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SUPPLEMENTARY MATERIALS: BAYESCG AS AN
UNCERTAINTY AWARE VERSION OF CG*

TIM W. REID', ILSE C. F. IPSENt, JON COCKAYNE#f, AND CHRIS J. OATES#

SM1. Outline of Supplementary Materials. We present the proof of Theo-
rem 2.1 (section SM2), discuss more theoretical properties of BayesCG (section SM3),
and examine the performance of the Krylov posterior as a CG error estimate (sec-
tion SMA4).

SM2. Proof of Theorem 2.1. We present an example of search directions that
satisfy the assumptions of Theorem 2.1 (Example SM2.1); review the conjugacy and
stability of Gaussian distributions (Lemmas SM2.2 and SM2.3); present the proof
of Theorem 2.1; and discuss the relation between the solution x, and the random
variable X ~ N (xg, 3¢) (Remark SM2.4).

Existence of search directions satisfying the assumptions of Theorem 2.1. The
example below illustrates a non-recursive way to select search directions S,,, so that
A,, = ST AZ,AS,, is nonsingular. The purpose of this example is to show that at
for all m < rank(X)), least one set of search directions S,, exists that satisfies the
assumptions of Theorem 2.1.

EXAMPLE SM2.1. Let ¥y = UDU? be a singular value decomposition of the
prior covariance Xg, and let m < rank(3g). Distinguish the leading m columns of U,
and the leading nonsingular m x m principal submatriz of D

Ui = [u1 u - um] and Di.,, = diag (d1 dy - dm) ,
and define the search directions S,, = A~'U,,. Then the equality
A, =SLASAS,, =ULA'AZ)AA'U, = UT U, =D,

and m < rank(3,,) imply that D,,, hence A, is nonsingular.

This example shows that at least one set of search directions exists that satisfying
the assumptions of Theorem 2.1. This example is necessary because Theorem 2.11
only shows that the recursively computed search directions from Theorem 2.8 satisfy
the assumptions of Theorem 2.1 for m < K < rank(3X), where K is the grade of rg
with respect to AXyA. In practice, it is best to compute the BayesCG posterior with
the recursively computed search directions, even if K < rank(33,,). There is no reason
to compute more than K of these search directions because they cause the posterior
mean at K iterations to be xx = x,.
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Review of stability and conjugacy of Gaussian distributions. The proof of Theo-
rem 2.1 relies on the stability and conjugacy of Gaussian distributions.

LEMMA SM2.2 (Stability of Gaussian distributions [SM14, Section 1.2]).  Let
X ~ N (x,X) € R" be a Gaussian random variable with mean x € R™ and covariance
Y e R™™. [Ify € R™ is a vector and F € R™™™ s a matriz, then Z =y + FX is
again a Gaussian random variable distibuted as

Z ~ N(y + Fx,FXFT),

LEMMA SM2.3 (Conjugacy of Gaussian distributions [SM15, Section 6.1], [SM19,
Corollary 6.21]). Let X ~ N (x,X;) and Y ~ N(y,X,) be Gaussian random vari-

ables. The jointly Gaussian random variable [XT YT}T has the distribution

X b Yo Xay

bl (B =]
where ¥, = Cov(X,Y) =E[(X —x)(Y —y)T] and the conditional distribution of X
given Y 1s

mean covariance

(X |Y)~Nx+Z,3(Y —y), - 5,5x]).

Proof of Theorem 2.1. Since m < rank(Xy), we can choose search directions S,
with linearly independent columns so that A,, is nonsingular, see Example SM2.1.
Then the proof reduces to that of [SM5, Proof of Proposition 1].

Let the random variable Xy ~ N(xq,X¢) represent the prior belief about the
unknown solution x,, and let the random variable Y,, = ST A Xj represent the im-
plied prior belief about the unknown values SI Ax, before they are computed. The
posterior is the conditional distribution (Xo | Y, = SL Ax,) [SM3, Proposition 1].
Thus, we first determine the conditional distribution (Xy | Y;,) and then substitute

Y, = SﬁAX*.
The joint distribution of Xy and Y, is
XO X0 20 COV(X07 Ym)
(SM2.1) [Ym} ~N ({E[Ym]} ! [cov(xo, Yo)T Cov(Y, V)| )

The mean and covariance of Y,,, follow from Lemma SM2.2,

E[Y,,] =STAxy and  Cov(Yy,Y,) = SLAXAS,, = A,
while the linearity of the expectation implies for the covariance that
Cov(Xo, Vi) = E[(Xo — x0) (ST A(Xo — x0))T] = ZpAS,,.
Substituting all of the above into (SM2.1) gives

Xo ~ N X0 b EoASm
Y. ST Axg|’ |[(ZoAS,)T A, ’
Thus we can invoke Lemma SM2.3 to conclude that the conditional distribution
for (Xo | Yy) is a Gaussian N (X;,, 3,,) with mean and covariance
X = X0 + EoASmAT_nl (Ym - Sjy;lAXO)
2, =30 — 3pAS,,A'STAS,.
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At last, substitute Y, = ST Ax, = ST'b to obtain (X; | Y,, = SL Ax,). 0

m

Below we discuss the relation between the solution vector x, and the random
variable X from the proof of Theorem 2.1

REMARK SM2.4. The solution vector X, is a deterministic value, but we do not
know its true value. The prior distribution N (xq,Xo) models the initial epistemic
uncertainty in X, that is, the uncertainty in our knowledge of the true value of x,.
The random variable X ~ N (xo,X0) in the proof of Theorem 2.1 is a surrogate for
X -

When we compute x, with an iterative linear solver, we gain more information
about the true value of x.. Since we gain information about x,., we can update the
surrogate for x, by conditioning X on the new information. In BayesCG, the infor-
mation we gain is that Y = SI AX takes the value ST b. Therefore, our updated
surrogate is X | Y = SL b, and it is distributed according to the posterior distribution
N (X, 2m). The posterior distribution models the uncertainty remaining X, after we
obtained the additional information about it.

SM3. Additional Theoretical Properties of BayesCG. We discuss the re-
lationship between BayesCG and CG (section SM3.1), present an alternative proof of
Theorem 3.3 (section SM3.2), and present an alternative definition of @ that has the
same convergence properties as in section 3.3 (section SM3.3).

SM3.1. Relationship Between BayesCG and CG. We discuss the relation-
ship between BayesCG and CG.

The posterior mean from Algorithm 2.1 is closely related to the approximate
solution from CG. For nonsingular 3y, BayesCG can be interpreted as CG applied to
a right-preconditioned linear system. Specifically, [SM8] showed the posterior means
x; in Algorithm 2.1 are equal to the iterates of Algorithm 2.2 applied to the right
preconditioned system

(SM3.1) A(Z0A)w, =b where w, = (ZA) " x..

It can be seen in (SM3.1) that if 3y = A~!, then the BayesCG posterior mean
is equal to the approximate solution computed by CG. This was originally shown
in [SM3, Section 2.3] and can also be seen by comparing Algorithms 2.1 and 2.2.
Additionally, if ¥y = A™!, then the search directions in Algorithms 2.1 and 2.2 are
equal as well.

Similarly to CG, the termination criterion in Algorithm 2.1 can be the usual
relative residual norm, or it can be statistically motivated [SM2, Section 2], [SM4,
Section 1.3].

The similarity of BayesCG (Algorithm 2.1) and CG (Algorithm 2.2) strongly sug-
gests that both algorithms have similar finite precision behavior. The search directions
in Algorithm 2.1 lose orthogonality through the course of the iteration, thereby slow-
ing down the convergence of the posterior means [SM3, Section 6.1], similar to what
happens in CG [SM9, Section 5.8], [SM11, Section 5]. In addition, loss of orthog-
onality causes loss of semi-definiteness in the posterior covariances X,,, prohibiting
their interpretation as covariance matrices since covariance matrices must be positive
semi-definite [SM3, Section 6.1]. The remedy recommended in [SM3, Section 6.1] is
reorthogonalization of the search directions.

SM3.2. Alternative Version of Theorem 3.3. We present an alternative
version of Theorem 3.3, the theorem that shows the Krylov posterior means are equal
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to CG iterates. This version additionally shows the search directions computed in Al-
gorithm 2.1 under the Krylov prior are equal to the search directions in Algorithm 2.2.

The alternative version of Theorem 3.3 also verifies the claim in Remark 3.9 that
the approximate Krylov posterior (3.20) can be viewed as as the posterior from the
rank-(m + d), 1 < d < K — m, approximation of the prior N'(xg, f‘o) with

(SM3.2) Lo = Vimsd®rmta(Vimea) " -

Similarly to Theorem 3.3, the alternative version of the theorem relies on (3.4).
Equation (3.4) remains true for the approximate posterior:

(SM3.3) ToAV; = ¢;V;, 1<i<m+d.

THEOREM SM3.1. Lets; and x;, 1 < i < m be the search directions and postep‘or
means computed in m iterations of Algorithm 2.1 starting from the prior N (xq, o).
Similarly, let v; and z;, 1 < i < m be the search directions and solution iterates
computed in m iterations of Algorithm 2.2 staring at initial guess zy. If zg = Xq, then

(SM3.4) si =v; and X; = 2z, 1<i<m.

Proof. We give an induction proof to establish the equality of iterates and search
directions. In this proof we denote by

q; =b— Az, 0<i<m,

the residuals in Algorithm 2.2.

Induction base: The equality of the initial iterates follows from the assumption
that zg = xg. This, in turn, implies the equality of the corresponding residuals and
search directions,

Slzl‘ozb—AX():b—AZ():quvl.

Induction hypothesis: Assume equality of the first m search directions and iter-
ates,

(SM3.5) x;=2;, 0<i<m-—1, and s;i=v;, 1<i<m.
The equality of the iterates implies the equality of the residuals

Induction step: Show x,, = z,, and S;,+1 = V41 via the recursions from Algo-
rithms 2.1 and 2.2.

Tterates. Apply Z;,—1 = Xpm—1 from (SM3.5) and q,—1 = rpp—1 from (SM3.6) to
the iterate from Algorithm 2.2,

T T
qm—lqm—l rm—lrm—l

Zpy = Zm—1 T Vi = Xm—1 +
v%Avm V%Avm

Vin.
Apply s, = v, from (SM3.5) the iterate from Algorithm 2.1 and simplify with
(SM3.3),
T T

Tm—1Tm—1 d)m rn—1Tm-—1

T 9AS,, = X1+ —————V,, = Zm,
s ATgAs,, Om VI AV,
which proves the equality of the iterates, and implies equality of the residuals r,,, =
qm-

Xm = Xm—1+
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Search Directions. Apply s, = vy, from (SM3.5), and r,, = q,, to the search
direction from Algorithm 2.2,

T T
r,.r q,,9
Sm+t1 :rm+TmimSmZQm+Tmime:Vm+1,
r,_1'm-1 4, —19m—1
which proves the equality of the search directions. 0

Showing that the posterior covariance under the approximate Krylov prior is

3 T
Fm - Vm+1:m+d¢’m+1:m+d (Vm+1:m+d)

follows the same argument as in Theorem 3.3.

Theorem SM3.1 shows that the search directions under the approximate Krylov
prior are not in ker(f‘o A). This is important to show because the approximate Krylov
posterior does not satisfy the condition x, —x¢o € range(f‘o) from Theorem 2.11 which
guarantees s; ¢ ker(f‘oA).

SM3.3. Alternative Definition of ®. In the following theorem, we discuss a
definition of ® that is equivalent to the definition in Theorem 3.7.

THEOREM SM3.2. The diagonal elements of ® in Theorem 3.7 are equal to
(SM3.7) bi = (VIrg)? = (V] A(x. — x0))?, 1<i<K.

Proof. From Theorem 3.7, we have that ¢; = v;|lr;_1|3, 1 < i < K. Substituting
v = r?_lri,l/ (ViTAVi) from Algorithm 3.1 into ¢; results in

P
! vIiAv;’ -

From the previous equation and v r; 1 = ||r;_1]|3, 1 <i < K, [SM9, (2.5.37)] follows

(vlIri_1)?

1< <K.
vIiAv, ’ - =

o1 =

Applying the normalization v; = vi/\/v;rAvi and the fact ViTri_l = i'fiTro, 1<i<
K, [SM3, (11)] to the previous equation gives

¢i = (V]'rii1)? = (¥]10)?, 1<i<K. 0

Equation (SM3.7) provides a geometric interpretation of ®. It shows that ¢; is
the squared A-norm length of error x, — xq in the direction v;, 1 <i < K.

In finite precision, the definition of ® in Theorem 3.7 and Algorithm 3.1 is prefer-
able over (SM3.7). This is because (3.18) in Theorem 3.7 requires only local orthog-
onality of CG [SM18, Section 10], while (SM3.7) requires global orthogonality due to
its reliance on the equalities v;fri,l =...= v;fpro.

SM4. Error Estimation and the Krylov Posterior. We investigate perfor-
mance of estimating the error in CG by sampling from the Krylov posterior distribu-
tion. We do this with the sampling based error estimate

(SM4.1) S= X —xmli, X ~N(xo,To),
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introduced in section 3.3. Additionally, in section SM4.1 we develop a a% credible
interval of (SM4.1) that can be computed without sampling. In section SM4.2, we
compare the performance of section SM4.1 and its analytic credible interval to two
existing CG error estimation techniques.

REMARK SM4.1. Even though we are estimating CG error in this section, we
remind the reader that the purpose of (SM4.1) in sections 3.3 and 4 in the main part
of paper is not to estimate the error, it is to determine if the posterior is informative.

SM4.1. Credible Interval of Sampling Based Error Estimate. The exact
distribution of the sampling based error estimate (SM4.1) is a generalized chi-squared
distribution and does not have a known closed form. We present an approximation
that avoids the cost of sampling without losing accuracy. Compared to the many
existing approximations [SM1, SM7, SM20] for distributions of Gaussian quadratic
forms, our approximation is simple and designed to be computable within CG.

First we approximate (SM4.1) by a Gaussian distribution A (u,0?). Because
(SM4.1) is a quadratic form, we can compute its mean and variance [SM10, Sections
3.2b.1-3.2b.3] (see also Lemma B.2). From Lemma 3.5, Theorem 3.7, and (3.19)
follows that

m-+d
(SM4.2) p=trace(AT,,) = D 7illria]l3 = 1% — Xomll.

1=m-+1
Following a similar argument with the variance formula in Lemma B.2 gives

R m+d
0? =2 trace((AT,,)?) =2 Z Y lrio1l3.
i=m+1

Next we determine an ‘a% credible interval” of A'(u,o?) for some 0 < a < 100.
A credible interval is a band around the mean p whose width is a multiple of the
standard deviation o. Since p is an underestimate of the error, we only need the
upper one-sided upper credible interval [u, S(a)] where

(SM4.3) S(a)=p+h(a)o and  h(a) = v2erf ! (a/100).

The error function erf is associated with the integral over the probability density of
the normal distribution, and erf ™! is its inverse', that is erf ~*(erf(2)) = 2.

The one-sided credible interval [u, S,] becomes wider for large «, and narrower
for small a.. In section SM4.2 we select the popular choice o = 95, and illustrate that
[, S(95)] represents an estimate whose quality is comparable to (SM4.1).

SM4.2. Numerical Experiments. We perform numerical experiments to il-
lustrate the accuracy of credible interval bound S(95) by comparing it to the mean
and samples of the sampling based error estimate (SM4.1), an empirical version of the
credible interval, and state-of-the-art CG error estimators from [SM12, SM13]. After
describing the setup for the numerical experiments, we present results for matrices
with small dimension and large dimension, followed by a summary.

IThe function erfinv is implemented in Matlab, Python’s scipy.special library, and Julia’s
SpecialFunctions package.
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SM4.2.1. Setup for the Numerical Experiments. We describe the setup
for the numerical experiments. These estimates are plotted in each iteration m, but
we suppress the explicit dependence on m to keep the notation simple.?

One-sided Credible Interval. We plot the upper 95% one-sided credible interval.
This interval is the band between the mean p from Theorem SM4.2 and bound S(95)
from (SM4.3) with v/2erf(.95) = 1.96,

m+d m+d
(SM4.4) p= Y vlrls and S(95)=p+1.96 |2 > 2.
1=m-+1 i=m-+1

While p represents the known underestimate (3.19), we are not aware of other esti-
mates of the type S(95). As mentioned in Remark 3.3.3, the mean p is equal to the
CG error estimate derived from Gaussian quadrature [SM18, Section 3].

We also plot empirically computed credible interval [fi, S(95)] with bounds from
the 10 samples of (SM4.1), where

10
(SM4.5) fi=15>"si and  Sps =i+ 1.96
i=1

Gauss-Radau Estimates. We employ two different estimates.
(a) Gauss-Radau Upper bound [SM12, Section 4].
This is an upper bound on CG error computed with the CGQ algorithm
[SM12, Section 4]. It requires a user-specified lower bound on the smallest
eigenvalue of A.
(b) Gauss-Radau Approximation [SM13, Sections 6 and 8.2].
This is an approximation of the Gauss-Radau upper bound (a) and it can
underestimate the error [SM13, Section 8.2]. It does not require a bound
for the smallest eigenvalue of A, and instead approximates the smallest Ritz
value of the tridiagonal matrix in CG [SM13, Section 5.
Both error estimates require running d additional CG iterations to be computed. The
additional amount of iterations is called the delay and is analogous to the rank of
the approximate Krylov posterior covariance matrix. The Gauss-Radau approxima-
tion (b) does not require a delay, however we use a delay by computing the estimate
with the Ritz value from iteration m + d. More discussion about CG error estimates
can be found in Remark 3.3.3 in the main part of the paper.
Relative Accuracy of Estimates. We plot the relative difference between an esti-
mate F and the squared A-norm error [|x. — X,[a,

(SM4.6) o) = Z e = xmlla|

min{E, [x, —xm[3}’

where E can be p, S(95), or one of the Gauss-Radau estimators. The minimum in the
denominator avoids favoring underestimate or overestimates, so that smaller values
p(FE) indicate more accurate estimators F.

Inputs. The linear systems Ax, = b have a size n = 48 or n = 11948 symmetric
positive definite matrix A € R™*™, solution vector of all ones x, = 1 € R"™, and
right-hand side vector b = A1. The initial guess xg = 0 € R” is the zero vector.

2The Python code used in the numerical experiments can be found at https://github.com/treid5/

ProbNumCG_Supp
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Figure SM4.1: Squared A-norm error [|x, — X, || versus iteration m for the matrix
A with eigenvalue distribution (SM4.7). On the left: samples s; from (SM4.1). On
the right: empirical upper credible interval [f, S(95)] from (SM4.5).

SM4.2.2. Matrix with Small Dimension. We first examine the error esti-
mates on a size n = 48 random matrix A = QDQT [SM6, Section 2], where Q is
a random orthogonal matrix with Haar distribution [SM16, Section 3] and D is a
diagonal matrix with eigenvalues [SM17]

i—1 i ,
: (10* = 0.1) (0.9)"*,  1<i<d48.

(SM4.7) dy; = 0.1+ -
The eigenvalue distribution is chosen to increase round off errors in CG, and is similar
to the one in [SM18, Section 11] for testing (3.19). The two-norm condition number
is Ko(A) = 10°.

Figures SM4.1 and SM4.2 display the squared A-norm error ||x. — x,,||% and
the estimates over 120 iterations. The delay used to compute the error estimates and
posterior covariance rank is d = 4.

Figure SM4.1 plots the samples s; from (SM4.1) on the left, and the empirical
upper credible interval [, S(95)] from (SM4.5) on the right. Both underestimate the
error in the initial period of slow convergence, cover the error during fast convergence,
and underestimate the error once maximal attainable accuracy has been reached. The
upper credible intervals appear deceptively thinner because of the logarithmic scale
on the vertical axis.

The left part of Figure SM4.2 plots the credible interval [u, S(95)] from (SM4.4);
as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau
bound is computed with a lower bound of 9.99-10~2 for the smallest eigenvalue 0.1 of
A. The upper credible interval [, S(95)] behaves like its empirical version [f, 5(95)]
in Figure SM4.1, and therefore represents an accurate approximation. The Gauss-
Radau bound (a) overestimates the error, and the Gauss-Radau approximation (b)
underestimates the error when convergence is slow and overestimates it when con-
vergence is fast. Note that the bound S(95) underestimates the error during slow
convergence and overestimates it during fast convergence.

The right part of Figure SM4.2 plots the relative accuracy (SM4.6) for the mean p
from (SM4.4), the bound S(95) from (SM4.4), the Gauss-Radau bound (a) and the
Gauss-Radau approximation (b). During the initial period of slow convergence, the
bound S(95) starts out as the most accurate until iteration 75 when the Gauss-Radau
bound (a) becomes the most accurate. During fast convergence, after iteration 90,
the mean p is most accurate.
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Figure SM4.2: Squared A-norm error ||x. — X,,,||4 and relative accuracy versus iter-
ation m for the matrix A with eigenvalue distribution (SM4.7). On the left: upper
credible interval [u, S(95)] from (SM4.4), Gauss-Radau bound (a), and Gauss-Radau
approximation (b). On the right: relative accuracy p from (SM4.6) for the mean p and
bound S(95) from (SM4.4) as well as the Gauss-Radau bound (a) and approximation

(b).
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Figure SM4.3: Squared A-norm error [|x, — X, || versus iteration m for the matrix
A based on BCSSTK18. On the left: samples s; from (SM4.1). On the right: empirical
upper credible interval [f, S(95)] from (SM4.5).

SM4.2.3. Matrix with Large Dimension. We now examine the error esti-
mates on the same n = 11948 matrix as in section 4.3.

Figures SM4.3 and SM4.4 display the squared A-norm error ||x. — x,,||% and
the estimates over 2,700 iterations. The delay and posterior covariance has rank is
d = 50.

Figure SM4.3 plots the samples s; from (SM4.1) on the left, and the empirical
credible interval [fi, $(95)] from (SM4.5) on the right. Both behave as in Figure SM4.1
and closely underestimate the error.

The left part of Figure SM4.4 plots the credible interval [u, S(95)] from (SM4.4);
as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau
bound is computed with a lower bound of 9 - 10714 for the smallest eigenvalue of A.
Again, the behavior is similar as in Figure SM4.2.

The right part of Figure SM4.4 plots the relative accuracy (SM4.6) for the mean p
from (SM4.4), the bound S(95) from (SM4.4), and the Gauss-Radau approxima-
tion (b). As before, the bound S(95) is generally the most accurate, followed by the
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Figure SM4.4: Squared A-norm error ||x. — X,,,||4 and relative accuracy versus iter-
ation m for the matrix A based on BCSSTK18. On the left: upper credible interval
[, S(95)] from (SM4.4), and Gauss-Radau bound (a) and approximation (b). On the
right: relative accuracy p of the error estimates.

mean .

SM4.2.4. Summary of the Experiments. Numerical experiments confirm
that the sampling based error estimate (SM4.1) performs as expected. In particular,
the upper credible interval [u, S(95)] in (SM4.4) is an accurate approximation of the
empirical upper credible interval [/, $(95)] in (SM4.5).

The speed of convergence impacts the effectiveness of (SM4.1) as an error es-
timate. The credible interval [p, S(95)] (SM4.4) depends on the mean u, and the
distance between p and the error depends on convergence speed. As a consequence,
the mean and credible interval are far from the error when convergence is slow.

Convergence speed can also affect the Gauss-Radau approximation (b). The
convergence rate of the smallest Ritz value to the smallest eigenvalue is usually related
to convergence of the A-norm error [SM13, Section 8.1 and Figures 3 and 4]. Slow
convergence of the A-norm means the Ritz value has not converged to the smallest
eigenvalue, and this causes the Gauss-Radau approximation (b) to be less accurate.

In general, the bound S(95) tends to underestimate the error during slow con-
vergence and to cover the error during fast convergence. The distance between S(95)
and the error is competitive with the Gauss-Radau estimates.
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