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BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG*

TIM W. REID, ILSE C. F. IPSENT, JON COCKAYNE?, AND CHRIS J. OATES?$

Abstract. The Bayesian Conjugate Gradient method (BayesCQ) is a probabilistic generalization
of the Conjugate Gradient method (CG) for solving linear systems with real symmetric positive
definite coefficient matrices. Our CG-based implementation of BayesCG under a structure-exploiting
prior distribution represents an 'uncertainty-aware’ version of CG. Its output consists of CG iterates
and posterior covariances that can be propagated to subsequent computations. The covariances have
low-rank and are maintained in factored form. This allows easy generation of accurate samples to
probe uncertainty in downstream computations. Numerical experiments confirm the effectiveness of
the low-rank posterior covariances.

Key words. Symmetric positive semi-definite matrix, Krylov space method, Gaussian proba-
bility distribution, Bayesian inference, covariance matrix, mean, Moore-Penrose inverse, projectors
in semi-definite inner products
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1. Introduction. The solution of linear systems
(L.1) Ax, = Db,

with symmetric positive definite coefficient matrix A € R™*™ is an important prob-
lem in computational science and engineering. For large and sparse matrices A, the
preferred solver is the Conjugate Gradient method (CG) [26, 31]. This is a Krylov
subspace method that, starting from a user-specified initial guess xq, produces iter-
ates x,,, that, the user hopes, ultimately converge to the solution x,. In practice, CG
is terminated early, once the residual ||b — Ax,,|| is sufficiently small in some norm.
Early termination introduces a source of uncertainty since the solution x, has not
been exactly computed.

We seek to create an ‘uncertainty aware’ version of CG that models the uncer-
tainty in our knowledge of x, due to early termination. From the UQ perspective,
this represents an instance of model discrepancy with epistemic uncertainties. Our
motivation is to understand how the accuracy of the CG output x,, affects down-
stream computations in a computational pipeline [12, Section 5], [25], that is, se-
quences of computations where the output of one computation is the input to another
[7, 23, 40, 43, 44]. Traditional normwise CG error estimates are inadequate, because
subsequent computations may not be able to make effective use of them. In contrast,
a probabilistic model of the uncertainty, in the form of a distribution, can be prop-
agated so that downstream computations can sample from the distribution to probe
the effect of uncertainty on their own computations.

This is the mission of probabilistic numerics': Modelling the uncertainty in de-
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terministic computations with a probabilistic treatment of the errors [25, 42]. The
origins of probabilistic numerics can be traced back to Poincaré [42], while a rigor-
ous modern perspective is established in [12]. Probabilistic numerical methods have
been developed for Bayesian optimization [38], subsequently applied to hyperparam-
eter optimization in machine learning [46]; numerical integration [4, 14, 29], sparse
Cholesky decompositions [45], and solution of ordinary and partial differential equa-
tions [8, 34, 41, 52].

In the context of linear solvers, probabilistic solvers posit a prior distribution rep-
resenting initial epistemic uncertainty about a quantity of interest, which can be the
solution [1, 7, 9, 53] or the matrix inverse [1, 2, 24]. They then condition on the finite
amount of information obtained during m iterations to produce a posterior distribu-
tion that reflects the reduced uncertainty [9, Section 1.2], [42]. The interpretation of
CG as a probabilistic solver was pioneered in the context of optimization [24], followed
by the development of the Bayesian Conjugate Gradient method (BayesCG) [9] as a
general purpose solver in statistics. However, current versions of BayesCG have two
drawbacks: they are computationally expensive; and their posterior distributions do
not model the uncertainty accurately.

1.1. Contributions and outline. We propose an efficient uncertainty-aware
CG implementation in the form of BayesCG (Algorithm 3.1), and establish its proper
foundation within probabilistic numerics (sections 2 and 3).

We design a new Krylov prior distribution for BayesCG, which is motivated by
the Krylov subspace prior [9, section 4.1], which is a non-singular structured prior
based on Krylov spaces, whose posterior distributions are expensive and not always
meaningful. In contrast, our new Krylov prior is generally singular, depends on quan-
tities computed by CG, and produces low-rank posteriors that lend themselves to
efficient sampling in downstream computations. We proceed in two steps.

1. Extension of BayesCG to singular prior covariances (section 2).
We show that under reasonable assumptions, the theoretical and computa-
tional properties of BayesCG from [9] extend to prior covariances that are
singular. This extension to singular priors paves the way for an efficient
BayesCG implementation that produces meaningful posteriors. Auxiliary re-
sults and technical proofs are postponed to the end (Appendices A and B).
2. Introduction of the new Krylov prior and its properties (section 3).
This singular prior covariance exploits structure and adapts to BayesCG,
with posteriors whose means are identical to the corresponding CG iterates,
and whose covariances describe a realistic level of uncertainty. The posterior
covariances are maintained in factored form, and are therefore highly accurate
and easy to approximate, as confirmed by numerical experiments (section 4).

1.2. Notation. Bold uppercase letters, like A, represent matrices, with I de-
noting the identity. The Moore-Penrose inverse of A is AT. Bold lowercase letters,
like x,, represent vectors; italic lowercase letters, like «, scalars; and italic uppercase
letters, like X, random variables. A multivariate Gaussian distribution with mean x
and covariance X is denoted by N (x,X), and X ~ N(x,X) is a Gaussian random
variable. We assume exact arithmetic throughout the theoretical sections 2 and 3.

2. Introduction to BayesCG with singular priors. We extend the appli-
cability of BayesCG from definite to semi-definite prior covariances, and discuss the
theory (section 2.1), recursive computation of posterior distributions (section 2.2),
and choices for prior distributions (section 2.3).

This manuscript is for review purposes only.
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BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG 3

2.1. Theoretical properties of BayesCG under singular priors. We derive
expressions for the BayesCG posterior means and covariances under singular priors
(Theorem 2.1), express the posteriors in terms of projectors (Theorem 2.4), and estab-
lish the optimality of the posterior means (Theorem 2.6). The proofs are analogous
to earlier proofs for non-singular priors in [1, 9], and relegated to Appendix A and
the supplement.

BayesCG computes posterior distributions N (x,,, 3,,) by conditioning the prior

N (x0,X0) on information from m < n linearly independent search directions S,,.
Specifically, the posterior is the distribution of the random variable X ~ A (xq, Xo)
conditioned on the random variable Y = ST AX taking the value ST Ax,. The
conditioning relies on two properties of Gaussian distributions:
(i) Stability: linear transformations of Gaussians remain Gaussian [39, Section 1.2].
(ii) Conjugacy: posteriors from Gaussian priors conditioned under linear information
remain Gaussian [51, Theorem 6.20].

We start with the extension of BayesCG to singular priors.

THEOREM 2.1 (Extension of [9, Proposition 1]). Let N (xo, Xq) be a prior with
a symmetric positive semi-definite covariance 3o € R™*™. Let m < rank(Xy), and
let the matriz of search directions S,, = [sl sm] € R™™ ™ haue linearly inde-
pendent columns so that A, = S,TnAEOASm is non-singular. Then the BayesCG
posterior N (X, Xm) has mean and covariance

(2.1) Xm = X + BoAS,,A'ST (b — Axg)
(2.2) 2, =3 — Z9AS,, A IST AX,.

Proof. See supplement. 0

REMARK 2.2. Theorem 2.1 requires the existence of search directions that produce
a nonsingular A,,, and the purpose this theorem is to derive an expression for how
to compute the posterior distribution resulting from any valid set of search directions.
Section 2.2 presents the recursive computation of search directions that make A, non-
singular, while the supplement presents an example of a a non-recursive construction.

Next we derive explicit expressions for the posterior covariances in terms of or-
thogonal projectors onto range(XoAS,,). To this end we exploit the close relation
between Gaussian conditioning and orthogonal projections [1, Section 3]; and gener-
alize the notion of projector [48, page 111] to semi-definite inner products to allow for
singular priors 3,

DEFINITION 2.3 ([28, section 0.6.1]). Let B € R™*"™ be symmetric positive semi-
definite, and P € R™". If P2 = P and (BP)? = BP, then P is a B-orthogonal
projector, with (I — P)TBP = 0.

Now we are ready to express the posterior distributions in Theorem 2.1 in terms
of E(];—orthogonal projectors.

THEOREM 2.4 (Extension of [10, Proposition 3]).  Under the assumptions of
Theorem 2.1

(2.3) P,, = ZAS,, A, !ST
m

m

ASZd

is a EE—OTthogonal projector onto K, = range(3pAS,,).

This manuscript is for review purposes only.
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4 T. W. REID, I. C. F. IPSEN, J. COCKAYNE, AND C. J. OATES

If additionally x,. — xo € range(Xg), then the posterior satisfies
Xm = (I=Pp)x0+ Ppx.
Ym=0-P,)X0, P32, =0.
Proof. See Appendix A. ]

Theorem 2.4 expresses the posterior mean x,, as the sum of two projections: the
projection of the solution x, onto range(P,,), and the projection of the prior mean xg
onto the complementary space range(P,,)*. As for the posterior covariance X,,, it is
the projection of the prior covariance 3¢ onto the complementary space range(P,,,)*.

REMARK 2.5. Theorem 2.4 implies that P, X, = PnX. and PmEmPﬁ =0. As
a consequence, if X ~ N(Xpm,Xm), then the distribution of P (X — x,) is Gauss-
ian with mean P, X, — Pux. = 0 and covariance PmEmP% = 0. Thus, within
range(P,,), there is no uncertainty in our knowledge of x. We can interpret the pos-
terior as a conjecture about the unknown location of X, in the complementary subspace
range(P,,)*.

Theorem 2.4 implies the following optimality for the posterior mean: It is the
vector closest to the solution x, in the affine space x¢ + K,,, with K,, as in Theo-
rem 2.1.

THEOREM 2.6 (Extension of [1, Proposition 4]). Under all the assumptions of
Theorem 2.4, the posterior mean satisfies

(2.4) Xy, = argmin (X, — X)TEEF)(X* - X).
x€xo+Km

Additionally, (x4 — Xm)TEg(x* —Xm) =0 if and only if X, = X,
Proof. See Appendix A. ]

Theorems 2.1, 2.4, and 2.6 assume that the search directions are chosen so that
A, is non-singular. The additional assumption x, —xg € range(Xg) in Theorems 2.4
and 2.6 guarantees this nonsingularity for the specific search directions computed by
BayesCG, as will be shown in Theorem 2.11.

2.2. Recursive computation of BayesCG posteriors under singular pri-
ors. We extend the recursions for posterior distributions under nonsingular prior
covariances in [9] to singular ones, and present three results for the efficient imple-
mentation of BayesCG: New recursions for the posterior covariances (Theorem 2.7)
and the search directions (Theorem 2.8); and a proof that the search directions are
well-defined (Theorem 2.11).

The residuals of the posterior means are defined as

(2.5) r, =b-—- Ax,,, 0<m.

THEOREM 2.7 (Extension of Proposition 6 in [9]). Under the assumptions of
Theorem 2.1 if, in addition, the search directions S,, are AXyA-orthogonal, then the
posterior means and covariances admit the recursions

YoAs; (s;frj,l)

2.6 C=xi 1<j<
( ) Xj X 1+ S?AZOASJ‘ 7> m,
and
SoAs; (SoAs)
(2.7) s, =%, , - 20As; (ZoAs;) 1<j<m.

S?AE()ASJ‘ ’

This manuscript is for review purposes only.
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BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG 5

Proof. See Appendix A. 1]

The denominators (A,,),; = SJTAEOAsj in (2.6) and (2.7) are non-zero because
Theorem 2.1 assumes that A,, is non-singular.

Next is a Lanczos-like recurrence for the AXgA-orthogonal search directions from
[9, Proposition 7].

THEOREM 2.8 ([9, Proposition 7] and [11, Proof of Proposition 7, Proposition S4,
and Section S2]). If the search directions

T
I _1Tj—1 .
(28) S1 =TIy 7£ 0, Sj = rj—l — ﬁsj_l, 2 S J S m,
j—273—2

satisfy the assumptions of Theorem 2.1, then they are an AXyA-orthogonal basis for
the Krylov space

(2.9) K (AZoA, 1o) = span{rg, AXgAry, ..., (AZoA)" 'rg},

while the residuals v, ..., rym—1 are an orthogonal basis for K, (AXoA,rg).

The maximal number of search directions in (2.8) can be less than n, because
they are a basis for the Krylov subspace K,,(AX¥oA,ro) whose maximal dimension
can be less than n.

DEFINITION 2.9 (Section 2 in [3], Definition 4.2.1 in [31]). Let B € R™ ™ be
symmetric positive semi-definite and let w € R™ be a non-zero vector. The grade
of w with respect to B, or the invariance index for (B, w) is the maximal dimension
1 <K <n of the Krylov space,

ICK(B,W) = ICK+i(B,W)7 7 2 1.

REMARK 2.10. In Theorem 2.8, if K is the grade of ro with respect to A3pA,
then sk41 = 0, rk = 0, while s; # 0 and rj—1 # 0 for 1 < j < K. Additionally,
K < rank(X).

In the following theorem, we show that with the additional assumption that x, —
xgp € range(Xo), the AXyA-orthogonal search directions from Theorem 2.8 satisfy
the assumptions of Theorem 2.1.

THEOREM 2.11. Let N(xq,3X0) be a prior with symmetric positive semi-definite
3o € R™"™ K the grade of vy with respect to ASXgA, and m < K. If x, —xg €
range(Xg), then the search directions from Theorem 2.1 produce a nonsingular A,
and S, s AXgA-orthogonal.

Proof. Recursive computation of the BayesCG posteriors requires the search di-
rections S,, = [sl sm] to be AXgA-orthogonal, so that A,, = ST A3(AS,,
is diagonal [9, Section 2.3]. Furthermore, if s; & ker(3pA), 1 < j < m, then A,, has
non-zero diagonal elements and is nonsingular.

In the following induction proof we show that the search directions are AXyA-
orthogonal and that s; & ker(3pA) and s; # 0, 1 < ¢ < m. Since A and ¥, are
symmetric, ker(ZoA) = ker(SFAT) = ker ((AX()7) is the orthogonal complement
of range(AX) in R™. Therefore, we can show s; ¢ ker(¥pA) by showing s; €
range(AX,) and s; #0,1 < i <m.

By assumption m < K, so Remark 2.10 implies r; 20, 1 <i <m — 1.

This manuscript is for review purposes only.
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6 T. W. REID, I. C. F. IPSEN, J. COCKAYNE, AND C. J. OATES
Induction basis. The assumption x, — xg € range(Xg) implies
ro=b — Axy = A(x, — x¢) € range(AXy).

Thus s; = rp € range(AX)), and ro # 0 by assumption. Thus sy # 0, s € ker(XpA),
and A; = sTAXpAs; # 0.

Induction hypothesis. Assume that s;,r; € range(AXg), s;,r; # 0, and A; is
nonsingular, 1 < ¢ < m — 1. This, along with Theorem 2.8 implies that s1,...,S;,-1
are AXyA-orthogonal so that A,,_1 is a diagonal matrix.

Induction step. Applying the induction hypothesis s,,—1,1,,—1 € range(AX,) to
(2.8) gives

T
o rp—1Tm—1
(2.10) S =Tl — s
n—2¥m—2

Hence s,,, € range(AXg). Multiply (2.10) on the left by rZ,_; and insert sZ,_jr,, | =
0 from Lemma B.1 into the last summand to get rﬁ_lsm = rﬁ_lrm_l, where rp,,_1 #
0 implies s,, # 0. Then s,, € range(AX)) and s,, # 0 imply s,,, & ker(ZpA).

The induction hypothesis, Theorem 2.8, and (2.10) imply that the search di-
rections $i,...,S,, are non-zero and AXyA-orthogonal. Thus A,, is nonsingular
diagonal, which implies that s; & ker(XpA), 1 < i < m; and with Lemma A.1l that
Xs — Xy, € range(Xg), thus r,, = A(x. — X;,) € range(A3). d

REMARK 2.12. The assumption X, — Xo € range(Xg) in Theorem 2.11, which
holds automatically if the prior covariance Xg is nonsingular, is required to guarantee
the nonsingularity of the diagonal matrices Ay, .

The statistical interpretation of the assumption x,. — xq € range(Xy) is that the
solution x, must live in the support of the prior, that is, in the subspace of R™ where
the probability density function of N (xq,X0) is nonzero.

Theorems 2.7, 2.8, and 2.11 form the basis for the BayesCG Algorithm 2.1, which
differs from the original BayesCG [9, Algorithm 1] only in the computation of the
posterior covariances as a sequence of rank-1 downdates rather than just a single
rank-m downdate at the end. Algorithm 2.1 is a Krylov space method; for nonsingular
priors X this was established in [9, Section 3], while for singular priors this follows
from (2.9) and Theorem 2.6. To show the similarity of BayesCG Algorithm 2.1 to
CG, we present the most common implementation of CG in Algorithm 2.2; it is the
original version due to Hestenes and Stiefel [26, Section 3].

The posterior means in Algorithm 2.1 are closely related to the CG iterates in
Algorithm 2.2. In the special case Xy = A1, the BayesCG posterior means are iden-
tical to the CG iterates [9, Section 2.3]. The relationship between CG and BayesCG
is discussed further in [5, 9, 10, 11, 30], and the results are summarized in the sup-
plement.

2.3. Choice of BayesCG prior distribution. The mean x( in the prior
N (xg,X) corresponds to the initial guess in CG, while the covariance ¥ can be
any symmetric positive semi-definite matrix that satisfies x, — xo € range(3g). Non-
singular priors examined in [9, Section 4.1] include
e Inverse prior 3y = A~!: The posterior means in Algorithm 2.1 are equal to
the CG iterates.
e Natural prior 3y = A~2: The posterior means in Algorithm 2.1 converge in
a single iteration.

This manuscript is for review purposes only.
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Algorithm 2.1 Bayesian Conjugate Gradient Method (BayesCG)
Input: spd A € R"*" b € R", xg € R"”
spds 3y € R™*™ so that x. — x¢ € range(Xg)
ro =b— Axg > define initial values
S1 =TIy
m=0
while not converged do > iterate through BayesCG Recursions
m=m-++1
Oy, = (rflflrm,l) / (sﬁAEoAsm)
Xm = Xm—1 + O 2oAS,,
S =1 — S0As,, (S0As,)" /(sLASAs,,)
'y = L1 — @, AY0AsS,,
= (15) / (11, 1 0)
Sm+1 =T'm + Bmsm
end while
: Output: x,,, 3,

e e
AN e =

Algorithm 2.2 Conjugate Gradient Method (CG)

Input: spd A € R"*" b e R", xo € R"
ro = b — Axg > define initial values
Vi =TIp
m=20
while not converged do > iterate through CG Recursions
m=m-+1
Tm = (rjnl—lrmfl)/(vz;zAvm)
Xm = Xm-1+ TmVm
Ty =T 1 — TmAviy,
Om = (rﬁrm)/(rz,;_lrm_l)
Vm+l = I'm + 5mvm
: end while
Output: x,,

e e e
w2

e Identity prior ¥y = I: The prior is easy to compute, but the posterior means
in Algorithm 2.1 converge slowly.

e Preconditioner prior 39 = (MTM)f1 where M ~ A: This prior approxi-
mates the natural prior.

e Krylov subspace prior Xg: This prior is defined in terms of a basis for the
Krylov space K(A, rg).

Figure 2.1 illustrates the convergence of posterior means and covariances from
Algorithm 2.1 under the priors 3y = A~! and ¥y = I. In both cases the posterior
means converge faster than the posterior covariances, suggesting that the covariances
are unreasonably pessimistic about the size of the error x, — x,,. Section 3.3 presents
a detailed discussion of the relation between the trace of the posterior covariance and
the error x, — x,,, in the posterior means.

The example below presents a prior of minimal rank that comprises a maximal
amount of information.

EXAMPLE 2.13. If xg # X., then B¢ = (%« — Xo)(X« — x0)T is is a rank-one

This manuscript is for review purposes only.
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2= -1
103 10°
[J] 1 (V]
o 1 O
© -4 1 © -4
= 10 i = 10
° H °
S 10-11 i S 10-12
s i s
E10-18f — Error ! 510-18] — Error
---- Trace | ---- Trace i
0 20 40 60 80 100 0 20 40 60 80 100
Iteration m Iteration m

FIGURE 2.1. Convergence of BayesCG Algorithm 2.1 applied to the linear system in section /.2
under different priors: inverse prior (left panel) and identity prior (right panel). Convergence of the
means is displayed as ||X« —me%, while convergence of the covariances is displayed as trace(AX,,).

covariance that satisfies x, — xo € range(Xg). All rank-one prior covariances for
BayesCG are multiples of this prior.

To see this, note that Theorem 2.11 and A~'ry = x, — xq imply termination of
Algorithm 2.1 under this prior in a single iteration,

1 1 T 1 T

X1 = Xg + — — A~ ror A~ Aro(l‘ I‘()) = Xg + Xy — X9 = Xx-
r’A A 'rord A~ Arg —0 21— 0 * *

—_———

3o

o

3. Prior distributions informed by Krylov subspaces. Motivated by the
‘Krylov subspace prior’ [9, section 4.1], we introduce a new ‘Krylov prior’ (section 3.1),
derive expressions for the Krylov posteriors (section 3.2), ensure the Krylov posteri-
ors accurately model uncertainty in x, (section 3.3), and develop a practical Krylov
posterior and an efficient implementation of BayesCG as a uncertainty-aware version
of CG (section 3.4).

3.1. General Krylov prior. We introduce our new Krylov prior (Definition 3.1)
and show that the BayesCG Krylov subspace under the Krylov prior is identical to
the CG Krylov subspace (Lemma 3.2). This Krylov prior is impractical because its
computation amounts to the direct solution of (1.1), however it is the foundation for
the efficient low-rank approximations in section 3.4.

The new Krylov prior is defined in terms of the maximal CG Krylov subspace
Kk(A,rg), where K is the grade of ry with respect to A (Definition 2.9). The A-
orthonormal versions of the search directions v, in Algorithm 2.2 are

(3.1) Vi = Vi /\/ VL AV, 1<m<K.
As columns of
(3.2) V=[v; - vk eRVT with VTAV =1Ig

they represent an A-orthonormal basis for range(V) = Kk (A, rg) [26, Theorem 5.1].

DEFINITION 3.1. The (general) Krylov prior is N'(xo,T), where the mean xq is
an initial guess for X, and the covariance matriz is

(3.3) Ih=VevV! c R

This manuscript is for review purposes only.
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where V is as defined in (3.2) and ® = diag ((bl pg - ¢K) € REXK with ¢; > 0,
1 < i < K. The Krylov prior is ‘general’ because the diagonal elements of ® are
unspecified.

The results in this section and in section 3.2 are valid for any choice of posi-
tive diagonal elements in ®. A specific choice of diagonal elements is presented in
section 3.3.

The Krylov prior covariance has rank(T'g) = K and is singular for K < n, hence
the need for singular priors in section 2. Fortunately, I'y is a well-defined BayesCG
prior, because it satisfies the crucial condition in Theorem 2.11,

X« — Xo € Kk (A, rg) = range(V) = range(Ty).

Intuition. We give two different interpretations of the decomposition (3.3).

1. Hermitian eigenvalue problem AY/2T\AY/? = W®WT  where ® contains the
positive eigenvalues, and the eigenvector matrix W = A'/2V has orthonor-
mal columns with WTW = Ig.

2. Non-Hermitian eigenvalue problem I'gAV = V& with eigenvalues and eigen-
vectors

(3.4) ToAVy = ¢V,  1<m<K.

This is the property to be exploited in section 3.2.
We show that the BayesCG Krylov subspace under the Krylov prior is identical
to the CG Krylov subspace.

LEMMA 3.2. If T is the Krylov prior in Definition 3.1, then
ICm(A, I'0) = ’Cm(AroA,ro), 1 S m S K.

Consequently, K is also the grade of ro with respect to AT¢A is K.

Proof. An induction proof shows that the Krylov subspaces are the same for the
first K dimensions. Then we prove that the grade of rq with respect to AX A is K.

Induction basis. Since one-dimensional Krylov subspaces are independent of the
matrix,

K1(A,ro) = span{ro} = K1 (ATLoA, o).
Induction hypothesis. Assume that
Ki(A rp) = K;(ATvA, ry), 1<i<m-1.
With Vi1 = [V1 V2 -++ V1] in (3.2) this implies
(3.5) range(Viim—1) = Km—1(A,rg) = K1 (ATA, 1p).
Induction step. From (3.5) follow the expressions for the direct sums,

(3.6) Km(A,ro) = span{ro} ® range(AVi.,_1)
(3.7 K (AT oA, rg) = span{rp} @ range(AToAV1.m_1).

Then (3.4) and the non-singularity of ® imply

range(AT)AVy.,,—1) = range(AV1.,,—1P1.m—1) = range(AVi.,—1).

This manuscript is for review purposes only.
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Combining this with (3.6) and (3.7) completes the induction,

K (A, rg) = span{rg} ® range(AVi.,_1)
= span{rg} @ range(ATgAV ., 1) = K (AT oA, rp).

Mazimal Krylov space dimension. If K’ is the grade of ry with respect to ATgA,
then the induction implies

KI > dlm(’CK(AzoA, 1‘0)) = dlm(’CK(A, ro)) =K.

On the other hand, rank(AT(A) = K implies K’ < K. Therefore K’ = K. 0

3.2. General Krylov posteriors. We show (Theorem 3.3) that under the
Krylov prior, the BayesCG posteriors have means that are identical to the CG it-
erates, and covariances that can be factored as in Definition 3.1. This represents the
foundation for an efficient implementation of BayesCG (Remark 3.4).

Define appropriate submatrices of V and ®,

(38) Vuy=[vi -+ V], ®;; =diag (¢i -+ ;) 1<i<j<K.

In particular, V=Vi.x and & = ®;.x.

THEOREM 3.3. Let N (x0,T¢) be the Krylov prior in Definition 3.1, and let
N(xpm, L) be the posteriors from BayesCG Algorithm 2.1, 1 < m < K. Then the
posterior means X, are identical to the corresponding CG iterates in Algorithm 2.2,
and the posterior covariances can be factored as

(39) Fm - Vm+1:K@m+1:K(Vm+1:K)Ta 1 S m < K7

and Ty, =0 for m = K.

Proof. We first derive the equality of the posterior means, and then the factor-
izations of the covariances.

Posterior means. The idea is to show equality of the BayesCG posterior means
under Krylov and inverse priors since, per the discussion in [9, Section 2.3] and sec-
tion 2.3, BayesCG posterior means under the inverse prior are identical to CG iterates.

From Theorem 2.1, and the ‘equivalence’ of Algorithm 2.1 under 3y = A~! and
Algorithm 2.2 follows that the BayesCG posterior means under the inverse prior are
equal to

(310) Xm = X0 + Vlsz{:mro.

Similarly, Theorem 2.1 implies that the BayesCG posterior under the Krylov prior
are equal to

(3.11) Xpm = %o + ToAS,, (ST AT(AS,,) ST ry,

where the columns of §m are the search directions from Algorithm 2.1 under the
Krylov prior. To show the equality of (3.10) and (3.11), we need to relate S,, and
Vi.» and then include the Krylov prior I'y.

With the submatrices defined as in (3.8) we conclude from (3.2) and Lemma 3.2
that

range(S,,) = K, (AToA, 1) = range(Vi.m ),
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where the columns of §m are AT'gA-orthogonal. To show that the columns of V.,
are also AT'gA-orthogonal, exploit the fact that they are A-orthonormal and apply
Definition 3.1,

VI AT\AV,,, = VL AV®VTAV,,, =&,

which is a diagonal matrix. We have established that the columns of §m and V1.,
are AT'gA-orthogonal, with respective leading columns being multiples of rg, thus
are AT'gA-orthogonal bases of K,,(ATyA,rp). Therefore the columns of V., are

multiples of the columns of S,.. That is

(3.12) Sm = VimA

for some non-singular diagonal matrix A € R™*™. Substitute (3.12) into the third
interpretation (3.4) of the Krylov prior,

FOAgm = I‘OIA‘/vl:mA = \/vl:m(I’l:mA

and this in turn into the second summand of (3.11). Then the non-singularity and
diagonality of both A and ® lead to the simplification

3.13 Xm = X0+ Vi ®rm A(AP1.,A) T PAVT 1o =x%x04+ Vi VL 1o,
1:m 1:m

which is (3.10).
Posterior covariances. Substituting (3.12) into Theorem 2.1 and simplifying as
in (3.13) gives

T,, = Ty — [\AS,, (ST ATAS,,) 'STAT,
= V(I)VT — Vl:m(ﬁlzmv’{:m = Vm+1:K(I)m+1:KV7:,;;+1;K~ o

REMARK 3.4. Theorem 5.3 implies that the posteriors from BayesCG under the
Krylov prior have means that can be computed with CG, and covariances can be main-
tained in factored form without any arithmetic operations. This is the key to the
efficient implementation of BayesCG in section 3./.

3.3. Krylov posteriors that capture CG convergence. We present a Krylov
prior with specific diagonal elements (section 3.3.1), discuss the calibration of BayesCG
under this prior (section 3.3.2) and its relation to existing CG error estimation theory
(section 3.3.3).

3.3.1. Specific Krylov prior. We choose a specific diagonal matrix ® for the
Krylov prior (Definition 3.6), so that the Krylov posteriors accurately model the un-
certainty in our knowledge of x, due to the error x, — X,,,. We derive error estimates
from samples of the posteriors (Lemma 3.5) and then relate them to CG errors (The-
orem 3.7).

Let us start with a general posterior distribution A/ (x,X). If it indeed accurately
modeled the uncertainty in x, due to the approximation error x, — X, then we would
expect the difference between samples of N'(x, X) and its posterior mean x to be close
to the actual error,

(3.14) E[|IX —x|[A] =[x« — x[/A where X ~ N(x,X).

The squared A-norm error || X — x||% is a quadratic form, whose expected value has
an explicit expression.
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415 LEMMA 3.5. If X ~ N(x,X) is a Gaussian random variable with mean x € R™
416 and symmelric positive semi-definite covariance % € R™"*™ then

417 (3.15) E[|X — x[|A] = trace(AX).

418 Proof. The proof relies on the expected value of a quadratic form in Appendix B.
119 Set Z =X —x ~ N(0,%) and apply Lemma B.2 to ZTAZ,

439 E[|X —x|A] =E[|Z|a] =E[Z"AZ] = trace(AE). u|
422 Thus, trace(AX) has the potential to be an error indicator. We present a spe-

123 cific diagonal matrix for the Krylov prior I'y in Definition 3.1, so that its posterior
424 covariances produce meaningful error estimates trace(AT,).

425 DEFINITION 3.6. The (specific) Krylov prior is N'(xo,T), where the mean xq is
426 an initial guess for x., and the covariance matriz is

127 (3.16) Th=VeV! c R

128 where V is defined in (3.2) and ® = diag (¢1 ¢z -+ ox) € RE*¥ has diagonal
429 elements

439 ¢i = villri-a |3, 1<i<K,

432 where v; = r1_ir;_1/vI Av; are the step sizes in line 7 of CG Algorithm 2.2.

433 Now we show that the posterior covariances from BayesCG under the specific
434 Krylov prior reproduce the CG error.

435 THEOREM 3.7. Let N (x0,T¢) be the Krylov prior in Definition 3.6, and N (X, L)
436 be the posteriors from BayesCG Algorithm 2.1, 1 < m < K. Then

437 trace(AT,,) = [|X« — XA, 1<m<K.

438 Proof. Apply Lemma 3.5 to the specific Krylov prior in Definition 3.6. From the

439 cyclic commutativity of the trace and A-orthonormality of the columns of V follows
440 trace(ATL',,) = trace(AVm:K‘I)m:K(Vm:K)T)

443 (3.17) = trace((Vim:x) T AV, @) = trace(®,,.x).

443 The diagonal matrix ® for the specific Krylov prior in Definition 3.6 is chosen so that
444 trace(®pk) = ||X« — Xm||a. Remember that the reduction in the squared A-norm

445 error from iteration m to m + d of Algorithm 2.2 equals [26, Theorem 6:1] and [31,
446 Theorem 5.6.1]

m+d
117 (3.18) |IXe — Xmlla = 1% — Ximpala = Z Yillri_1]l3, 0<m<m+d<K
1=m-+1
448 Setting d = K — m gives xg = x, and
K
449 % = Xmla = Y 7illrical3,  0<m<K
150 i=m-+1
451 Combine this equality with (3.17) to conclude ¢; = v;||r;—1]]3, 1 < i < K. 0
452 Thus, the specific Krylov posteriors have covariances that converge at the same
453  speed as their means.
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3.3.2. Calibration of BayesCG under the specific Krylov prior. A prob-
abilistic numerical linear solver is considered calibrated if its posterior distribution
accurately models the uncertainty in x, due to the approximation error x, — X,.
Calibration of general probabilistic methods is discussed in [6] and of linear solvers
in [7]. We briefly discuss how Lemma 3.5 and Theorem 3.7 contribute to better
calibration of BayesCG under the specific Krylov prior.

Previous probabilistic extensions of CG do not produce posteriors that accurately
model the uncertainty in x, [1, Section 6.4], [9, Section 6.1], [53, Section 3]. For
instance, Figure 2.1 illustrates that BayesCG under the priors g = A~' and Xy =1
has errors ||x. —X, || that converge faster than trace(AX,,). Furthermore, according
to Lemma 3.5, the estimators trace(A3,,) from posterior samples are inaccurate and
do not reflect the true error ||x, — x,,||3. In other words, the posteriors do not
accurately model uncertainty in x.,.

Our approach towards designing posteriors that accurately model the uncertainty
in x, relies a judicious choice of the diagonal matrix ® for the specific Krylov prior,
so that sampling from the posteriors produces accurate error estimates. This can be
viewed as a scaling of the posterior covariance that forces trace(®,,.x) = [|x« —Xm|/4 -
Alternative approaches for improving posteriors via scaling of the posterior covariances
include [9, Section 4.2], [13, Section 7], and [53, Section 3]

Empirical evidence demonstrating that BayesCG under the specific Krylov prior
produces posterior samples with accurate error estimates suggests but does not guar-
antee that it accurately models the uncertainty in x,. A rigorous investigation of the
calibration of BayesCG under the specific Krylov prior is the subject of a separate

paper.

3.3.3. Relation to CG error estimation. The purpose of Lemma 3.5 is to
motivate a choice of ® so that BayesCG under the specific Krylov prior accurately
models the uncertainty in x, due to the approximation error X, — X;,.

Effective CG error estimation is a well researched area, with most effort focused
on the absolute A-norm error. One option [49] is to run d additional CG iterations
and apply (3.18) to obtain the underestimate [49, Equation (4.9)],

m-+d
(3.19) S wullrcall < xe = xla-

1=m-+1

The rationale is that the error after m + d iterations has become negligible compared
to the error after m iterations, especially in the case of fast convergence. The number
of additional iterations d is usually called the ‘delay’ [37, Section 1], and larger values
of d lead to more accurate error estimates.

The estimate (3.19) also coincides with the lower bound from Gaussian quadra-
ture [49, Section 3]. Other lower and upper bounds for the A-norm error based on
quadrature formulas and tunable with a delay include [17, 18, 19, 35, 36, 37, 49, 50].

3.4. Practical specific Krylov posteriors. We define low rank approxima-
tions of specific Krylov posterior covariances (Definition 3.8), and present an efficient
CG-based implementation of BayesCG (Algorithm 3.1). It approximates the Krylov
posteriors from delay iterations, thereby avoiding explicit computation of the Krylov
prior, and inherits the fast convergence of CG.

The following low-rank approximations are based on the factored form of the
Krylov posteriors in Theorem 3.3 and make use of the submatrices defined in (3.8).
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DEFINITION 3.8. Let N(xq,Tg) be the specific Krylov prior from Definition 3.6
with posteriors

Fm - Vm+1:K(§m+1:K (Vm+1:K)T7 1 S m < K.

For1l <d < K—m, extract the leading rank-d submatrices from V,11.x and ®p,41.x,
and define the rank-d approzimate Krylov posteriors as N (X, I') with

(3'20) f‘m = Verl:m+d¢m+1:m+d(vm+1:m+d)T-

REMARK 3.9. We view (3.20) as approzimations of the posteriors resulting from
the full-rank prior. Instead, we could also view (3.20) as posteriors from rank-(m+d)
approzimations of the prior ./\/(xo,f‘o) with f‘o = Vimta®rmid Viamea)T. This
interpretation of (3.20) is discussed in the supplement. However, from a practical
point of view, explicit computation of fo is too expensive and it is not necessary.

Following the same argument as Theorem 3.7, one can express the underesti-
mate (3.19) for the CG error in terms of the posterior covariance,

m-+d

trace(AT,) = 3 ilrical3 < 1x — xlfa.
i=m+1

If the posterior distribution accurately models the uncertainty in the solution, then
we expect (3.14) to hold. This means the accuracy of the uncertainty from the ap-
proximate Krylov posterior is related to the accuracy of the underestimate (3.19).

Algorithm 3.1 represents an efficient computation of BayesCG under rank-d ap-
proximate Krylov posteriors, and consists of two loops?:

1. Run CG until convergence in iteration m and compute the posterior mean
Xm

2. Run d additional CG iterations and compute the factors V,,+1.m+q and
@, 1.m1q of the rank-d approximate posterior f‘m.

Correctness. Theorem 3.3 asserts that posteriors of BayesCG under the Krylov
prior have means that are identical to CG iterates, and covariances that can be main-
tained in factored form involving submatrices of V and @ from Definition 3.6. The
rank d of I';;, has the same purpose as the ‘delay’ in CG error estimation: a small num-
ber of additional iterations to capture the error, and trace(AT',,) = trace(®.11:m+d)
is equal to the error underestimate (3.19). As a termination criterion one can choose
the usual residual norm, or a statistically motivated criterion.

Computational cost. Algorithm 3.1 performs fewer arithmetic operations than
Algorithm 2.1. Specifically, Algorithm 3.1 runs m + d iterations of Algorithm 2.2, and
a total of m + d matrix vector products with A and storage of at most d + 2 vectors.
This is less than Algorithm 2.1, which requires 2m matrix vector products with A, m
matrix vector products with X, and storage of m + 2 vectors.

In addition, Algorithm 2.1 requires reorthogonalization to ensure positive semi-
definiteness of the posterior covariances [9, Section 6.1]. In contrast, Algorithm 3.1
maintains the Krylov posteriors in factored form, thus (i) ensuring symmetric posi-
tive semi-definiteness by design; and (ii) reducing the cost of sampling, because the
factorizations X,, = F,,FL are readily available without any computations. The

2The partition of Algorithm 3.1 into two loops is for the purpose expositional clarity. Alterna-
tively, everything could have been merged into a single loop with a conditional.

This manuscript is for review purposes only.



539
540
541

542

544
545
546

547

>

SIS S
=

w N

o Ot Ot Ot Ot ot Ut
C Ut

>
~

BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG 15

Algorithm 3.1 BayesCG under rank-d approximations of specific Krylov posterior
covariances

—_

Inputs: spd A € R"*" b e R", x9 € R", d>1
ro = b — Axg > define initial values
Vi =Ty
m =20
while not converged do > CG recursions for posterior means
m=m+1
i = VT AV,
Tm = (rg—lrm—l)/nm
Xm = Xm—1+ YiVi
Ty = Tpo1 — ViAV;
Om = (r%rm)/(rﬁ—lrm—l)
Vingl = T+ 0m Vi
end while
d = min{d, K —m} > compute full rank posterior if d > K —m
: Vit 1:mad = Onxa > define posterior factor matrices
(I’m-l-l:m-i-d - Od><d
for j=m+1:m+ddo > d additional iterations for posterior covariance
n; = V,jrAVj
v = (] yri1)/n;
V; = vj/nj > store column j of V
&, = vjllrj_1]3 > store element j of ®
r, =rj_1 — 'YjAvj
& = (rjr;)/(r]_qrj-1)
Vj+1 = I‘j —+ (5]‘Vj
: end for
: Olltpllt: Xm Vm+1:m+d7 §m+1:m+d

N NN NN NN H e e e e
S A A vl A A S = A L vl

last point is important, since the posterior is propagated to subsequent computations
which sample from it to probe the effect of the uncertainty in the linear solve. So far,
analytical propagation of the posterior has proved elusive, and empirical propagation
is our only option.

4. Numerical experiments. We present numerical experiments to compare (i)
Algorithm 3.1 under full or rank-d approximations of specific Krylov posteriors with
(ii) Algorithm 2.1 under the inverse prior. After describing the experimental set up
(section 4.1), we apply the algorithms to two matrices: a matrix of small dimension
(section 4.2), and one of larger dimension (section 4.3).

4.1. Set up of the numerical experiments. We describe the linear systems
in the experiments, reorthogonalization in the algorithms, and sampling from the
posterior distributions.?

Linear systems. We consider two types of symmetric positive-definite linear sys-
tems Ax, = b: one with a dense matrix A of dimension n = 100, and the other with
a sparse preconditioned matrix A of dimension n = 11948. We fix the solution x,,
and compute the right hand side from b = Ax,.

3The Python code used in the numerical experiments can be found at https://github.com/treid5/

ProbNumCG_Supp
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For n = 100, the matrix is A = QDQT [22, Section 2], where Q is a random®
orthogonal matrix with Haar distribution [47, Section 3], and D is a diagonal matrix
with eigenvalues [20]

(4.1) di; = (10%)E=D/9 1 <4 < 100.

The condition number is x(A) = 103, and the solution x, is sampled from N(0, A~1).

For n = 11948, the matrix A = L™'BL~7 is a sparse preconditioned matrix
where B is BCSSTK18 from the Harwell-Boeing collection [33], and L is the incomplete
Cholesky factorization [21, Section 11.1] of the diagonally shifted matrix

B = 108 - di ~ b U 10%
B=B19.0030-10° diag(B)  with max § ~by + ; bij » = 9.0930 - 10°.
VE]

The shift forces B to be diagonally dominant. We compute the factorization of B
with a threshold drop tolerance 10~¢ to make L diagonal. The condition number is
k(A) ~ 1.57- 105, and the solution x, = 1 is the all ones vector.

Reorthogonalization. Since the posterior covariances in Algorithm 2.1 become
indefinite when the search directions lose orthogonality, reorthogonalization of the
search directions is recommended in every iteration, [9, Section 6.1] and [11, Sec-
tion 4.1]. Following [22, Section 2], we reorthogonalize the residual vectors instead,
as it has the additional advantage of better numerical stability in our experience.
Reorthogonalization consists of classical Gram-Schmidt performed twice because it
is efficient, easy to implement, and produces vectors orthogonal to almost machine
precision [15, 16].

Sampling from the Gaussian distributions. We exploit the stability of Gaussians,
see section 2.1, to sample from N'(x, X) as follows. Let ¥ = FF7 be a factorization of
the covariance with F € R"*¢. Sample a standard Gaussian vector® Z ~ N(04,14);
multiply it by F; and add the mean to obtain X = x + FZ ~ N (x,FFT).

By design, the rank-d approximate Krylov posteriors are maintained in factored
form

= 1/2
T, = FmFﬁ where F,. =Viiimtd <I>m/+1:m+d e R™>4,

For all other posteriors X,,, we factor the matrix square root [27, Chapter 6] of the
matrix absolute value [27, Chapter 8] of 3,,°. Factoring the absolute value of ¥,,
enforces positive semi-definiteness of the posteriors which may be lost if BayesCG is
implemented without reorthogonalization.

Convergence. We display convergence of the mean and covariance with ||x, —
Xm||a and trace(AX,,). In addition, we sample from the posterior, X ~ N (X, X)
and compare the resulting estimate || X — x,,[|% to the error ||x. — x,,||%. If the
samples X are accurate estimates, then the posterior distribution is likely to be a
reliable indicator of the uncertainty in the solution x,.

4The exact random matrix can be reproduced with the python files in our code repository because

we specified the random seed.

5Most scientific computing packages come with built in functions for sampling from N(0,I). In
Matlab and Julia the function is randn and in Python it is numpy.random.randn.

6The matrix absolute value of B € R"*" is abs(B) = (BTB)!/2. If B is symmetric positive
semi-definite, then abs(B) = B. Otherwise, the square root of the absolute value is (abs(B))1/2 =
VS1/2VT  where B = USVT is a SVD.
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FIGURE 4.1. Error estimates || X — xm||3 and trace(AZyn) from samples X ~ N(Xm, Zm),
for the matriz with small dimension n = 100. Top row: Algorithm 2.1 with reorthogonalization
under the inverse prior (left panel), and Algorithm 3.1 under the full Krylov prior (right panel).
Bottom row: Algorithm 2.1 without reorthogonalization under the inverse prior (left panel), and
Algorithm 3.1 under the rank-5 approzimate Krylov prior (right panel).

4.2. Matrix with small dimension. We compare Algorithm 2.1 under the
inverse prior, with Algorithm 3.1 under full or rank-5 approximate Krylov posteriors
when applied to the matrix with small dimension n = 100.

Figure 4.1 illustrates that the posterior means converge at the same speed, regard-
less of reorthogonalization. However, without reorthogonalization, the convergence is
slower.

Algorithm 2.1 under the inverse prior. The posterior covariances converge more
slowly than the squared errors of the means. Without reorthogonalization, the pos-
terior covariances are indefinite, and the error estimates from the posterior samples
diverge from trace(AX,,) and violate Lemma 3.5. Thus, posteriors from BayesCG
under the inverse prior are not reliable indicators of uncertainty.

Algorithm 3.1 under full or approzimate Krylov priors. The quantity trace(AX,,)
equals the error for full rank Krylov posteriors, while it underestimates the error for
rank-5 approximate posteriors. Error estimates from samples of Krylov posteriors
are significantly more accurate than those from the inverse posteriors. Thus, poste-
riors from BayesCG under (approximate) Krylov priors are more reliable indicators
uncertainty.

4.3. Matrix with larger dimension. We compare Algorithm 3.1 under rank-1
and rank-50 approximate Krylov posteriors, when applied to the matrix with large
dimension n = 11948.

Figure 4.2 illustrates that the traces of the posterior covariances underestimate
the error. However, the trace of the rank-50 approximate Krylov covariance is more
accurate, because CG error estimates (3.19) are more accurate for larger delays [49,
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FIGURE 4.2. Error estimates | X —xm|% and trace(AS,,) from samples X ~ N (Xm, Zm), for
the matriz with large dimension n = 11948. Left: Algorithm 3.1 under rank-1 approzimate Krylov
posterior. Right: Algorithm 3.1 under rank-50 approximate Krylov posterior.

Section 4]. As expected, error estimates from rank-50 posterior samples are more
tightly concentrated around the true error than those of rank-1 posterior samples.
Thus, BayesCG under higher rank approximate posteriors produces more reliable
indicators of uncertainty.

5. Conclusion. BayesCG is our 'uncertainty-aware’ version of CG, that is, a
probabilistic numerical extension of CG that produces a probabilistic model of the
uncertainty about our knowledge of the solution x, due to early termination of CG.
Under our Krylov prior, BayesCG produces iterates that are identical to those of
CG (in exact arithmetic), thus converges at the same speed as CG; and its posterior
distributions can be cheaply approximated. Samples from the Krylov posterior and
its low rank approximations produce accurate error estimates, thus represent realistic
indicators of the uncertainty about x,.

Future work. In a forthcoming paper, we focus on the statistical aspects of
BayesCG under the Krylov prior. More specifically, we quantify the approximation
error of low rank approximate Krylov posteriors and investigate the calibration of
BayesCG under low-rank approximate Krylov posteriors.

In a separate paper, we assess the effect of CG accuracy in a computational
pipeline in the form of a randomized algorithm for generalized singular value decom-
position [44] with applications to hyper-differential sensitivity analysis [23].

Appendix A. Proofs of Theorems 2.4, 2.6 and 2.7.

Proof of Theorem 2.4. The proof is inspired by the proof of [10, Proposition 3]
for nonsingular (. For singular 3, we replace the inverse by the Moore-Penrose
inverse which satisfies

(A1) ¥ = T2l %,
The assumption x, — xg € range(3o) implies that there exists y € R™ so that
(A?) Xy — X9 = Eoy = EOESZOy = EOEB(X* — Xo).

The proof proceeds in four steps.
Range of P,,. On the one hand (2.3) implies

range(P,,) = range (EOASmAfn1 SﬂAEOES) C range (XoAS,,).
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On the other hand (2.3) and (A.1) imply
A,
P,,Z0AS,, = $0AS,,A;! ST A B 2i%, AS,, = 5)AS,,
——

>0

so that range(2X0AS,,) C range(P,,).
Combining the two inclusions gives range(P,,) = K,, = range(3yAS,,).
P, isa Eg-orthogonal projector. The above implies

(A.3) P2, = P,,20AS,, A'ST AR B! = Z0AS,, A, 'STAS ! = P,,,.
——

3oAS,,

Thus P, is a projector. The Eg—orthogonality of P,, follows from the symmetry of
»iP.
Posterior mean. From (2.1), (A.2), and (2.3) follows
Xm = X0 + BoAS,, A ST A(x, — x¢)
= X0 + ToAS,, A, ST AS ] (%, — x0) = (I = Ppy)xo + Ppx..

Posterior covariance. From (2.2), (A.1) and (2.3) follows

2, =320 - Z0AS,,A,'STAS,
=3 — ZpAS, A ISTAS BIE, = (I-P,,)%,.
Multiply 3,,, on the left by P,,, and apply (A.3) to obtain P,,%,, = P,,(I-P,,)3; =
0. ]

The proof of Theorem 2.6 relies on the next three results related to semi-definite
inner product spaces and orthogonal projectors in those spaces.

LEMMA A.1. Under the assumptions of Theorem 2.1, if x. — xo € range(Xy),
then X, — X, € range(Xp), 1 <m < n.

Proof. Subtract from x, both sides of the posterior mean (2.1),
Xy — Xm = (X — X0) — oAS, A ST A(x, — x0), 1<m<n.

The first summand x. — Xg is in range(3g) by assumption, and the second one by
design, hence so is the sum. 0

LEMMA A.2. Let B € R™*™ be symmetric positive semi-definite. If z € range(B),
then z"' Bz = 0 if and only if z = 0.

Proof. Since B is symmetric positive semi-definite, we can factor FF?T = B,
where F has full column rank. Let w = FTz. From z € range(B) = range(F), and
range(F) = ker(FT)* follows that w = FTz = 0 if and only if z = 0. Therefore

wlw = 2z"Bz = 0 if and only if z = 0. a

LEMMA A.3. Let X C R"™ be a subspace, B € R"*™ symmetric positive semi-
definite, and v € R™. If P is a B-orthogonal projector onto X, then

arfer;réin(v —x)"B(v-x)={xc X : (x—Pv)'B(x - Pv) =0}.
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If additionally X C range(B), then

argmin(v — x)"B(v — x) = Pv.
XEX
Proof. After proving the general case, we show that the minimizer is unique if
X C range(B).
General case. Abbreviate the induced semi-norm by |z|3 = z”Bz. Since P is a
projector onto X, we can write x = Px for x € X. Add and subtract Pv inside the
norm to obtain a Pythagoras-like theorem,

v—x[f =|I-P)v+P(v-x)j
I-

=|[I-P)v[g +|P(v-x)i +2v I-P)"BP(v —x)
=0

=|(I-P)v[s + [Pv—x[g.

Since the first summand is independent of x, the minimum is achieved if the second
summand is zero.
Uniqueness. Since P is a projector onto X', Pv € X. From X C range(B) follows
Pv € range(B) and x € range(B). With Lemma A.2 this implies: [Pv — x| =0
only if Pv = x. ]
Proof of Theorem 2.6. This is similar to [1, Proof of Proposition 4]. Minimizing
(2.4) over the affine space xo + K, = xo + range(XpAS,,,) is equivalent to shifting
by x¢ and minimizing over K,,,
: Tyt ; Tt
* b)) * = * - b)) * - .
min e =) S{06 %) = min (%~ x0) )72 (0~ x0) )
Since X is symmetric, the Eg—orthogonal projector P,, from Theorem 2.4 satisfies
range(P,,) = K, C range(Xy) = range(Zg). Therefore, Lemma A.3 implies
argmin((x, — xg) — X)TEE;((X* —Xg) — x) = P(x« — X0).
xeK.,
From Theorem 2.4 and K, = range(P,,) follows x,, — xg = P, (%« — Xg) € Kpp.
Thus x,, € xg + K., is the minimizer.
The symmetry of 3,, and Lemmas A.1 and A.2 imply that (x, — xm)TE;r)(x* -
Xm) = 0 only if x,,, = x.. O

Proof of Theorem 2.7. Recursion (2.6) was shown in [9, Proposition 6]. The fol-
lowing proof for (2.7) is analogous to [11, Proof of Proposition 6]. From (2.2) follows
that the posterior covariance at iteration ¢ amounts to a rank-i downdate of the prior,

% = 5 — ToASA; L (B0AS) T, 1<i<m.

Here A; is diagonal due to the A¥jA-orthogonality of the search directions, hence a
rank-¢ downdate can be computed as a recursive sequence of ¢ rank-1 downdates,

T _ EoASi (EoASi)T

3 =30 — 30AS, 1AL (ZpAS,_
0 0 1A (B 2 sTAS)As;

i1

Appendix B. Auxiliary results.
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LEMMA B.1 (Lemma S3 in [11]). Under the assumptions of Theorem 2.7,

sir; =0, 1<j<i<m.

LEMMA B.2 (Sections 3.2b.1-3.2b.3 in [32]). Let Z ~ N(x,X) be a Gaussian

random variable with mean x € R™ and covariance X € R™*"™, and let B € R™*" be
symmetric positive definite. The mean and variance of ZTBZ are

E[ZTBZ] = trace(BX) + x” Bx,
V[ZTBZ] = 2trace((BX)?) + 4x" BEXBx.
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