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SM1. Outline of Supplementary Materials. We present the proof of Theo-4

rem 2.1 (section SM2), discuss more theoretical properties of BayesCG (section SM3),5

and examine the performance of the Krylov posterior as a CG error estimate (sec-6

tion SM4).7

SM2. Proof of Theorem 2.1. We present an example of search directions that8

satisfy the assumptions of Theorem 2.1 (Example SM2.1); review the conjugacy and9

stability of Gaussian distributions (Lemmas SM2.2 and SM2.3); present the proof10

of Theorem 2.1; and discuss the relation between the solution x∗ and the random11

variable X ∼ N (x0,Σ0) (Remark SM2.4).12

Existence of search directions satisfying the assumptions of Theorem 2.1. The13

example below illustrates a non-recursive way to select search directions Sm so that14

Λm = STmAΣ0ASm is nonsingular. The purpose of this example is to show that at15

for all m ≤ rank(Σ0), least one set of search directions Sm exists that satisfies the16

assumptions of Theorem 2.1.17

Example SM2.1. Let Σ0 = UDUT be a singular value decomposition of the18

prior covariance Σ0, and let m ≤ rank(Σ0). Distinguish the leading m columns of U,19

and the leading nonsingular m×m principal submatrix of D20

U1:m ≡
[
u1 u2 · · · um

]
and D1:m ≡ diag

(
d1 d2 · · · dm

)
,21

and define the search directions Sm ≡ A−1Um. Then the equality22

Λm = STmAΣ0ASm = UT
mA−1AΣ0AA−1Um = UT

mΣ0Um = Dm2324

and m ≤ rank(Σm) imply that Dm, hence Λm, is nonsingular.25

This example shows that at least one set of search directions exists that satisfying26

the assumptions of Theorem 2.1. This example is necessary because Theorem 2.1127

only shows that the recursively computed search directions from Theorem 2.8 satisfy28

the assumptions of Theorem 2.1 for m ≤ K ≤ rank(Σ0), where K is the grade of r029

with respect to AΣ0A. In practice, it is best to compute the BayesCG posterior with30

the recursively computed search directions, even if K < rank(Σm). There is no reason31

to compute more than K of these search directions because they cause the posterior32

mean at K iterations to be xK = x∗.33
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Review of stability and conjugacy of Gaussian distributions. The proof of Theo-34

rem 2.1 relies on the stability and conjugacy of Gaussian distributions.35

Lemma SM2.2 (Stability of Gaussian distributions [SM14, Section 1.2]). Let36

X ∼ N (x,Σ) ∈ Rn be a Gaussian random variable with mean x ∈ Rn and covariance37

Σ ∈ Rn×n. If y ∈ Rn is a vector and F ∈ Rn×n is a matrix, then Z = y + FX is38

again a Gaussian random variable distibuted as39

Z ∼ N (y + Fx,FΣFT ).40

Lemma SM2.3 (Conjugacy of Gaussian distributions [SM15, Section 6.1], [SM19,41

Corollary 6.21]). Let X ∼ N (x,Σx) and Y ∼ N (y,Σy) be Gaussian random vari-42

ables. The jointly Gaussian random variable
[
XT Y T

]T
has the distribution43 [

X
Y

]
∼ N

([
x
y

]
,

[
Σx Σxy

ΣT
xy Σy

])
,44

where Σxy ≡ Cov(X,Y ) = E[(X − x)(Y − y)T ] and the conditional distribution of X45

given Y is46

(X | Y ) ∼ N (

mean︷ ︸︸ ︷
x + ΣxyΣ

†
y(Y − y),

covariance︷ ︸︸ ︷
Σx −ΣxyΣ

†
yΣ

T
xy).47

Proof of Theorem 2.1. Since m ≤ rank(Σ0), we can choose search directions Sm48

with linearly independent columns so that Λm is nonsingular, see Example SM2.1.49

Then the proof reduces to that of [SM5, Proof of Proposition 1].50

Let the random variable X0 ∼ N (x0,Σ0) represent the prior belief about the51

unknown solution x∗, and let the random variable Ym ≡ STmAX0 represent the im-52

plied prior belief about the unknown values STmAx∗ before they are computed. The53

posterior is the conditional distribution (X0 | Ym = STmAx∗) [SM3, Proposition 1].54

Thus, we first determine the conditional distribution (X0 | Ym) and then substitute55

Ym = STmAx∗.56

The joint distribution of X0 and Ym is57 [
X0

Ym

]
∼ N

([
x0

E[Ym]

]
,

[
Σ0 Cov(X0, Ym)

Cov(X0, Ym)T Cov(Ym, Ym)

])
.(SM2.1)58

59

The mean and covariance of Ym follow from Lemma SM2.2,60

E[Ym] = STmAx0 and Cov(Ym, Ym) = STmAΣ0ASm = Λm,61

while the linearity of the expectation implies for the covariance that62

Cov(X0, Ym) = E[(X0 − x0)(STmA(X0 − x0))T ] = Σ0ASm.6364

Substituting all of the above into (SM2.1) gives65 [
X0

Ym

]
∼ N

([
x0

STmAx0

]
,

[
Σ0 Σ0ASm

(Σ0ASm)T Λm

])
.66

67

Thus we can invoke Lemma SM2.3 to conclude that the conditional distribution68

for (X0 | Ym) is a Gaussian N (xm,Σm) with mean and covariance69

xm = x0 + Σ0ASmΛ−1m (Ym − STmAx0)70

Σm = Σ0 −Σ0ASmΛ−1m STmAΣ0.7172

This manuscript is for review purposes only.
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At last, substitute Ym = STmAx∗ = STmb to obtain (X0 | Ym = STmAx∗).73

Below we discuss the relation between the solution vector x∗ and the random74

variable X from the proof of Theorem 2.175

Remark SM2.4. The solution vector x∗ is a deterministic value, but we do not76

know its true value. The prior distribution N (x0,Σ0) models the initial epistemic77

uncertainty in x∗, that is, the uncertainty in our knowledge of the true value of x∗.78

The random variable X ∼ N (x0,Σ0) in the proof of Theorem 2.1 is a surrogate for79

x∗.80

When we compute x∗ with an iterative linear solver, we gain more information81

about the true value of x∗. Since we gain information about x∗, we can update the82

surrogate for x∗ by conditioning X on the new information. In BayesCG, the infor-83

mation we gain is that Y ≡ STmAX takes the value STmb. Therefore, our updated84

surrogate is X | Y = STmb, and it is distributed according to the posterior distribution85

N (xm,Σm). The posterior distribution models the uncertainty remaining x∗ after we86

obtained the additional information about it.87

SM3. Additional Theoretical Properties of BayesCG. We discuss the re-88

lationship between BayesCG and CG (section SM3.1), present an alternative proof of89

Theorem 3.3 (section SM3.2), and present an alternative definition of Φ that has the90

same convergence properties as in section 3.3 (section SM3.3).91

SM3.1. Relationship Between BayesCG and CG. We discuss the relation-92

ship between BayesCG and CG.93

The posterior mean from Algorithm 2.1 is closely related to the approximate94

solution from CG. For nonsingular Σ0, BayesCG can be interpreted as CG applied to95

a right-preconditioned linear system. Specifically, [SM8] showed the posterior means96

xi in Algorithm 2.1 are equal to the iterates of Algorithm 2.2 applied to the right97

preconditioned system98

(SM3.1) A (Σ0A)w∗ = b where w∗ = (Σ0A)
−1

x∗.99

It can be seen in (SM3.1) that if Σ0 = A−1, then the BayesCG posterior mean100

is equal to the approximate solution computed by CG. This was originally shown101

in [SM3, Section 2.3] and can also be seen by comparing Algorithms 2.1 and 2.2.102

Additionally, if Σ0 = A−1, then the search directions in Algorithms 2.1 and 2.2 are103

equal as well.104

Similarly to CG, the termination criterion in Algorithm 2.1 can be the usual105

relative residual norm, or it can be statistically motivated [SM2, Section 2], [SM4,106

Section 1.3].107

The similarity of BayesCG (Algorithm 2.1) and CG (Algorithm 2.2) strongly sug-108

gests that both algorithms have similar finite precision behavior. The search directions109

in Algorithm 2.1 lose orthogonality through the course of the iteration, thereby slow-110

ing down the convergence of the posterior means [SM3, Section 6.1], similar to what111

happens in CG [SM9, Section 5.8], [SM11, Section 5]. In addition, loss of orthog-112

onality causes loss of semi-definiteness in the posterior covariances Σm, prohibiting113

their interpretation as covariance matrices since covariance matrices must be positive114

semi-definite [SM3, Section 6.1]. The remedy recommended in [SM3, Section 6.1] is115

reorthogonalization of the search directions.116

SM3.2. Alternative Version of Theorem 3.3. We present an alternative117

version of Theorem 3.3, the theorem that shows the Krylov posterior means are equal118
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to CG iterates. This version additionally shows the search directions computed in Al-119

gorithm 2.1 under the Krylov prior are equal to the search directions in Algorithm 2.2.120

The alternative version of Theorem 3.3 also verifies the claim in Remark 3.9 that121

the approximate Krylov posterior (3.20) can be viewed as as the posterior from the122

rank-(m+ d), 1 ≤ d ≤ K−m, approximation of the prior N (x0, Γ̂0) with123

(SM3.2) Γ̂0 = V1:m+dΦ1:m+d(V1:m+d)
T .124

Similarly to Theorem 3.3, the alternative version of the theorem relies on (3.4).125

Equation (3.4) remains true for the approximate posterior:126

(SM3.3) Γ̂0Aṽi = φiṽi, 1 ≤ i ≤ m+ d.127

Theorem SM3.1. Let si and xi, 1 ≤ i ≤ m be the search directions and posterior128

means computed in m iterations of Algorithm 2.1 starting from the prior N (x0, Γ̂0).129

Similarly, let vi and zi, 1 ≤ i ≤ m be the search directions and solution iterates130

computed in m iterations of Algorithm 2.2 staring at initial guess z0. If z0 = x0, then131

(SM3.4) si = vi and xi = zi, 1 ≤ i ≤ m.132

Proof. We give an induction proof to establish the equality of iterates and search133

directions. In this proof we denote by134

qi = b−Azi, 0 ≤ i ≤ m,135

the residuals in Algorithm 2.2.136

Induction base: The equality of the initial iterates follows from the assumption137

that z0 = x0. This, in turn, implies the equality of the corresponding residuals and138

search directions,139

s1 = r0 = b−Ax0 = b−Az0 = q0 = v1.140

Induction hypothesis: Assume equality of the first m search directions and iter-141

ates,142

(SM3.5) xi = zi, 0 ≤ i ≤ m− 1, and si = vi, 1 ≤ i ≤ m.143

The equality of the iterates implies the equality of the residuals144

(SM3.6) ri = b−Axi = b−Azi = qi, 0 ≤ i ≤ m− 1.145

Induction step: Show xm = zm and sm+1 = vm+1 via the recursions from Algo-146

rithms 2.1 and 2.2.147

Iterates. Apply zm−1 = xm−1 from (SM3.5) and qm−1 = rm−1 from (SM3.6) to148

the iterate from Algorithm 2.2,149

zm = zm−1 +
qTm−1qm−1

vTmAvm
vm = xm−1 +

rTm−1rm−1

vTmAvm
vm.150

Apply sm = vm from (SM3.5) the iterate from Algorithm 2.1 and simplify with151

(SM3.3),152

xm = xm−1 +
rTm−1rm−1

sTmAΓ0Asm
Γ0Asm = xm−1 +

φm
φm

rTm−1rm−1

vTmAvm
vm = zm,153

which proves the equality of the iterates, and implies equality of the residuals rm =154

qm.155
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Search Directions. Apply sm = vm from (SM3.5), and rm = qm to the search156

direction from Algorithm 2.2,157

sm+1 = rm +
rTmrm

rTm−1rm−1
sm = qm +

qTmqm
qTm−1qm−1

vm = vm+1,158

which proves the equality of the search directions.159

Showing that the posterior covariance under the approximate Krylov prior is160

Γ̂m = Vm+1:m+dΦm+1:m+d(Vm+1:m+d)
T

161

follows the same argument as in Theorem 3.3.162

Theorem SM3.1 shows that the search directions under the approximate Krylov163

prior are not in ker(Γ̂0A). This is important to show because the approximate Krylov164

posterior does not satisfy the condition x∗−x0 ∈ range(Γ̂0) from Theorem 2.11 which165

guarantees si 6∈ ker(Γ̂0A).166

SM3.3. Alternative Definition of Φ. In the following theorem, we discuss a167

definition of Φ that is equivalent to the definition in Theorem 3.7.168

Theorem SM3.2. The diagonal elements of Φ in Theorem 3.7 are equal to169

(SM3.7) φi = (ṽTi r0)2 = (ṽTi A(x∗ − x0))2, 1 ≤ i ≤ K.170

Proof. From Theorem 3.7, we have that φi = γi‖ri−1‖22, 1 ≤ i ≤ K. Substituting171

γi = rTi−1ri−1/
(
vTi Avi

)
from Algorithm 3.1 into φi results in172

φi =
‖ri−1‖42
vTi Avi

, 1 ≤ i ≤ K.173

From the previous equation and vTi ri−1 = ‖ri−1‖22, 1 ≤ i ≤ K, [SM9, (2.5.37)] follows174

φi =
(vTi ri−1)2

vTi Avi
, 1 ≤ i ≤ K.175

Applying the normalization ṽi = vi/
√

vTi Avi and the fact ṽTi ri−1 = ṽTi r0, 1 ≤ i ≤176

K, [SM3, (11)] to the previous equation gives177

φi = (ṽTi ri−1)2 = (ṽTi r0)2, 1 ≤ i ≤ K.178179

Equation (SM3.7) provides a geometric interpretation of Φ. It shows that φi is180

the squared A-norm length of error x∗ − x0 in the direction ṽi, 1 ≤ i ≤ K.181

In finite precision, the definition of Φ in Theorem 3.7 and Algorithm 3.1 is prefer-182

able over (SM3.7). This is because (3.18) in Theorem 3.7 requires only local orthog-183

onality of CG [SM18, Section 10], while (SM3.7) requires global orthogonality due to184

its reliance on the equalities vTi ri−1 = · · · = vTi r0.185

SM4. Error Estimation and the Krylov Posterior. We investigate perfor-186

mance of estimating the error in CG by sampling from the Krylov posterior distribu-187

tion. We do this with the sampling based error estimate188

(SM4.1) S ≡ ‖X − xm‖2A, X ∼ N (x0, Γ̂0),189
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introduced in section 3.3. Additionally, in section SM4.1 we develop a α% credible190

interval of (SM4.1) that can be computed without sampling. In section SM4.2, we191

compare the performance of section SM4.1 and its analytic credible interval to two192

existing CG error estimation techniques.193

Remark SM4.1. Even though we are estimating CG error in this section, we194

remind the reader that the purpose of (SM4.1) in sections 3.3 and 4 in the main part195

of paper is not to estimate the error, it is to determine if the posterior is informative.196

SM4.1. Credible Interval of Sampling Based Error Estimate. The exact197

distribution of the sampling based error estimate (SM4.1) is a generalized chi-squared198

distribution and does not have a known closed form. We present an approximation199

that avoids the cost of sampling without losing accuracy. Compared to the many200

existing approximations [SM1, SM7, SM20] for distributions of Gaussian quadratic201

forms, our approximation is simple and designed to be computable within CG.202

First we approximate (SM4.1) by a Gaussian distribution N (µ, σ2). Because203

(SM4.1) is a quadratic form, we can compute its mean and variance [SM10, Sections204

3.2b.1–3.2b.3] (see also Lemma B.2). From Lemma 3.5, Theorem 3.7, and (3.19)205

follows that206

(SM4.2) µ ≡ trace(AΓ̂m) =

m+d∑
i=m+1

γi‖ri−1‖22 ≈ ‖x∗ − xm‖.207

Following a similar argument with the variance formula in Lemma B.2 gives208

σ2 ≡ 2 trace((AΓ̂m)2) = 2

m+d∑
i=m+1

γ2i ‖ri−1‖42.209

Next we determine an ‘α% credible interval’ of N (µ, σ2) for some 0 < α < 100.210

A credible interval is a band around the mean µ whose width is a multiple of the211

standard deviation σ. Since µ is an underestimate of the error, we only need the212

upper one-sided upper credible interval [µ, S(α)] where213

(SM4.3) S(α) ≡ µ+ h(α)σ and h(α) ≡
√

2 erf−1(α/100).214

The error function erf is associated with the integral over the probability density of215

the normal distribution, and erf−1 is its inverse1, that is erf−1(erf(z)) = z.216

The one-sided credible interval [µ, Sα] becomes wider for large α, and narrower217

for small α. In section SM4.2 we select the popular choice α = 95, and illustrate that218

[µ, S(95)] represents an estimate whose quality is comparable to (SM4.1).219

SM4.2. Numerical Experiments. We perform numerical experiments to il-220

lustrate the accuracy of credible interval bound S(95) by comparing it to the mean221

and samples of the sampling based error estimate (SM4.1), an empirical version of the222

credible interval, and state-of-the-art CG error estimators from [SM12, SM13]. After223

describing the setup for the numerical experiments, we present results for matrices224

with small dimension and large dimension, followed by a summary.225

1The function erfinv is implemented in Matlab, Python’s scipy.special library, and Julia’s
SpecialFunctions package.
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SM4.2.1. Setup for the Numerical Experiments. We describe the setup226

for the numerical experiments. These estimates are plotted in each iteration m, but227

we suppress the explicit dependence on m to keep the notation simple.2228

One-sided Credible Interval. We plot the upper 95% one-sided credible interval.229

This interval is the band between the mean µ from Theorem SM4.2 and bound S(95)230

from (SM4.3) with
√

2 erf(.95) = 1.96,231

(SM4.4) µ =

m+d∑
i=m+1

γi‖ri‖22 and S(95) = µ+ 1.96

√√√√2

m+d∑
i=m+1

γ2i ‖ri−1‖42.232

While µ represents the known underestimate (3.19), we are not aware of other esti-233

mates of the type S(95). As mentioned in Remark 3.3.3, the mean µ is equal to the234

CG error estimate derived from Gaussian quadrature [SM18, Section 3].235

We also plot empirically computed credible interval [µ̂, Ŝ(95)] with bounds from236

the 10 samples of (SM4.1), where237

µ̂ = 1
10

10∑
i=1

si and Ŝ95 = µ̂+ 1.96

√√√√ 1
9

10∑
i=1

(si − µ̂)2.(SM4.5)238

239

Gauss-Radau Estimates. We employ two different estimates.240

(a) Gauss-Radau Upper bound [SM12, Section 4].241

This is an upper bound on CG error computed with the CGQ algorithm242

[SM12, Section 4]. It requires a user-specified lower bound on the smallest243

eigenvalue of A.244

(b) Gauss-Radau Approximation [SM13, Sections 6 and 8.2].245

This is an approximation of the Gauss-Radau upper bound (a) and it can246

underestimate the error [SM13, Section 8.2]. It does not require a bound247

for the smallest eigenvalue of A, and instead approximates the smallest Ritz248

value of the tridiagonal matrix in CG [SM13, Section 5].249

Both error estimates require running d additional CG iterations to be computed. The250

additional amount of iterations is called the delay and is analogous to the rank of251

the approximate Krylov posterior covariance matrix. The Gauss-Radau approxima-252

tion (b) does not require a delay, however we use a delay by computing the estimate253

with the Ritz value from iteration m+ d. More discussion about CG error estimates254

can be found in Remark 3.3.3 in the main part of the paper.255

Relative Accuracy of Estimates. We plot the relative difference between an esti-256

mate E and the squared A-norm error ‖x∗ − xm‖2A,257

(SM4.6) ρ(E) =

∣∣E − ‖x∗ − xm‖2A
∣∣

min{E, ‖x∗ − xm‖2A}
,258

where E can be µ, S(95), or one of the Gauss-Radau estimators. The minimum in the259

denominator avoids favoring underestimate or overestimates, so that smaller values260

ρ(E) indicate more accurate estimators E.261

Inputs. The linear systems Ax∗ = b have a size n = 48 or n = 11948 symmetric262

positive definite matrix A ∈ Rn×n, solution vector of all ones x∗ = 1 ∈ Rn, and263

right-hand side vector b = A1. The initial guess x0 = 0 ∈ Rn is the zero vector.264

2The Python code used in the numerical experiments can be found at https://github.com/treid5/
ProbNumCG Supp
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Figure SM4.1: Squared A-norm error ‖x∗ − xm‖2A versus iteration m for the matrix
A with eigenvalue distribution (SM4.7). On the left: samples si from (SM4.1). On
the right: empirical upper credible interval [µ̂, Ŝ(95)] from (SM4.5).

SM4.2.2. Matrix with Small Dimension. We first examine the error esti-265

mates on a size n = 48 random matrix A = QDQT [SM6, Section 2], where Q is266

a random orthogonal matrix with Haar distribution [SM16, Section 3] and D is a267

diagonal matrix with eigenvalues [SM17]268

(SM4.7) dii = 0.1 +
i− 1

n− 1

(
104 − 0.1

)
(0.9)n−i, 1 ≤ i ≤ 48.269

The eigenvalue distribution is chosen to increase round off errors in CG, and is similar270

to the one in [SM18, Section 11] for testing (3.19). The two-norm condition number271

is κ2(A) = 105.272

Figures SM4.1 and SM4.2 display the squared A-norm error ‖x∗ − xm‖2A and273

the estimates over 120 iterations. The delay used to compute the error estimates and274

posterior covariance rank is d = 4.275

Figure SM4.1 plots the samples si from (SM4.1) on the left, and the empirical276

upper credible interval [µ̂, Ŝ(95)] from (SM4.5) on the right. Both underestimate the277

error in the initial period of slow convergence, cover the error during fast convergence,278

and underestimate the error once maximal attainable accuracy has been reached. The279

upper credible intervals appear deceptively thinner because of the logarithmic scale280

on the vertical axis.281

The left part of Figure SM4.2 plots the credible interval [µ, S(95)] from (SM4.4);282

as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau283

bound is computed with a lower bound of 9.99 ·10−2 for the smallest eigenvalue 0.1 of284

A. The upper credible interval [µ, S(95)] behaves like its empirical version [µ̂, Ŝ(95)]285

in Figure SM4.1, and therefore represents an accurate approximation. The Gauss-286

Radau bound (a) overestimates the error, and the Gauss-Radau approximation (b)287

underestimates the error when convergence is slow and overestimates it when con-288

vergence is fast. Note that the bound S(95) underestimates the error during slow289

convergence and overestimates it during fast convergence.290

The right part of Figure SM4.2 plots the relative accuracy (SM4.6) for the mean µ291

from (SM4.4), the bound S(95) from (SM4.4), the Gauss-Radau bound (a) and the292

Gauss-Radau approximation (b). During the initial period of slow convergence, the293

bound S(95) starts out as the most accurate until iteration 75 when the Gauss-Radau294

bound (a) becomes the most accurate. During fast convergence, after iteration 90,295

the mean µ is most accurate.296
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Figure SM4.2: Squared A-norm error ‖x∗ − xm‖2A and relative accuracy versus iter-
ation m for the matrix A with eigenvalue distribution (SM4.7). On the left: upper
credible interval [µ, S(95)] from (SM4.4), Gauss-Radau bound (a), and Gauss-Radau
approximation (b). On the right: relative accuracy ρ from (SM4.6) for the mean µ and
bound S(95) from (SM4.4) as well as the Gauss-Radau bound (a) and approximation
(b).
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Figure SM4.3: Squared A-norm error ‖x∗ − xm‖2A versus iteration m for the matrix
A based on BCSSTK18. On the left: samples si from (SM4.1). On the right: empirical
upper credible interval [µ̂, Ŝ(95)] from (SM4.5).

SM4.2.3. Matrix with Large Dimension. We now examine the error esti-297

mates on the same n = 11948 matrix as in section 4.3.298

Figures SM4.3 and SM4.4 display the squared A-norm error ‖x∗ − xm‖2A and299

the estimates over 2,700 iterations. The delay and posterior covariance has rank is300

d = 50.301

Figure SM4.3 plots the samples si from (SM4.1) on the left, and the empirical302

credible interval [µ̂, Ŝ(95)] from (SM4.5) on the right. Both behave as in Figure SM4.1303

and closely underestimate the error.304

The left part of Figure SM4.4 plots the credible interval [µ, S(95)] from (SM4.4);305

as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau306

bound is computed with a lower bound of 9 · 10−14 for the smallest eigenvalue of A.307

Again, the behavior is similar as in Figure SM4.2.308

The right part of Figure SM4.4 plots the relative accuracy (SM4.6) for the mean µ309

from (SM4.4), the bound S(95) from (SM4.4), and the Gauss-Radau approxima-310

tion (b). As before, the bound S(95) is generally the most accurate, followed by the311
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Figure SM4.4: Squared A-norm error ‖x∗ − xm‖2A and relative accuracy versus iter-
ation m for the matrix A based on BCSSTK18. On the left: upper credible interval
[µ, S(95)] from (SM4.4), and Gauss-Radau bound (a) and approximation (b). On the
right: relative accuracy ρ of the error estimates.

mean µ.312

SM4.2.4. Summary of the Experiments. Numerical experiments confirm313

that the sampling based error estimate (SM4.1) performs as expected. In particular,314

the upper credible interval [µ, S(95)] in (SM4.4) is an accurate approximation of the315

empirical upper credible interval [µ̂, Ŝ(95)] in (SM4.5).316

The speed of convergence impacts the effectiveness of (SM4.1) as an error es-317

timate. The credible interval [µ, S(95)] (SM4.4) depends on the mean µ, and the318

distance between µ and the error depends on convergence speed. As a consequence,319

the mean and credible interval are far from the error when convergence is slow.320

Convergence speed can also affect the Gauss-Radau approximation (b). The321

convergence rate of the smallest Ritz value to the smallest eigenvalue is usually related322

to convergence of the A-norm error [SM13, Section 8.1 and Figures 3 and 4]. Slow323

convergence of the A-norm means the Ritz value has not converged to the smallest324

eigenvalue, and this causes the Gauss-Radau approximation (b) to be less accurate.325

In general, the bound S(95) tends to underestimate the error during slow con-326

vergence and to cover the error during fast convergence. The distance between S(95)327

and the error is competitive with the Gauss-Radau estimates.328
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