃ to be diagonally dominant. We compute the factorization of B̃564

with a threshold drop tolerance 10−6 to make L diagonal. The condition number is565

κ(A) ≈ 1.57 · 106, and the solution x∗ = 1 is the all ones vector.566

Reorthogonalization. Since the posterior covariances in Algorithm 2.1 become567

indefinite when the search directions lose orthogonality, reorthogonalization of the568

search directions is recommended in every iteration, [9, Section 6.1] and [11, Sec-569

tion 4.1]. Following [22, Section 2], we reorthogonalize the residual vectors instead,570

as it has the additional advantage of better numerical stability in our experience.571

Reorthogonalization consists of classical Gram-Schmidt performed twice because it572

is efficient, easy to implement, and produces vectors orthogonal to almost machine573

precision [15, 16].574

Sampling from the Gaussian distributions. We exploit the stability of Gaussians,575

see section 2.1, to sample from N (x,Σ) as follows. Let Σ = FFT be a factorization of576

the covariance with F ∈ Rn×d. Sample a standard Gaussian vector5 Z ∼ N (0d, Id);577

multiply it by F; and add the mean to obtain X ≡ x + FZ ∼ N (x,FFT ).578

By design, the rank-d approximate Krylov posteriors are maintained in factored579

form580

Γ̂m = FmFT
m where Fm ≡ Vm+1:m+d Φ

1/2
m+1:m+d ∈ Rn×d.581

For all other posteriors Σm, we factor the matrix square root [27, Chapter 6] of the582

matrix absolute value [27, Chapter 8] of Σm
6. Factoring the absolute value of Σm583

enforces positive semi-definiteness of the posteriors which may be lost if BayesCG is584

implemented without reorthogonalization.585

Convergence. We display convergence of the mean and covariance with ‖x∗ −586

xm‖2A and trace(AΣm). In addition, we sample from the posterior, X ∼ N (xm,Σm)587

and compare the resulting estimate ‖X − xm‖2A to the error ‖x∗ − xm‖2A. If the588

samples X are accurate estimates, then the posterior distribution is likely to be a589

reliable indicator of the uncertainty in the solution x∗.590

4The exact random matrix can be reproduced with the python files in our code repository because
we specified the random seed.

5Most scientific computing packages come with built in functions for sampling from N (0, I). In
Matlab and Julia the function is randn and in Python it is numpy.random.randn.

6The matrix absolute value of B ∈ Rn×n is abs(B) = (BT B)1/2. If B is symmetric positive
semi-definite, then abs(B) = B. Otherwise, the square root of the absolute value is (abs(B))1/2 =
VS1/2VT , where B = USVT is a SVD.
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Figure 4.1. Error estimates ‖X − xm‖2A and trace(AΣm) from samples X ∼ N (xm,Σm),
for the matrix with small dimension n = 100. Top row: Algorithm 2.1 with reorthogonalization
under the inverse prior (left panel), and Algorithm 3.1 under the full Krylov prior (right panel).
Bottom row: Algorithm 2.1 without reorthogonalization under the inverse prior (left panel), and
Algorithm 3.1 under the rank-5 approximate Krylov prior (right panel).

4.2. Matrix with small dimension. We compare Algorithm 2.1 under the591

inverse prior, with Algorithm 3.1 under full or rank-5 approximate Krylov posteriors592

when applied to the matrix with small dimension n = 100.593

Figure 4.1 illustrates that the posterior means converge at the same speed, regard-594

less of reorthogonalization. However, without reorthogonalization, the convergence is595

slower.596

Algorithm 2.1 under the inverse prior. The posterior covariances converge more597

slowly than the squared errors of the means. Without reorthogonalization, the pos-598

terior covariances are indefinite, and the error estimates from the posterior samples599

diverge from trace(AΣm) and violate Lemma 3.5. Thus, posteriors from BayesCG600

under the inverse prior are not reliable indicators of uncertainty.601

Algorithm 3.1 under full or approximate Krylov priors. The quantity trace(AΣm)602

equals the error for full rank Krylov posteriors, while it underestimates the error for603

rank-5 approximate posteriors. Error estimates from samples of Krylov posteriors604

are significantly more accurate than those from the inverse posteriors. Thus, poste-605

riors from BayesCG under (approximate) Krylov priors are more reliable indicators606

uncertainty.607

4.3. Matrix with larger dimension. We compare Algorithm 3.1 under rank-1608

and rank-50 approximate Krylov posteriors, when applied to the matrix with large609

dimension n = 11948.610

Figure 4.2 illustrates that the traces of the posterior covariances underestimate611

the error. However, the trace of the rank-50 approximate Krylov covariance is more612

accurate, because CG error estimates (3.19) are more accurate for larger delays [49,613
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Figure 4.2. Error estimates ‖X−xm‖2A and trace(AΣm) from samples X ∼ N (xm,Σm), for
the matrix with large dimension n = 11948. Left: Algorithm 3.1 under rank-1 approximate Krylov
posterior. Right: Algorithm 3.1 under rank-50 approximate Krylov posterior.

Section 4]. As expected, error estimates from rank-50 posterior samples are more614

tightly concentrated around the true error than those of rank-1 posterior samples.615

Thus, BayesCG under higher rank approximate posteriors produces more reliable616

indicators of uncertainty.617

5. Conclusion. BayesCG is our ’uncertainty-aware’ version of CG, that is, a618

probabilistic numerical extension of CG that produces a probabilistic model of the619

uncertainty about our knowledge of the solution x∗ due to early termination of CG.620

Under our Krylov prior, BayesCG produces iterates that are identical to those of621

CG (in exact arithmetic), thus converges at the same speed as CG; and its posterior622

distributions can be cheaply approximated. Samples from the Krylov posterior and623

its low rank approximations produce accurate error estimates, thus represent realistic624

indicators of the uncertainty about x∗.625

Future work. In a forthcoming paper, we focus on the statistical aspects of626

BayesCG under the Krylov prior. More specifically, we quantify the approximation627

error of low rank approximate Krylov posteriors and investigate the calibration of628

BayesCG under low-rank approximate Krylov posteriors.629

In a separate paper, we assess the effect of CG accuracy in a computational630

pipeline in the form of a randomized algorithm for generalized singular value decom-631

position [44] with applications to hyper-differential sensitivity analysis [23].632

Appendix A. Proofs of Theorems 2.4, 2.6 and 2.7.633

Proof of Theorem 2.4. The proof is inspired by the proof of [10, Proposition 3]634

for nonsingular Σ0. For singular Σ0, we replace the inverse by the Moore-Penrose635

inverse which satisfies636

(A.1) Σ0 = Σ0Σ
†
0Σ0.637

The assumption x∗ − x0 ∈ range(Σ0) implies that there exists y ∈ Rn so that638

(A.2) x∗ − x0 = Σ0y = Σ0Σ
†
0Σ0y = Σ0Σ

†
0(x∗ − x0).639

The proof proceeds in four steps.640

Range of Pm. On the one hand (2.3) implies641

range(Pm) = range
(
Σ0ASmΛ−1m ST

mAΣ0Σ
†
0

)
⊂ range (Σ0ASm) .642

643
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On the other hand (2.3) and (A.1) imply644

PmΣ0ASm = Σ0ASmΛ−1m

Λm︷ ︸︸ ︷
ST
mA Σ0Σ

†
0Σ0︸ ︷︷ ︸

Σ0

ASm = Σ0ASm645

646

so that range(Σ0ASm) ⊂ range(Pm).647

Combining the two inclusions gives range(Pm) = Km ≡ range(Σ0ASm).648

Pm is a Σ†0-orthogonal projector. The above implies649

P2
m = PmΣ0ASm︸ ︷︷ ︸

Σ0ASm

Λ−1m ST
mAΣ0Σ

†
0 = Σ0ASmΛ−1m ST

mAΣ0Σ
†
0 = Pm.(A.3)650

651

Thus Pm is a projector. The Σ†0-orthogonality of Pm follows from the symmetry of652

Σ†0P.653

Posterior mean. From (2.1), (A.2), and (2.3) follows654

xm = x0 + Σ0ASmΛ−1m ST
mA(x∗ − x0)655

= x0 + Σ0ASmΛ−1m ST
mAΣ0Σ

†
0(x∗ − x0) = (I−Pm)x0 + Pmx∗.656657

Posterior covariance. From (2.2), (A.1) and (2.3) follows658

Σm = Σ0 −Σ0ASmΛ−1m ST
mAΣ0659

= Σ0 −Σ0ASmΛ−1m ST
mAΣ0Σ

†
0Σ0 = (I−Pm)Σ0.660661

Multiply Σm on the left by Pm and apply (A.3) to obtain PmΣm = Pm(I−Pm)Σ0 =662

0.663

The proof of Theorem 2.6 relies on the next three results related to semi-definite664

inner product spaces and orthogonal projectors in those spaces.665

Lemma A.1. Under the assumptions of Theorem 2.1, if x∗ − x0 ∈ range(Σ0),666

then x∗ − xm ∈ range(Σ0), 1 ≤ m ≤ n.667

Proof. Subtract from x∗ both sides of the posterior mean (2.1),668

x∗ − xm = (x∗ − x0)−Σ0ASmΛ−1m ST
mA(x∗ − x0), 1 ≤ m ≤ n.669

The first summand x∗ − x0 is in range(Σ0) by assumption, and the second one by670

design, hence so is the sum.671

Lemma A.2. Let B ∈ Rn×n be symmetric positive semi-definite. If z ∈ range(B),672

then zTBz = 0 if and only if z = 0.673

Proof. Since B is symmetric positive semi-definite, we can factor FFT = B,674

where F has full column rank. Let w = FT z. From z ∈ range(B) = range(F), and675

range(F) = ker(FT )⊥ follows that w = FT z = 0 if and only if z = 0. Therefore676

wTw = zTBz = 0 if and only if z = 0.677

Lemma A.3. Let X ⊆ Rn be a subspace, B ∈ Rn×n symmetric positive semi-678

definite, and v ∈ Rn. If P is a B-orthogonal projector onto X , then679

arg min
x∈X

(v − x)TB(v − x) = {x ∈ X : (x−Pv)TB(x−Pv) = 0}.680
681
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If additionally X ⊆ range(B), then682

arg min
x∈X

(v − x)TB(v − x) = Pv.683

Proof. After proving the general case, we show that the minimizer is unique if684

X ⊆ range(B).685

General case. Abbreviate the induced semi-norm by |z|2B = zTBz. Since P is a686

projector onto X , we can write x = Px for x ∈ X . Add and subtract Pv inside the687

norm to obtain a Pythagoras-like theorem,688

|v − x|2B = |(I−P)v + P(v − x)|2B689

= |(I−P)v|2B + |P(v − x)|2B + 2vT (I−P)TBP︸ ︷︷ ︸
=0

(v − x)690

= |(I−P)v|2B + |Pv − x|2B.691692

Since the first summand is independent of x, the minimum is achieved if the second693

summand is zero.694

Uniqueness. Since P is a projector onto X , Pv ∈ X . From X ⊆ range(B) follows695

Pv ∈ range(B) and x ∈ range(B). With Lemma A.2 this implies: |Pv − x|2B = 0696

only if Pv = x.697

Proof of Theorem 2.6. This is similar to [1, Proof of Proposition 4]. Minimizing698

(2.4) over the affine space x0 + Km = x0 + range(Σ0ASm) is equivalent to shifting699

by x0 and minimizing over Km,700

min
x∈x0+Km

(x∗ − x)TΣ†0(x∗ − x) = min
x∈Km

((x∗ − x0)− x)TΣ†0((x∗ − x0)− x).701

Since Σ0 is symmetric, the Σ†0-orthogonal projector Pm from Theorem 2.4 satisfies702

range(Pm) = Km ⊆ range(Σ0) = range(Σ†0). Therefore, Lemma A.3 implies703

arg min
x∈Km

((x∗ − x0)− x)TΣ†0((x∗ − x0)− x) = P(x∗ − x0).704

705

From Theorem 2.4 and Km = range(Pm) follows xm − x0 = Pm(x∗ − x0) ∈ Km.706

Thus xm ∈ x0 +Km is the minimizer.707

The symmetry of Σm and Lemmas A.1 and A.2 imply that (x∗ − xm)TΣ†0(x∗ −708

xm) = 0 only if xm = x∗.709

Proof of Theorem 2.7. Recursion (2.6) was shown in [9, Proposition 6]. The fol-710

lowing proof for (2.7) is analogous to [11, Proof of Proposition 6]. From (2.2) follows711

that the posterior covariance at iteration i amounts to a rank-i downdate of the prior,712

Σi = Σ0 −Σ0ASiΛ
−1
i (Σ0ASi)

T
, 1 ≤ i ≤ m.713

Here Λi is diagonal due to the AΣ0A-orthogonality of the search directions, hence a714

rank-i downdate can be computed as a recursive sequence of i rank-1 downdates,715

Σi = Σ0 −Σ0ASi−1Λ
−1
i−1(Σ0ASi−1)T︸ ︷︷ ︸

Σi−1

−Σ0Asi (Σ0Asi)
T

sTi AΣ0Asi
.716

717

Appendix B. Auxiliary results.718
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Lemma B.1 (Lemma S3 in [11]). Under the assumptions of Theorem 2.7,719

sTj ri = 0, 1 ≤ j ≤ i ≤ m.720

Lemma B.2 (Sections 3.2b.1–3.2b.3 in [32]). Let Z ∼ N (x,Σ) be a Gaussian721

random variable with mean x ∈ Rn and covariance Σ ∈ Rn×n, and let B ∈ Rn×n be722

symmetric positive definite. The mean and variance of ZTBZ are723

E[ZTBZ] = trace(BΣ) + xTBx,724

V[ZTBZ] = 2 trace((BΣ)2) + 4 xTBΣBx.725726
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[37] G. Meurant and P. Tichý, Approximating the extreme Ritz values and upper bounds for the832
A-norm of the error in CG, Numer. Algorithms, 82 (2019), pp. 937–968, https://doi.org/833

This manuscript is for review purposes only.

https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1016/j.camwa.2005.08.009
https://doi.org/10.1016/j.camwa.2005.08.009
https://doi.org/10.1016/j.camwa.2005.08.009
https://doi.org/10.1007/BF02510247
https://doi.org/10.1007/BF02510247
https://doi.org/10.1007/BF02510247
https://doi.org/10.1007/BF02142693
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1137/0613011
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020032480
https://doi.org/10.1137/140955501
https://doi.org/10.6028/jres.049.044
https://doi.org/10.6028/jres.049.044
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://proceedings.neurips.cc/paper/2018/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://doi.org/10.1214/19-BA1145
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk18.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk18.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk18.html
https://doi.org/10.1137/19M1278405
https://doi.org/10.1023/A:1019178811767
https://doi.org/10.1023/A:1019178811767
https://doi.org/10.1023/A:1019178811767
https://doi.org/10.1007/s11075-012-9591-9
https://doi.org/10.1007/s11075-012-9591-9
https://doi.org/10.1007/s11075-012-9591-9
https://doi.org/10.1007/s11075-018-0634-8
https://doi.org/10.1007/s11075-018-0634-8
https://doi.org/10.1007/s11075-018-0634-8


BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG 23

10.1007/s11075-018-0634-8.834
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