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This paper presents a probabilistic perspective on iterative methods for ap-
proximating the solution x∗ ∈ Rd of a nonsingular linear system Ax∗ = b. In
the approach a standard iterative method on Rd is lifted to act on the space
of probability distributions P(Rd). Classically, an iterative method produces
a sequence xm of approximations that converge to x∗. The output of the
iterative methods proposed in this paper is, instead, a sequence of proba-
bility distributions µm ∈ P(Rd). The distributional output both provides a
“best guess” for x∗, for example as the mean of µm, and also probabilistic
uncertainty quantification for the value of x∗ when it has not been exactly
determined. Theoretical analysis is provided in the prototypical case of a
stationary linear iterative method. In this setting we characterise both the
rate of contraction of µm to an atomic measure on x∗ and the nature of the
uncertainty quantification being provided. We conclude with an empirical
illustration that highlights the insight into solution uncertainty that can be
provided by probabilistic iterative methods.

1. Introduction

The focus of this paper is on the numerical solution of a linear systems of equations

Ax∗ = b (1)

where A ∈ Rd×d is a given non-singular matrix, b ∈ Rd is a non-zero vector and x∗ ∈ Rd
is an unknown vector to be computed. The problem of solving linear systems is central
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to scientific computation Golub and Van Loan [2013, p103]. Solvers can be broadly
categorized as either direct, meaning they compute x∗ by factorizing the matrix A, or
as iterative meaning they output a sequence of approximate solutions to x∗. The focus
of the present paper is on a probabilistic version of iterative methods.

There exist a wide variety of iterative methods, with the two main classes being the
stationary iterative methods [Young, 1971], such as Richardson’s method and Jacobi’s
method, and Krylov subspace methods [Liesen and Strakos, 2012] such as the conjugate
gradient method (CG; Hestenes and Stiefel [1952]). In each case, the output of an
iterative method is a sequence xm of approximations that converge, one hopes, to x∗
as m is increased. The methods we present in this paper lift iterative methods into
probability space, replacing iterates xm ∈ Rd with iterates in µm ∈ P(Rd), the set of
probability measures on Rd.

An object of critical importance in iterative methods is the error em = x∗ − xm, and
since x∗ is inaccessible the error or its norm must be estimated. Error estimation for
linear systems has a long history. For CG applied to a symmetric positive definite matrix
A, one typically bounds the A-norm of the error ‖em‖A =

√
e>mAem. Estimates such

as this may be of limited utility for two reasons: firstly, they are often conservative and
may be complicated to compute, and secondly, a scalar-valued error indicator does not
capture any structure that may be present in the error em.

For a concrete motivating example, suppose that the value of x∗ is the input to some
further computation, denoted abstractly as F (x∗) for F : Rd → R, and suppose that
one wishes to characterise the error |F (x∗) − F (xm))|. It is not trivial to transfer a
bound on ‖x∗−xm‖ into a practically useful estimate of this error, particularly when F
is not analytically tractable. For example, if F depends only on a subset of the entries
of x∗ for which the iterative method converges rapidly, while the other entries converge
slowly, a bound on |F (x∗)− F (xm)| that is a function only of ‖x∗ − xm‖ is likely to be
extremely conservative.

The methods described herein fall in the class of Probabilistic numerical methods
(PNM; [Larkin, 1972, Diaconis, 1988, Hennig et al., 2015, Cockayne et al., 2019b]). PNM
are numerical methods that accept some initial distribution µ0 as input, along with the
usual quantities that specify the numerical problem (in our case, A and b), and produce
a probability distribution µm as their output. The distribution µ0 provides a means by
which a priori information can be incorporated into a numerical method. In the case
of Eq. (1), this distribution is intended to assign probability mass to subsets of Rd in
which x∗ is believed to be located, prior to any computations being performed. This
information may be elicited from a domain expert or obtained in an objective manner,
for instance by performing additional computations pertaining to the numerical task.

The output distribution µm provides a structured description of the error em. Re-
turning to our motivating example, this description may trivially be propagated through
F without incurring a significant loss of information, for example by sampling from µm
and passing the samples through F . The resulting probability distribution provides a
kind of uncertainty quantification (UQ) for the unknown quantity of interest F (x∗), and
may not suffer the same degree of conservatism of the norm-based estimators that we
briefly described. While the UQ we produce has a different flavour to that traditionally
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explored in the field (e.g. in Smith [2014]) it is philosophically similar; see Hennig et al.
[2015] and Cockayne et al. [2019b] for a discussion of the contrast.

1.1. Related Work

There has been recent interest in the construction of PNM for the solution of Eq. (1)
with contributions in Hennig et al. [2015], Bartels and Hennig [2016], Bartels et al.
[2019], Cockayne et al. [2019a], Reid et al. [2020], Wegner and Hennig [2020]. With the
exception of Bartels et al. [2019] these works have predominantly focused on replicating
CG, and so a positive-definite A is assumed. Each constructed a PNM in the Bayesian
statistical framework, where the distribution µ0 has the interpretation of a prior posited
over some quantity related to Eq. (1) at the outset, and this distribution is updated
based on the limited computations that are performed. The updating is achieved using
Bayes’ theorem and the result is a posterior or conditional distribution µm that forms
the output of the method; it is a distribution over the unknown x∗ that quantifies
uncertainty given the limited computation performed. In Hennig et al. [2015], Bartels
and Hennig [2016], Wegner and Hennig [2020] the prior was placed on the entries of A−1

(or jointly on A and A−1), while in Bartels et al. [2019], Cockayne et al. [2019a] the
prior was placed directly on the unknown solution of Eq. (1). In each case computation
consisted of projecting Eq. (1) against a set of search directions si, i = 1, . . . ,m, i.e. by
computing s>i Ax∗ = s>i b and the output of the PNM was a distribution that contracts
to a point mass at x∗ in an appropriate computational limit.

Each of these methods exploited conjugacy of Gaussian distributions under linear
transformations to condition on the linear information provided by the pairs (si, s

>
i b),

i = 1, . . . ,m. This use of Bayes’ theorem is justified when the search directions si are not
themselves dependent on x∗, the solution of Eq. (1). However, in practice these authors
advocated the use of search directions generated using a Lanczos-style recursion [Liesen
and Strakos, 2012, Section 2.4], meaning that the si depend on x∗ via b and the required
assumption is violated. As remarked in Bartels et al. [2019], Cockayne et al. [2019a], this
violation leads to PNM that are not strictly Bayesian and are unacceptably conservative,
meaning that the “width” of the probability distribution µm produced by the PNM can
be a gross over-estimate of the actual error, as quantified by the difference between
the mean of µm and x∗. Reid et al. [2020] addressed this deficiency by constructing a
prior which corrects for the over-confidence in an empirical Bayesian fashion, though
with such a prescribed prior it is difficult for other problem-specific information to be
incorporated. It therefore remains an open problem to develop a PNM for the solution
of Eq. (1) that allows a generic initial distribution µ0 ∈ P(Rd) to be used and ensures
the distributional output µm ∈ P(Rd) of the PNM is an accurate reflection of the error
em.

1.2. Contributions

This paper adopts a different strategy to the aforementioned work. Instead of apply-
ing Bayes’ theorem, we first posit an initial distribution µ0 and iteratively update this
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distribution using a transformation derived from an iterative method for the solution
of Eq. (1). The initial distribution µ0 is loosely analogous to the prior in a Bayesian
approach, but since no analogue of the Bayesian update occurs these methods are not
Bayesian in the standard sense. We thus refer to µm as a belief distribution rather than a
posterior, following the contemporary literature on generalised Bayesian inference [Bis-
siri et al., 2016]. In departing from an established statistical paradigm one is required
to justify, mathematically, the sense in which the uncertainty quantification provided by
µm is meaningful. For this we purpose we leverage the recent work of Graham et al.
[2020], who argued that non-Bayesian procedures can be justified if they are calibrated,
meaning that x∗ is indistinguishable in a certain, precise sense, from any other sample
drawn independently from µm. The contributions of this paper are therefore as follows:

• We introduce probabilistic iterative methods, a class of PNM derived from iterative
methods for solving linear systems such as Eq. (1). These methods can be inter-
preted as a lifting of any standard iterative method into probability space, and are
equivalent to randomising the initial iterate in a standard iterative method.

• A detailed theoretical analysis of the convergence properties of these new PNM
is conducted for the class of linear stationary iterative methods, in which the
next iterate is obtained by an affine transformation of the previous iterate. We
prove that in this case the iterates produced are strongly calibrated in the sense of
Graham et al. [2020] and hence can be thought of as providing reliable uncertainty
quantification despite not existing in the Bayesian paradigm.

• We describe statistical tests for weak calibration, again following Graham et al.
[2020], which can be used to test calibration of probabilistic iterative methods
based on more complex iterative methods, such as Krylov methods.

• A simulation study is conducted to analyse the performance of probabilistic itera-
tive methods in a regression problem. We examine the convergence and calibration
of both linear and nonlinear probabilistic iterative methods, and highlight how the
output of the method may be used to gain insight into potential numerical issues
with the regression problem, such as the areas of the space in which higher error
is incurred as a result of slow convergence of the iterative method.

1.3. Structure of the Paper

In Section 2 we introduce iterative methods for linear systems and describe how these
may be lifted into algorithms that operate on probability space. Theoretical results
concerning the convergence and uncertainty calibration of a class of analytically tractable
probabilistic iterative methods are presented in Section 3, and in Section 4 we consider
the general case, presenting a statistical test that can be used to assess whether the UQ
provided by a probabilistic iterative method is meaningful in the sense of Graham et al.
[2020]. In Section 5 we apply probabilistic iterative methods to solve a linear system
arising in a regression problem. Lastly, in Section 6 we discuss the results presented and
the outlook for this new class of methods.
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1.4. Notation

Here the notation for the paper is established. We will work in the measurable space
(Rd,B(Rd)) where B(Rd) is the standard Borel sigma-algebra for Rd. Let P(Rd) denote
the set of all probability measures on (Rd,B(Rd)). Bold lower-case italic letters (i.e. x)
will be used to denote vectors in Rd and bold capital italic letters to denote matrices in
Rd×d (i.e. M). Non-bold capital italic letters will denote random variables on Rd (i.e.
X) and lower-case Greek letters will be used to denote elements of P(Rd).

Throughout it will be assumed that ‖ · ‖ is a fixed but arbitrary norm on Rd. One
important example is the vector I-norm, given by

‖x‖p =

(
d∑
i=1

|xi|p
) 1

p

,

though we note that many of the results presented herein do not assume any particular
norm, and where a specific norm is required this will be emphasised. This notation will
also be used for the induced norm on Rd×d, given by

‖M‖ = sup
‖x‖=1

‖Mx‖.

Recall that all induced norms are sub-multiplicative, meaning that ‖Mx‖ ≤ ‖M‖‖x‖.
Let ρ(M) denote the spectral radius of M , let M † denote the Moore-Penrose pseudo-
inverse of M , let range(M) denote its range and ker(M) its kernel (or null space).
For a symmetric matrix M let λmin(M) and λmax(M) denote the smallest and largest
eigenvalue of M . For a positive-definite matrix M , we define the weighted norm ‖x‖M =

(x>Mx)
1
2 . Let M

1
2 denote a matrix for which M = (M

1
2 )>M

1
2 . Note that this is not

the typical notion of a square root, in that it will not be required that (M
1
2 )> = M

1
2 .

For a measurable map S : Rd → Rd and a set B ⊂ Rd, S−1[B] will be used to denote
the preimage of B under S, i.e.

S−1[B] = {x ∈ Rd s.t. S(x) ∈ B}.

For a distribution µ ∈ P(Rd), recall that the pushforward distribution S#µ is defined
as (S#µ)(B) = µ(S−1[B]) for each B ∈ B(Rd), and thus S#µ ∈ P(Rd). The notation
N (x,Σ) will be used to denote the multivariate Gaussian distribution with mean x
and positive semi-definite covariance Σ. The notation χ2

d will denote the chi-squared
distribution with d ∈ N degrees of freedom. Recall that if X ∼ N (0, Id) then ‖X‖22 ∼ χ2

d.

2. Probabilistic Iterative Methods

In this section we will first introduce iterative methods by way of the taxonomy in-
troduced in Young [1971], before proceeding to the general definition of probabilistic
iterative methods.
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2.1. Iterative Methods

A general iterative method I(A, b) is defined [Young, 1971, Section 3.1] by a sequence
of maps I = (Pm)m≥1, for which xm = Pm(x0, . . . ,xm−1;A, b). The iterative method
I is said to be linear if each Pm is linear in x0, . . . ,xm−1. It is said to be of de-
gree s if for all m ≥ s we have that Pm depends only on the s previous iterates, i.e.
Pm(x0, . . . ,xm−1;A, b) = Pm(xm−s, . . . ,xm−1;A, b). Lastly, the method is said to be
stationary if the maps Pm are independent of m. We will generally suppress dependence
of I and the Pm on A and b for notational convenience.

Many of the most widely used iterative methods can be expressed as methods of
degree s = 1. For simplicity we will present the majority of the material in this paper
in these terms, though the core ideas readily generalise to higher degree methods as will
be discussed in Section 4 and explored in Section 5. Any iterative method I of degree
s = 1 implies a map Pm that acts only on the first s iterates to produce iterate m, as
follows:

Pm(x0) = (Pm ◦ · · · ◦ P1)(x0).

For first degree methods each Pm is generally a contraction map with fixed point x∗, i.e.
Pm(x∗) = x∗. Thus when the iterative method is stationary it amounts to applying a
single fixed contraction map to an initial iterate until convergence.

We now present several classical examples of first-degree iterative methods; for each
see Young [1971, Section 3.3]. These methods are seldom used as linear solvers in con-
temporary applications, but are still sometimes used in conjunction with other methods
[Saad, 2003, p103].

Example 2.1 (Stationary Richardson method). This method adopts the following iter-
ation

xm = xm−1 + ω(b−Axm−1), m ≥ 1

where ω > 0 is a parameter of the method. The method is stationary and linear, with
each map Pm of the form

Pm(x) = P (x) = Gx + f (2)

where G = I − ωA and f = ωb.

Example 2.2 (Jacobi’s method). In Jacobi’s method it is assumed that the diagonal
elements of A are nonzero. The iteration takes the form

xm = D−1(b− (A−D)xm−1) + xm−1, m ≥ 1

where D = diag(A). The method is again stationary and linear. In the notation of
Eq. (2). we have that G = I − ωD−1A and f = ωD−1b.

The next method, CG, sees significantly more use, particularly in the solution of large
sparse linear systems. Whereas the above two methods are based on matrix splittings,
in CG the solution x∗ is instead projected into a sequence of Krylov subspaces [Liesen
and Strakos, 2012, Section 2.2] of increasing dimension. As a result it is not traditionally
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viewed within the classification of Young [1971]1. Nevertheless CG is currently seen as
an iterative method and may be categorised within the taxonomy presented above, albeit
rather degenerately since CG provably converges in a finite number m′ ≤ d of iterations,
and Pm is undefined for m > m′.

Example 2.3 (Conjugate Gradient Method). In CG the iteration is of the form

xm = xm−1 + αmsm

αm =
s>mrm
s>mAsm

sm+1 = rm + βmsm

βm =
r>mrm

r>m−1rm−1

where the initial direction s0 is taken to be r0, and we recall that recall that rm =
b − Axm. From Saad [2003, Algorithm 6.19] CG may be expressed as a three-term
recurrence. Examining this we see that it is neither stationary nor linear, and is of
second degree. Nevertheless in terms of its implementation, the algorithm requires only
the storage of xm and rm to compute xm+1.

2.2. Lifting to Probability Space

We now introduce the central definition of this paper, that of a probabilistic iterative
method. As noted above, the definition is presented in terms of a method of degree
s = 1; extension to higher degree is considered in Section 3.3.

Definition 2.4. Let I = (Pm)m≥1 be an iterative method of first degree. Then the maps
Pm : Rd → Rd can be lifted to maps (Pm)# : P(Rd) → P(Rd) operating on elements of
P(Rd). Then we say that I# = ((Pm)#)m≥1 is a probabilistic iterative method.

Thus probabilistic iterative methods are a class of PNMs that take as input an initial
distribution µ0 ∈ P(Rd) and return a sequence of iterates µm = (Pm)#(µ0). Again we
note that I#, and therefore µm, each formally depend on A and b, but this dependence
will generally be suppressed.

The distribution µ0 should be thought of as an initial belief about where the solution x∗
to the linear system might lie in Rd. Thus µ0 has a similar role to the prior distribution in
the Bayesian setting. However, the iterates µm do not arise as a conditional distribution,
and so the output from probabilistic iterative methods does not have a classical Bayesian
interpretation. It is therefore crucial to ensure that the UQ provided by the method
is meaningful, which will be discussed in detail in Section 3.2 (for stationary linear
methods) and Section 4.2 (for general methods).

1The discussion in Liesen and Strakos [2012, Section 2.5.7] highlights that, when the book was written,
CG was still often considered a direct method owing to its convergence in m′ ≤ d iterations; its
attractive properties as an iterative method were not understood by the community until Reid [1971],
who studied its use as an iterative method for large sparse linear systems. This likely explains why
Young [1971] does not attempt to categorise it within his taxonomy.
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Compared to the Bayesian approach to PNM [Cockayne et al., 2019b], probabilistic
iterative methods are significantly easier to implement. For example, an algorithm for
producing a sample from µm is to sample x ∼ µ0 and compute Pm(x). Thus sampling
from the output of a probabilistic iterative method inherits the computational efficiency
and stability of the underlying classical iterative method, only multiplying the cost by
the number of samples required. Conversely Bayesian PNM generally require new and
often highly computationally expensive code to be developed, which can bring its own
share of computational stability issues.

Unlike in a Bayesian PNM however, it is straightforward to construct a counterexample
showing that the support of µm need not be a subset of the support of µ0. Thus, even if
µ0 encodes properties of the solution that are expected to hold with probability one, (for
example, positivity of the elements), µm is not guaranteed to inherit those properties.
This emphasises the need for careful analysis of the UQ of probabilistic iterative methods,
which we provide in Section 3.2.

Our first theoretical result shows that if the iterates xm contract to the truth at a
certain rate then the distributions µm contract at the same rate.

Proposition 2.5. Let I be an iterative method of first degree for solution of Eq. (1).
Suppose that each Pm has error controlled by the bound

‖x∗ − Pm(x)‖ ≤ ϕ(m)‖x∗ − x0‖, m ≥ 1 (3)

where ϕ : N → R is some function independent of x0, such that ϕ(m) → 0 as m → ∞.
Then for any k > 0 and δ > 0,

µm(Bc
δ(x∗)) ≤

(
ϕ(m)

δ

)k ∫
Rd

‖x∗ − x‖k dµ0(x),

where Bc
δ(x∗) represents the complement of a ‖ · ‖-ball of radius δ about x∗, i.e.

Bc
δ(x∗) = {x ∈ Rd : ‖x∗ − x‖ ≥ δ}.

Remark 2.6. Since x∗ is generally a fixed point of Pm the function ϕ(m) in Proposi-
tion 2.5 is similar to a Lipschitz constant, though it need not be independent of x∗ for
the result to hold.

Proof. For any k > 0,∫
Rd

‖x∗ − x‖k dµm(x) =

∫
Rd

‖x∗ − Pm(x)‖k dµ0(dx)

≤ ϕ(m)k
∫
Rd

‖x∗ − x‖k dµ0(dx)

where the second line follows from applying the assumed bound for the error and extract-
ing terms independent of x from the integral. Now, recall from Chebyshev’s inequality
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[Kallenberg, 2002, Lemma 3.1] we have that for a measure µ on Rd, a µ-measurable
function f : Rd → [0,∞) and scalars δ ∈ [0,∞), k ∈ (0,∞) it holds that

µ({x ∈ Rd : f(x) ≥ δ}) = µ({x ∈ Rd : f(x)k ≥ δk}) ≤ 1

δk

∫
Rd

f(x)k dµ(x).

Applying this in the present setting with f(x) = ‖x∗ − x‖ we therefore have

µm(Bc
δ(x∗)) ≤

(
ϕ(m)

δ

)k ∫
Rd

‖x∗ − x‖k dµ0(x)

as required.

Thus the probability mass assigned by µm to the region outside of a ball Bδ(x∗)
centred on the true solution x∗ vanishes as m→∞. Moreover, and again asymptotically
as m→∞, the probability mass outside Bδ(x∗) vanishes more rapidly when high-order
moments of µ0 exist (i.e. large k). However, Proposition 2.5 does not imply that the UQ
provided by µm is meaningful, or even that x∗ is in the support of µm. For the UQ to
be meaningful further assumptions are required on I, such as those made in Section 3.2.

3. Linear Probabilistic Iterative Methods

In this section we restrict attention to linear, stationary iterative methods of first de-
gree, as a richer set of theoretical results can readily be developed for this restricted
set of methods. In Section 3.1 we review some classical results and describe how the
probabilistic iterates µm can be exactly computed when µ0 is Gaussian. In Section 3.2
we prove that these methods are strongly calibrated in the sense of Graham et al. [2020],
and in Section 3.3 we discuss relaxing the stationarity and first degree assumptions.

3.1. Linear and Stationary Probabilistic Iterative Methods

In linear stationary iterative methods of first degree Pm(x0, . . . ,xm−1) = P (xm−1), as
described in Example 2.1, where

P (x) = Gx + f (4)

for some G 6= 0 ∈ Rd×d and f ∈ Rd. It follows that Pm(x0) = Gmx0 +
∑m−1

i=0 Gmf ,
where G0 = I. We now recall some standard results for linear stationary iterative
methods of first degree which will later be useful. The following is based on Young
[1971, Section 3.3.2 and 3.3.5] and Saad [2003, Section 4.2].

Proposition 3.1. Let A be nonsingular, suppose that G ∈ Rd×d is such that ‖G‖ < 1
and

f = (I −G)A−1b = (I −G)x∗. (5)
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Then the iterative method

xm+1 = Gxm + f m ≥ 1

converges to x∗ for all x∗ ∈ Rd. Furthermore the error in xm is controlled by the bound

‖x∗ − xm‖ ≤ ‖G‖m‖x∗ − x0‖.

Now we consider lifting linear stationary iterative methods of first degree into P(Rd).
Our main observation is that if µ0 is Gaussian, then the distribution µm can be computed
in closed form using standard formulae for linear transforms of Gaussian distributions.

Proposition 3.2. Let I be a linear, stationary, first degree iterative method. Let µ0 =
N (x0,Σ0). Then µm = N (xm,Σm), where xm = Pm(x0) coincides with the classical
iterate, and

Σm = GmΣ0(G
m)>.

Furthermore we have the following bounds:

‖x∗ − xm‖ ≤ ‖G‖m‖x∗ − x0‖
‖Σm‖ ≤ ‖G‖m‖G>‖m‖Σ0‖.

Proof. From elementary properties of Gaussian distributions [Tong, 1990, Theorem 3.3.3]
we have that µ1 = N (x1,Σ1) where x1 = Gx0 + f and Σ1 = GΣ0G

>. This can be
continued inductively to achieve the form stated in the proposition for all m ≥ 1. The
bound on ‖x∗ − xm‖ is a consequence of xm coinciding with the classical iterate and
Proposition 3.1. The bound on Σm is direct by applying submultiplicativity of the norm
‖ · ‖ to ‖GmΣ0(G

m)>‖.

Remark 3.3. The bound on Σm in Proposition 3.2 does not require that ‖ · ‖ be the
induced norm, only that it is submultiplicative. As a result, this applies to other matrix
norms such as the Frobenius norm, which is submultiplicative but not induced.

3.2. Evaluation of Uncertainty Quantification

The crucial point that must be addressed in order for probabilistic iterative methods
to be useful is whether the covariance matrix Σm relates meaningfully to the error
em = x∗ − xm. It is not possible to provide a satisfactory answer to this question by
considering just one linear system; this would be akin to asking whether the number 3 is
meaningfully related to the distribution N (0, 1). Therefore a collection of linear systems
is required so that average-case properties can be discussed.

In Cockayne et al. [2019a] a criterion for meaningful UQ was introduced based on the
Z-statistic, which is given by

Zm(X) = ‖X − xm‖2Σ†m . (6)
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In that work, the calibration of the PNM was assessed by randomising the right hand
side b according to B = AX, X ∼ µ0. The PNM was said to be “well-calibrated” if
the statistic Zm(X) is distributed as χ2

d−r, where r = rank(Σm). Note that when X is
randomised in this way both the mean xm and covariance Σm may2 also be random, as
a consequence of the dependence of I on b. Loosely speaking, this definition implies that
the “width” of the Gaussian N (xm,Σm) is commensurate with the ‖x∗ − xm‖2 when
averaged over realisations of X. Empirical studies in Cockayne et al. [2019a] illustrate
that the PNM proposed in that work (called BayesCG) fails to be well-calibrated, though
we note that Reid et al. [2020] proposes a particular prior under which BayesCG is well-
calibrated.

The recently proposed notion of calibration in Graham et al. [2020] generalises and
formalises the criterion introduced above. That work defines both weak and strong
calibration for learning procedures such as PNMs. In this section we will show that
linear, stationary, first-degree probabilistic iterative methods are strongly calibrated,
when a Gaussian µ0 is used. Initially we assume that Σm is nonsingular, which implies
that G must also be nonsingular.

Definition 3.4 (Strongly Calibrated, Nonsingular Case). Let µ0 = N (x0,Σ0), and
suppose that a probabilistic iterative method I# produces iterates of the form µm =
N (xm,Σm). Suppose that Σ0 and Σm are each symmetric positive-definite. Then I# is
said to be strongly calibrated for (µ0,A) if, when I# is applied to solve a random linear
system defined by A and B = AX, X ∼ µ0, it holds for all m > 0 that

Σ
− 1

2
m (X − xm) ∼ N (0, I).

A similar notion of strong calibration has been exploited for verifying the correctness
of algorithms for Bayesian computation in Cook et al. [2006], Talts et al. [2018]; see
Graham et al. [2020] for full details. Note that the definitions in Graham et al. [2020] do
not require that µm be the output of a linear stationary probabilistic iterative method;
any PNM for linear systems may be assessed similarly to using Definition 3.4 provided it
yields a Gaussian output. This means that existing probabilistic linear solvers, such as
Hennig [2015] and Cockayne et al. [2019a], may also be assessed against this definition.

The criterion presented in Definition 3.4 is stronger than that from Eq. (6) due to the
absence of the norm; clearly if a method is strongly calibrated then Zm(X) will follow the
appropriate χ2

d distribution, though the converse does not necessarily hold. Nevertheless
the definition may be motivated from the same intuition as used in Cockayne et al.
[2019a] to justify Eq. (6): the probabilistic iterative method is strongly calibrated if the
true solution looks like a sample from µm, on average with respect to randomness in X.

The next proposition proves that when G is nonsingular, probabilistic iterative meth-
ods are strongly calibrated.

2Note that if I is a linear, stationary, first-degree iterative method then Σm depends only on G, and
for such methods G is often independent of b. In this case Σm is not random when X is randomised,
though in general this should not be expected to be the case.
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Proposition 3.5. Let the assumptions of Definition 3.4 hold. Additionally assume that
I is a linear first degree stationary iterative method with nonsingular G, and such that
Eq. (5) holds with probability one when I is applied to solve a system defined by the right
hand side B = AX, X ∼ µ0. Then I# is strongly calibrated for (µ0,A).

Proof. We begin by examining Σ
− 1

2
m (x∗−xm) for a fixed true solution, then we complete

the proof by randomising x∗ to obtain the result. First note that Σm is nonsingular
since G and Σ0 are nonsingular. Now, for each fixed x∗ and all m > 0 we have:

Σ
− 1

2
m (x∗ − xm) = Σ

− 1
2

m−1(G
−1(x∗ −Gxm−1 − f))

= Σ
− 1

2
m−1(G

−1(x∗ − f)− xm−1).

Now we have G−1(x∗ − f) = x∗, from nonsingularity of G and Eq. (5). It follows
inductively over m that

Σ
− 1

2
m (x∗ − xm) = Σ

− 1
2

m−1(x∗ − xm−1)

= Σ
− 1

2
0 (x∗ − x0).

Thus, if we now randomise x∗ according to X ∼ µ0 = N (x0,Σ0), we obtain Σ
− 1

2
m (X −

xm) ∼ N (0, I), completing the proof.

Remark 3.6. Note that the only demand Proposition 3.5 makes of I is that Eq. (5)
holds, loosely speaking, for all the linear systems on which µ0 places probability mass.
This is distinct from the convergence of the method, for which we require that ‖G‖ < 1.
Thus calibratedness does not imply a requirement that µm contracts to the truth, only
that the width of µm should reflect the error. If I diverges for some x0 it is natural that
µm should tend to a distribution with infinite variance as m→∞.

The assumption of nonsingular G permits a straightforward proof for Proposition 3.5,
but unfortunately G may be singular even for such elementary methods as the Jacobi
iterations. The next definition adapts Definition 3.4 to the case where G, and therefore
also Σm, are singular. It simplifies the subsequent presentation to focus on the case
where Σm does not depend on b. To the best of our knowledge this is the case for the
majority of stationary iterative methods.

Definition 3.7 (Strongly Calibrated, Singular Case). Let µ0 = N (x0,Σ0), and suppose
the probabilistic iterative method I# produces iterates of the form µm = N (xm,Σm),
where Σm does not depend on the right hand side b. Suppose that Σ0 is symmet-
ric positive-definite and Σm is positive semidefinite with rank 0 < r < d. Let R ∈
Rd×r,N ∈ Rd×(d−r) be matrices such that range(R) = range(Σm) and range(N) =
ker(Σm). Then µm is said to be strongly calibrated for (µ0,A) if, when I# is applied to
solve a random linear system defined by A and B = AX, X ∼ µ0, the following two
conditions are satisfied:
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1. (R>ΣmR)−
1
2R>(X − xm) ∼ N (0, Ir).

2. N>(X − xm) = 0.

Remark 3.8. Both Definitions 3.4 and 3.7 provide sufficient conditions for a method
to be strongly calibrated. However dependence of G on b does not preclude strong
calibration. Thus the work in Reid et al. [2020] may yield a strongly calibrated PNM,
but a more general definition than Definition 3.7 would be required to verify this.

Remark 3.9. Since Σm does not depend on b, both R and N are fixed matrices
independent of X. Furthermore while R and G must be bases of the range and kernel
of Σm respectively, neither Definition 3.7 nor Proposition 3.10 depend on any particular
choice of basis.

The above definition is an intuitive extension of Definition 3.4 to the case of singular
Σm; it demands that in any subspace of Rd in which Σm is nonzero, I# is strongly
calibrated as in Definition 3.4, and in any subspace in which it is zero and thus no
uncertainty remains, xm is identically equal to the true solution X.

We then have the following result, the proof of which is provided in Appendix Ap-
pendix A. The intuition behind the proof in the singular case is the same as in the
nonsingular case, but additional technical effort is required to project into the null space
of Σm.

Proposition 3.10. Let I be a linear first degree stationary iterative method such that
Eq. (5) holds with probability one when I is applied to solve a system defined by the
right hand side b = AX, X ∼ µ0. Suppose that G is independent of b, and that G is
diagonalisable with rank 0 < r ≤ d. Then I# is strongly calibrated for (µ0,A).

Proof. See Appendix Appendix A.

Proposition 3.10, together with Proposition 3.5, provides a clear and defensible sense in
which the output µm from a probabilistic iterative method I#, arising from a linear first
degree stationary iterative method I, can be considered to be meaningful. Specifically,
one has a guarantee that the unknown solution x∗ is indistinguishable, in a statisti-
cal sense, from samples drawn from µm. Thus one may interpret µm as quantifying
uncertainty with respect to the unknown true value of x∗.

3.3. Generalisations

Here we discuss generalisations to both non-stationary and higher degree iterative meth-
ods, while remaining in the linear framework.

3.3.1. Non-Stationary Methods

In a non-stationary linear iterative method of first degree [Young, 1971, Chapter 9], the
iteration is of the form:

xm = Gmxm−1 + fm (7)
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where fm ∈ Rd and Gm ∈ Rd×d for all m ≥ 0. The map Pm is then of the form:

Pm(x0) = Ĝmx0 + f̂m

Ĝm =
m∏
i=1

Gm f̂m = fm +
m∑
i=1

 m∏
j=i+1

Gj

fi.

From this it follows by an identical argument to Proposition 3.2 that µm = N (xm,Σm),
with xm = Ĝmx0 + f̂m and Σm = ĜmΣ0Ĝm.

Considering the consistency of the implied probabilistic iterative method, as in the
stationary setting, xm coincides with the classical iterate. Furthermore, Young [1971]
notes that the iteration from Eq. (7) converges to x∗ if and only if Ĝm → 0. In this
event clearly Σm → 0, and so provided the underlying iterative converges, µm converges
to a Dirac mass on x∗ as m→∞

From the perspective of calibration of UQ, the proofs in Section 3.2 do not apply to
non-stationary methods I since those proofs exploit that Σm = GmΣ0(G

m)>, which
no longer holds in the non-stationary setting. However if one instead directly assumes
Ĝm to be diagonalisable for each m, the proof of Proposition 3.5 would need only minor
modifications to establish strong calibration of I# in the non-stationary setting.

3.3.2. Higher Degree Methods

Modifying Definition 2.4 to allow methods of higher degree requires changing the space
on which µ is defined, and the domain of Pm (and by extension (Pm)#), to a cartesian
product of s instances of Rd.

In terms of such methods, when s = 2 [Young, 1971, Chapter 16] the iteration takes
the form

xm = Gxm−1 + Hxm−2 + k (8)

where G,H ∈ Rd×d and k ∈ Rd. While second degree methods are seldom used in
practice, higher order methods can accelerate convergence and raise some interesting
statistical questions. These methods are analysed by augmenting the space as follows,
to obtain a first degree linear stationary iterative method on R2d:(

xm−1
xm

)
=

(
0 I
H G

)(
xm−1
xm

)
+

(
0
k

)
= G̃

(
xm−1
xm

)
+ k̃.

Convergence of the iterate, and hence the covariance in Proposition 3.2, then require
ρ(G̃) < 1. Similarly, provided G̃ satisfies the assumptions of one of the theorems in
Section 3.2, µm will provide useful uncertainty quantification according to Definitions 3.4
and 3.7.

An interesting technicality for higher degree methods is that, whereas in first degree
methods only an initial iterate x0 must be supplied, in second degree methods both the
iterates x0 and x1 are required. This raises a challenge in the probabilistic framework
because it is not clear how one should specify an initial distribution jointly over x0 and
x1. While expert knowledge may be exploited to build a distribution over x0, the same
is not true of x1. Several possible approaches are considered experimentally in Section 5.
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4. Beyond Linearity

In the non-Gaussian and non-linear setting it is significantly more difficult to prove that
output from a probabilistic iterative method is strongly calibrated. Instead, in this
section we adopt an alternative notion from Graham et al. [2020] called weak calibrat-
edness, which is more straightforward to empirically test. In Section 4.1 we present that
definition and in Section 4.2 discuss statistical tests for calibration which will be applied
in Section 5 to test for calibration when nonlinear iterative methods are used.

4.1. Weakly Calibrated Probabilistic Iterative Methods

The chief issue with Definitions 3.4 and 3.7 is that in order to prove calibration we require
that both µ0 and µm are Gaussian. This is problematic because Gaussian distributions
are unable to express all initial beliefs about components of x∗, and because the linear
iterative methods which result in a Gaussian µm are less widely-used compared to non-
linear iterative methods, such as CG. The definition of strong calibration is difficult to
verify in such general cases, and so we turn to an alternative, weaker sense in which the
output µm from a (possibly nonlinear) probabilistic iterative method can be considered
to be meaningful.

To define what it means for a probabilistic iterative method I# to be weakly calibrated
we proceed as follows: In the same setting as Section 3.2, we fix A and randomly generate
a right hand side b = AX, X ∼ µ0. Then, conditional on X and for each m > 0, we
introduce a second random variable Y (m)|X ∼ µm that is sampled from the output µm
from the probabilistic iterative method applied to solve the linear system defined by
A and b. Let Y (m) denote the random variable obtained by marginalising Y (m)|X over
realisations of X. Note that realisations of Y (m) may be accessed trivially by sampling x0

and x∗ independently from µ0 and applying the iterative method I(A,Ax∗), initialised
at x0.

Definition 4.1 (Weakly Calibrated). A probabilistic iterative method I# is said to
be weakly calibrated to (µ0,A) if, when I# is applied to solve a random linear system
defined by A and b = AX, X ∼ µ0, and when Y (m)|X ∼ µm, it holds for all m > 0 that

Y (m) ∼ µ0. (9)

Thus the sense in which Definition 4.1 is weaker than Definitions 3.4 and 3.7 is that
from a simulation perspective, in strong calibration we:

1. Draw x∗ ∼ µ0,

2. Compute µm according to I#(A,Ax∗) and draw x ∼ µm,

3. Compare x∗ to x.

Conversely in weak calibration we:

1. Draw x∗ ∼ µ0 and x′∗ ∼ µ0 independently,
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2. Compute µm according to I#(A,Ax∗) and draw x ∼ µm,

3. Compare x′∗ to x.

In the former x is dependent on the sample from µm it is compared to, whereas in the
latter only a marginal comparison is performed.

Eq. (9) is sometimes called the self-consistency property and, as with strong calibra-
tion, the notion of weak calibration has previously been exploited to verify the correctness
of algorithms for Bayesian computation [Geweke, 2004]. Graham et al. [2020, Lemma
2.19] establishes that strong calibration implies weak calibration. Although a weaker
property, when the initial and output distributions are non-Gaussian Definition 4.1 al-
lows for statistical tests of distributional equality to be used to assess the quality of the
uncertainty quantification provided.

4.2. Testing for Weak Calibration

We now present a statistical test to determine whether a probabilistic iterative method
is weakly calibrated or not. For convenience we let νm denote the distribution of Y (m),
so that we aim to test whether νm = µ0. Since νm does not necessarily have a closed

form and, in particular, it may only be possible to access samples Y
(m)
1 , . . . , Y

(m)
N from

νm, we aim to perform a goodness-of-fit test to determine whether these samples are
consistent with being drawn from µ0 or not. To achieve this we adopt a general purpose
goodness-of-fit test based on maximum mean discrepancy (MMD), due to Gretton et al.
[2012], which we briefly describe next.

Definition 4.2 (Maximum Mean Discrepancy). Let µ, ν ∈ P(Rd) and let F be a set
of real-valued, µ and ν-integrable functions on Rd. Then the MMD between µ and ν,
based on F , is given by

mmdF (µ, ν) := sup
f∈F

(∫
f(x) µ(dx)−

∫
f(x) ν(dx)

)
.

Gretton et al. [2012] considered taking F to be a unit ball in a reproducing kernel
Hilbert space (RKHS), showing that when the RKHS is chosen judiciously then MMD is
a metric on P(Rd). Moreover, this choice ensures that an unbiased estimator for MMD
can be constructed, as will now be explained. Recall that an RKHS is associated with
a symmetric positive definite kernel k : Rd × Rd → R; we emphasise this using the
notation F ≡ Fk = {f ∈ Hk : ‖f‖Hk

≤ 1} where Hk is the unique RKHS with kernel k.
Define the kernel mean embedding of µ in Hk as µ[k] where µ[k](x) :=

∫
k(x,x′)µ(dx′).

Then Gretton et al. [2012, Lemma 4] asserts that MMDFk
(µ, ν) can be expressed as a

difference between the kernel mean embeddings of µ and ν:

mmdFk
(µ, ν) := ‖µ[k]− ν[k]‖Hk

. (10)

For convenient choices of k and µ it may be possible to compute µ[k] in closed-form,
but in general one must resort to approximating Eq. (10) based on samples from one or
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both of µ and ν. Given independent samples X1, . . . , XN ∼ µ0 and Y
(m)
1 , . . . , Y

(m)
N ∼ νm,

we define an estimator

m̂md
2
Fk

:=
1

N(N − 1)

N∑
i,j=1
i 6=j

k(Xi, Xj) + k(Y
(m)
i , Y

(m)
j )− k(Xi, Y

(m)
i )− k(Y

(m)
i , Xj), (11)

which can be verified to be an unbiased estimator of mmdFk
(µ, νm)2 provided that, in

addition to having the stated distribution, the samples Y
(m)
1 , . . . , Y

(m)
N are generated

independently from the samples X1, . . . , XN .
The statistic in Eq. (11) enables a goodness-of-fit test to be performed, and the distri-

bution of this test statistic under the null hypothesis νm = µ0 may be estimated using
a standard bootstrap procedure as described in Gretton et al. [2012, Section 5]. Having
obtained M approximate samples from the distribution of Eq. (11) using the bootstrap,
we determine a threshold for a prescribed power level α ∈ (0, 1) by computing a (1−α)-
quantile of this empirical distribution.

5. Empirical Assessment

The aim of this section is to gain insight into the uncertainty being quantified by a
probabilistic iterative method. We accomplish this by analysing the performance of
these methods when applied to the problem of inverting a linear system that arises
when building a kernel interpolant. Our aim is not to address the problem of computing
kernel interpolants per se, as many powerful methods exist for this task, but this problem
serves as a convenient test-bed in which probabilistic iterative methods can be examined.

5.1. Problem Definition

Consider a dataset consisting of pairs (zi, yi), i = 1, . . . , d, d ∈ N, where the zi ∈ [0, 1]
are distinct locations at which observations yi ∈ R of some physical phenomenon were
obtained. The aim is to compute a interpolant of this dataset, that is, a function
g : [0, 1] → R which is such that g(zi) = yi for all i = 1, . . . , d. For a given symmetric
positive definite kernel c : [0, 1]× [0, 1]→ R, we consider an interpolant of the form

g(z) :=
d∑
i=1

xic(z, zi) (12)

and note that there is a unique set of weights xi ∈ R such that the interpolation equations

g(zi) = yi, i = 1, . . . , d

are satisfied. The vector x∗ = [x1, . . . , xd]
> of such weights satisfies the d-dimensional

linear system in Eq. (1) with Ai,j = c(zi, zj) and b = (y1, . . . , yd)
>.

This linear system is representative of linear systems that are widely encountered in
statistics and machine learning, and naturally a variety of methods have been proposed to
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circumvent the need to solve them; for example, based on reducing the degrees of freedom
of the parametric function g so that the dataset is only approximately interpolated. Our
aim is to use a finite number of iterations, m, of a probabilistic iterative method on the
full problem in Eq. (1) and to lift the distribution µm over the unknown solution vector
x∗ into the function space spanned by functions of the form in Eq. (12). This enables
uncertainty due to limited computation to be interpreted in the domain on which the
interpolation problem was defined.

The condition number of A depends on the spectrum of the kernel k and the closeness
of the elements in {z1, . . . , zd}. For kernels with rapidly decaying spectrum, such as the
squared exponential kernel

c(x, y) = exp

(
−‖x− y‖

2
2

2`2

)
(13)

with length-scale parameter ` > 0, it is common for A to be badly conditioned. Thus
even when d is small, direct solution of Eq. (1) can be difficult and careful numerical
analysis is required.

A dataset of size d = 440 was generated, with (zi)i=1,...,d consisting of 20 evenly spaced
points in [0, 0.1], 400 evenly spaced points in [0.2, 0.8] and 20 evenly spaced points in
[0.9, 1], and yi = f(zi) where f(z) = 1z<0.5 sin(2πz) + 1z≥0.5 sin(4πz). The parameter
` = 0.0012 was used, which produces a system for which a direct solver can be used, so
that a ground-truth is accessible, but which is not entirely trivial.

5.2. Choice of µ0

For the initial distribution µ0 several candidates were considered. Firstly a default
choice given by µ0 = N (0, I) which can be interpreted as a lack of a priori insight.
Secondly the natural choice µ0 = N (0,A−1) which incorporates the structure of A
into the initial distribution, and has been noted in the past to produce posterior means
that replicate CG in works such as Cockayne et al. [2019a], Hennig [2015]. We note that
it is not a practical choice in general as it requires computation of A−1.

The third initial distribution we consider is based on an attempt to adapt to the scale
of the problem by maximising the probability of observing a small number of ansatz
solutions to the linear system, perhaps obtained by expert knowledge of the system at
hand. Let x∗,i, i = 1, . . . , N be these solutions, and suppose that we wish to use these
to estimate the scaling parameter ν2 for the prior µ0 = N (0, ν2Σ0) where Σ0. Standard
results yield that the estimate

ν2opt :=
1

Nd

N∑
i=1

‖x∗,i‖2Σ−1
0
.

In the experiments below we assume that Σ0 = I and term this initial distribution
opt. We used N = 5 ansatz solutions, and these were obtained by sampling 5 right-
hand-sides b1, . . . , b5 ∼ N (0, I) and computing x∗,i = A−1bi. We note that this does
not result in an entirely fair comparison since 5 exact solutions to the linear system are
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used to construct the prior. However since the focus of this paper is not primarily on the
problem of selecting µ0, we have opted for this simple approach. Nevertheless, owing to
the importance of this choice the opt initial distribution is included to highlight that
objective selection procedures may be considered, and we expect these to be a subject
of future research.

5.3. Results in Function Space

In this section we examine the resulting distributions µm from application of a num-
ber of probabilistic iterative methods to the problem above, for each choice of initial
distribution from Section 5.2.

Stationary Iterative Methods We first consider Richardson’s iteration with a constant
step size. Since this method is stationary and linear, the theoretical results obtained in
Section 3 apply. The step size ω was set to either the optimal value, ω = 2/(λmin(A) +
λmax(A)), that minimises the spectral radius of G, or a default value ω = 2/3. Jacobi’s
method was also considered, but in our simulations the results were virtually identical
for this problem, so they are not presented.

Fig. 1 displays samples (grey curves) from each of the probabilistic iterative methods
that we considered and the blue curve represents the exact kernel interpolant. For
each probabilistic iterative method considered, the output was seen to contract around
the exact solution as the number m of iterations is increased. Interestingly, very little
variation is observed in the intervals [0, 0.1] and [0.9, 1], which accords with the fact
that the interpolant is being approximated well in these regions and suggests that the
distributional output can act as a local error indicator.

Non-Stationary and Higher-Order Methods We now consider non-stationary and
higher-order schemes. As discussed in Section 3.3, these schemes are expected to be
well-calibrated as they are still linear, though calibration has not been rigorously proven.
For the non-stationary scheme we considered Richardson iteration again but with the
step-size chosen adaptively, with ωm = r>mArm/‖Arm‖22 minimising the Euclidean norm
of the residual rm+1 = b−Axm+1. Results for the non-stationary scheme are presented
in Fig. 2, with qualitative behaviour appearing to be similar to with the default step size
from Fig. 1a. Since the non-stationary scheme is better able to adapt to the problem at
hand, this seems a more prudent choice than an arbitrary ω = 2/3, though we note that
the calibration of this method remains to be assessed empirically; this will be considered
in Section 5.4.

For the higher order scheme we opted for a second-degree version of Richardson iter-
ation presented in Young [1972]. In this method the iteration was of the form

xm = γσ

(
2

β − α
G− β + α

β − α

)
xm−1 + (1− γ)Ixm−2 +

2γσ

β − α
f

where G and f are as given in the classical first-order Richardson iteration from Ex-
ample 2.1, with optimal step size ω = 2/(λmin(A) + λmax(A)), while α = λmin(G), β =
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λmax(G) and

σ =
β − α

2− (β − α)
γ =

2

1 +
√

1− σ2
.

Recall that for a second degree probabilistic iterative method, a joint initial distribution
must be specified for x0 and x1. The distribution assigned to x0 was fixed to the opt,
since this appeared to provide better uncertainty quantification across different choices
of ω. Three choices were considered for initial distributions for x1: iid, in which x1 is
an independent copy of x0, corr, in which x1 is identical to x0 and rich, in which x1

is obtained from x0 by performing one iteration of Richardson iteration with optimal
step size. Note that both iid and corr yield the same marginal distribution for x1, but
the joint distribution differs

Fig. 3 displays samples from the output of the probabilistic iterative methods just
described. Qualitatively, the results appear to be similar to those from Fig. 1b with
initial distribution opt, as one would expect given that µ0 in all three rows is that same
distribution. Of the three choices for µ1, rich appears to contract marginally faster,
though in all three methods the improvement over the first order method from Fig. 1b
appears to be negligible.

Nonlinear methods We now turn to the conjugate gradient method, which is the most
practically relevant of the probabilistic iterative methods we consider, but for which our
theoretical results on strong calibration do not hold. Results are displayed in Fig. 4.
Convergence is clearly seen to be faster than in the other methods considered, though
qualitatively the samples obtained otherwise seem to be similar. This hints at the results
from the next section, in which we will see that CG is weakly calibrated for this problem
and for the initial distributions that we considered.

5.4. Testing Calibration

We now test for evidence against weak calibration for all of the probabilistic iterative
methods and initial distributions considered. Recall that, according to the results in
Section 3.2, stationary Richardson iterations give rise to probabilistic iterative methods
that are strongly calibrated when ω is fixed (irrespective of whether the optimal stepsize
or a default choice is used). Non-stationary Richardson iteration with adaptive stepsize
ωm are expected to give rise to probabilistic iterative methods that are strongly calibrated
but no proof has been obtained, as is the higher order method described above. It is
unknown whether probabilistic iterative methods based on CG are strongly or weakly
calibrated. In addition to probabilistic iterative methods, we also include BayesCG from
Cockayne et al. [2019a], which is not a probabilistic iterative method in the sense of this
paper and is not expected to be strongly calibrated owing to results based on the Z-
statistic in Eq. (6) presented in Cockayne et al. [2019a] and in Reid et al. [2020]. It was
hitherto unknown whether BayesCG is weakly calibrated.

We apply the test described in Section 4.2. For each initial distribution and each
method we generated N = 100 independent samples of µ0 and νm from which the test
statistic Eq. (11) was computed. Significance was assessed using the bootstrap method
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Rich. Rich. Rich. Rich.
(default) (optimal) (adaptive) (2o) CG BayesCG

default
mmd 1.90e-04 -3.11e-05 9.76e-06 5.36e-05 -2.80e-05 1.14e-03
q 0.34 0.52 0.45 0.43 0.49 0.03

natural
mmd -1.72e-04 -2.71e-04 -2.44e-04 -3.20e-04 -2.98e-04 4.18e-03
q 0.60 0.64 0.64 0.68 0.68 0.00

opt
mmd 3.59e-05 1.00e-05 4.30e-06 -6.62e-06 3.57e-05 6.57e-03
q 0.48 0.47 0.48 0.49 0.47 0.00

Table 1.: Results from applying the maximum mean discrepancy (MMD) based test
from Section 4.2 to the methods described in Section 5. The abbreviation
“Rich.” refers to Richardson iteration. “2o” refers to the second order method.
The test does not reject the null that each of the methods assessed is weakly
calibrated, with the exception of BayesCG where the null is rejected. Results
that are statistically significant at the 5% level, indicating that the method is
not weakly calibrated, are highlighted in bold.

with M = 1000. The kernel used was the squared exponential kernel from Eq. (13), with
the length-scale set using the median heuristic as recommended in Gretton et al. [2012].
For each method m = 10 iterations were performed. For the second order method we
opted to use the rich initial distribution for x1.

Table 1 shows the statistics obtained for each of these methods by applying the test
for weak calibration described in Section 4.2 for each choice of initial distribution from
Section 5.2. Reported are the value of Eq. (11) (as mmd in Table 1). Note that while
strictly speaking mmd ought to be positive, due to sampling error it may be negative.
This was also observed in Gretton et al. [2012]. Also reported is the statistic q which
is analagous to a I-value in a classical statistical test; if q′ is the empirical quantile
of mmd within the empirical distribution based on M bootstrap samples of Eq. (11),
then q = 1 − q′. Thus, a small q represents evidence in support of rejection of the null
hypothesis. We used the value 0.05, representing a 5% significance level, as a threshold
in Table 1; thus, if a value of q below 0.05 was determined this constitutes evidence that
the method is not weakly calibrated. Note that owing to the fact that q is based on
a sample from the bootstrapped distribution, it is possible to obtain q = 0; we would
expect the true I-value to be small but positive.

Examining the results, Richardson iteration with both default and optimal step sizes
is seen to be weakly calibrated. This provides support for our testing methodology,
since from Graham et al. [2020, Lemma 2.19] any strongly calibrated method must be
weakly calibrated. Similarly the second order method is weakly calibrated, which is to
be expected since the proof of strong calibration for this method would require only
a small extension of the proof for first order methods. Richardson iteration with the
adaptive step size appears to be weakly calibrated for all initial distributions considered,
suggesting that the non-stationarity implied by the adaptive step size does not affect
the weak calibration of the method.
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Perhaps more surprisingly owing to its high degree of nonlinearity, CG also appears to
be weakly calibrated. This hints at the possibility of a more fundamental result regarding
the calibration of probabilistic iterative methods in the general setting, though we leave
study of this fact to future work.

Concerning BayesCG (which we emphasise again is not a probabilistic iterative method
in the same sense as the other methods considered), the results show that BayesCG is not
weakly calibrated for either the natural or opt initial distributions µ0 even when the
prior distribution, required in BayesCG, is set equal to µ0 itself. This is to be expected,
considering that this method is widely known not to produce well-calibrated posteriors
apart from in special cases [e.g. Reid et al., 2020]. One other noteworthy point is that
for the default initial distribution the mmd obtained for BayesCG has a slightly higher
value of q = 0.03. This is perhaps due to the fact that with such an uninformative prior
BayesCG is known to converge quite slowly. Thus, the posterior after 10 iterations may
not have deviated far from the prior.

5.5. Spectral Behaviour

Lastly we examine the spectral behaviour of one of the methods above by performing
a principal component analysis, to illustrate how the output of a probabilistic iterative
method can provide a richer description of error than classical error bounds. In this
section we fixed the distribution µ0 to natural.

Here we consider principal components (leading eigenvectors) of the covariance matrix
AΣmA

>, which describes covariance in the domain of the function Eq. (12). The six
leading principal components for the probabilistic iterative method based on Richardson
iteration with default step size ω = 2/3 are displayed in Figure 5. At each of the values
of m considered, the low frequency variation over the interval [0.2, 0.8] is seen to be
the dominant principal component (more so as m is increased), which accords with the
result of Figure 1a in that the error of natural is mainly manifest in a low-frequency
vertical shift between the exact interpolant and the sampled output. At m = 100 the
first six components account for over 60% of the variability in the distributional output,
with the remaining variability dedicated to higher-frequency aspects of the solution.

The detailed nature of these error indicators may be useful to shed light on the aspects
of the exact solution x∗ that we are most uncertain about, having run a probabilistic
iterative method. This rich description of numerical uncertainty can trivially be prop-
agated through subsequent computation F (x∗), e.g. by sampling from µm and then
applying F , in order to probabilistically assess the impact of numerical uncertainty on
any subsequent computational output.

6. Conclusion

In this paper we have introduced probabilistic iterative methods, a new class of prob-
abilistic numerical methods for solving linear systems. We have provided theoretical
results concerning the convergence and calibration of these methods in the stationary
and linear setting, and examined their empirical performance using a synthetic test-bed.
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Finally, we alluded to how the output of a probabilistic iterative method could be used
represent numerical uncertainty and how such a representation could be propagated
through subsequent computational output.

Several interesting avenues for future related work are now highlighted:

6.1. Generalisation to Nonlinear Methods

The generalisation of this work to nonlinear iterative methods, such as the method of
conjugate gradients Hestenes and Stiefel [1952] and other Krylov methods is of interest.
These methods are more widely used than stationary iterative methods in modern ap-
plications, owing both to their faster convergence and that they only require access to
the action of A, rather than needing to interrogate and modify the elements of A.

The definition that we proposed for probabilistic iterative methods in Definition 2.4,
and the sampling algorithm for accessing the output of a probabilistic iterative method
described in Section 3, do not require the generating iterative method to be linear.
However, with the exception of Proposition 2.5, the results presented in this paper de-
pend strongly on linearity. Nevertheless the experimental results in Section 5.4 indicate
that CG, a prototypical nonlinear iterative method, may be weakly calibrated. Thus,
we consider theoretical properties of nonlinear probabilistic iterative methods to be an
important line of future work.

6.2. Gradient Flow Interpretation

Recent work in the numerical analysis community highlights that iterative methods
for linear systems may be interpreted as the discrete-time solution of an underlying
dynamical system [Chu, 2008]. Insight may then be gained by studying the original
dynamical system. This connects with recent work in the statistics and machine learning
communities that has provided gradient flow interpretations of various sampling and
variational inference algorithms [e.g. Arbel et al., 2019, Liu et al., 2019] An interesting
avenue for future work would be to consider whether the methods presented in this paper
may be interpreted in a similar way, and whether insight can be gained by performing
analysis of the original probability flow.

6.3. Wider Applications

In this paper we have focussed on iterative methods for solving linear systems. However,
the assumption that I was an iterative method for solving such systems was not essential
to Definition 2.4. Provided an initial distribution µ0 can be constructed in the domain of
I#, probabilistic iterative methods could be applied to any classical problem for which
iterative methods are used, such as solvers for eigenproblems, numerical optimisation
problems or even solvers for nonlinear differential equations. Proposition 2.5 also applies
to this general case, provided a suitable bound of the form Eq. (3) can be derived in a
norm adapted to the problem and, when the iteration is an affine map, we expect that
the proof techniques from Section 3.2 could be applied to establish strong calibration.
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(b) Optimal Step Size

Figure 1.: Samples from the distributional output of a probabilistic iterative method
based on Richardson iteration, visualised in the physical domain in which the
interpolant is defined. The rows in each figure represent the three choices
of initial distribution described in Section 5.2. In each panel we present 50
samples (grey curves) from the output of the probabilistic iterative method
after m iterations have been performed. The interpolant, corresponding to
the exact solution of the linear system, is also shown in blue.
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Figure 2.: As in Fig. 1, but with step size chosen adaptively.
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Figure 3.: A probabilistic iterative method based on a second degree version of Richard-
son iteration, as described in Section 5. Each row uses opt as the initial
distribution for x0 and a different initial distribution for x1, as described in
the main text.
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implied by using the conjugate gradient method as the underlying iterative
method.
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Figure 5.: A closer look at the distributional output: principal components from a prob-
abilistic iterative method based on Richardson iteration with the default step
size and initial distribution natural. Here the first 6 principal components
(PC) are displayed for the same values of m used in Figure 1. The percent-
ages indicate the percentage of the total variation that is explained by that
component. Each grey line is constructed as the mean of µm, plus a sam-
ple in the direction of the relevant principal component, re-scaled to improve
visualisation, with 50 samples shown in total.
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Appendix A. Proof of Proposition 3.10

In order to prove Proposition 3.10, we need several results from linear algebra about the
range and kernel of products of matrices, as well as decomposition of a diagonalizable
matrix.

Lemma Appendix A.1 (Ipsen [2009, Fact 6.3]). Let Y,W ∈ Rd×d. If Y is non-
singular, then ker(YW) = ker(W).

Lemma Appendix A.2 (Ipsen [2009, Facts 6.3 and 6.4]). Let Y,Ω,W ∈ Rd×d where
Y and W are non-singular and Ω is diagonal. If Y, Ω, and W have the partitions

Y =
[
Y1 Y2

]
, Ω =

[
Ω11 0
0 0

]
, and W =

[
W>

1

W>
2

]
,

with Y1,W1 ∈ Rd×r, Y2,W2 ∈ Rd×(d−r), and Ω ∈ Rr×r, then

range(YΩW) = range(Y1) and ker(YΩW) = range(W2).

Lemma Appendix A.3. Horn and Johnson [2009, Lemma 3.4.1.10] Let G ∈ Rd×d
be diagonalisable and of rank r < d. Then G may be represented in its real Jordan
canonical form as

G = Y ΩY −1

where Y ∈ Rd×d is invertible, while Ω ∈ Rd×d is of the form

Ω =

(
Ω11 0
0 0

)
.

Here Ω11 ∈ Rr×r is nonsingular and block-diagonal, with ` 2×2 blocks and s 1×1 blocks,
where ` is the number of nonzero conjugate pairs of complex eigenvalues of G and s is
the number of nonzero real eigenvalues of G, so that r = 2`+ s.

With these results stated we proceed to the main proof.

Proof of Proposition 3.10. First note that if rank(G) = d then G is invertible, so the
probabilistic iterative method is strongly calibrated as a result of Proposition 3.5. Thus
we focus on the case that rank(G) < d.

We complete this proof in multiple steps:

Step 1 We express the range and kernel of Σm in terms of the matrices forming the
real Jordan canonical form of G, thus identifying the matrices R and N from
Proposition 3.10.

Step 2 We compute (R>ΣmR)1/2, (R>ΣmR)1/2R>(xm − x∗) and N>(xm − x∗).

Step 3 We combine these results to show that stationary iterative methods are strongly
calibrated when G is diagonalisable.
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Step 1 We first compute the range and kernel of Σm. The posterior covariance is
defined as

Σm = GmΣ0(G
m)>.

From Lemma Appendix A.3 we have that

Gi = YΩiY−1, 0 ≤ i ≤ m.

We partition the diagonalization of G as

Y =
[
Y1 Y2

]
, Ω =

[
Ω11 0
0 0

]
, and Y−1 =

[
W>

1

W>
2

]
,

where Y1,W1 ∈ Rd×r, Y2,W2 ∈ Rd×(d−r), and Ω11 ∈ Rr×r. With this partitioning and
Lemma Appendix A.2 we have

range(Gi) = range(Y1) and ker((Gi)>) = range(W2), 0 ≤ i ≤ m. (14)

We now express the range and kernel of Σm in terms of Y1 and W2. Express Σm as

the product Σm = QQ>, where Q = GmΣ
1/2
0 . For any x ∈ ker(Σm) we have

Σmx = 0 ⇐⇒ x>Σmx = 0 ⇐⇒ (Q>x)>Q>x = 0 ⇐⇒ Q>x = 0.

Thus ker(Σm) = ker(Q>). Because Σ
1/2
0 is the non-singular square root of the non-

singular matrix Σ0, we can apply Lemma Appendix A.1 to Q> = Σ
1/2
0 (Gm)> to obtain

ker(Σm) = ker(Σ
1/2
0 (Gm)>︸ ︷︷ ︸

Q>

) = ker((Gm)>). (15)

By the fundamental theorem of linear algebra, ker((Gm)>) is the orthogonal com-
plement of range(Gm) and ker(Σm) is the orthogonal complement of range(Σ>m) =
range(Σm). This combined with Eq. (15) implies

range(Σm) = range(Gm). (16)

Applying Lemma Appendix A.2 with W = Y −1 gives

range(Σm) = range(Y1) and ker(Σm) = range(W2). (17)

Therefore, referring to Proposition 3.10, we have that R = Y1 and N = W2.

Step 2 We begin by computing (Y>1 ΣmY1)
1/2. We have that

Y>1 ΣmY1 = Y>1 GmΣ0(G
m)>Y1

= Y>1 YΩmY−1Σ0Y
−>(Ωm)>Y>Y1

= Y>1 Y1Ω
m
11W

>
1 Σ0W1(Ω

m
11)
>Y>1 Y1.
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The product Y>1 Y1 is Hermitian positive definite because Y1 is full rank. Additionally,
Y1W

>
1 = Ir because YY−1 = In. Therefore the inverse square root3 is,

(Y>1 ΣmY1)
−1/2 = BΩ−m11 (Y>1 Y1)

−1, (18)

where B = [W>
1 Σ0W1]

−1/2 ∈ Rr×r.
Next, we compute (Y>1 ΣmY1)

1/2Y>1 (x∗−xm). Left-multiplying x∗−xm by Y>1 yields

Y>1 (x∗ − xm) = Y>1

(
x∗ −Gmx0 −

m−1∑
i=0

Gif

)
(19)

= Y>1

(
x∗ −YΩmY−1x0 − f −

m−1∑
i=1

YΩiY−1f

)

= Y>1 x∗ −Y>1 Y1Ω
m
11W

>
1 x0 −Y>1 f −

m−1∑
i=1

Y>1 Y1Ω
i
11W

>
1 f . (20)

Now left-multiplying by Eq. (18) gives

(Y>1 ΣmY1)
−1/2Y>1 (x∗ − xm)

= BΩ−m11 (Y>1 Y1)
−1

(
Y>1 (x∗ − f)−

m−1∑
i=1

Y>1 Y1Ω
i
11W

>
1 f

)
︸ ︷︷ ︸

(?)

−BW>
1 x0. (21)

We now focus on simplifying (?). Left-multiplying Eq. (5) by Y>1 gives

Y>1 x∗ = Y>1 Y1Ω11W
>
1 x∗ + Y>1 f .

=⇒ W>
1 x∗ = Ω−111 (Y>1 Y1)

−1Y>1 (x∗ − f) (22)

while left-multiplying by W>
1 gives

W>
1 x∗ = Ω11W

>
1 x∗ + W>

1 f

=⇒ W>
1 x∗ = Ω−111 W>

1 (x∗ − f). (23)

Substituting Eq. (22) into (?) results in

(?) = BΩ−m11 (Y>1 Y1)
−1

(
Y>1 (x∗ − f)−

m−1∑
i=1

Y>1 Y1Ω
i
11W

>
1 f

)

= BΩ
−(m−1)
11

(
Ω−111 (Y>1 Y1)

−1Y>1 (x∗ − f)−Ω−111 (Y>1 Y1)
−1

m−1∑
i=1

Y>1 Y1Ω
i
11W

>
1 f

)

= BΩ
−(m−1)
11

(
W>

1 x∗ −W>
1 f −

m−2∑
i=1

Ωi
11W

>
1 f

)
.

3This is a square root in the sense of Section 1.4, a matrix T1/2 such that T1/2(T1/2)> = T.
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Repeatedly substituting Eq. (23) into the previous equation gives

(?) = BΩ
−(m−1)
11

(
W>

1 (x∗ − f)−
m−2∑
i=1

Ωi
11W

>
1 f

)

= BΩ
−(m−2)
11

(
Ω−111 W>

1 (x∗ − f)−Ω−111

m−2∑
i=1

Ωi
11W

>
1 f

)

= BΩ
−(m−2)
11

(
W>

1 (x∗ − f)−
m−3∑
i=1

W>
1 f

)
...

= B
(
Ω−111 W>

1 (x∗ − f)
)

= BW>
1 x∗.

Finally substituting this back into Eq. (21) shows

(Y>1 ΣmY1)
−1/2Y>1 (x∗ − xm) = BW>

1 (x∗ − x0). (24)

Lastly we compute W>
2 (x∗ − xm). This follows a similar argument to the above. We

have
W>

2 (x∗ − xm) = W>
2 (x∗ − f) (25)

since W>
2 G = 0. Similarly, left-multiplying the fixed-point equation Eq. (5) by W>

2

gives
W>

2 x∗ = W>
2 f

Substituting this into Eq. (25) gives

W>
2 (x∗ − xm) = 0. (26)

Completing the proof Eq. (26) validates the second requirement of Definition 3.7, since
N = W2. It remains to establish the first requirement. To accomplish this replace x∗
with X ∼ N (x0,Σ0) in Eq. (24). Since W>

1 X ∼ N (W>
1 x0,W

>
1 Σ0W

>
1 ), it follows that

BW>
1 (X− x0) = (W>

1 Σ0W
>
1 )−

1
2 W>

1 (X− x0) ∼ N (0, Ir).

which verifies the first requirement and completes the proof.
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