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BayesCG exhibits desirable properties of a calibrated solver, is only slightly
optimistic, and is computationally competitive with CG.

1 Introduction

We present a rigorous analysis of the probabilistic numeric solver BayesCG
under the Krylov prior [8,32] for solving systems of linear equations

Ax∗ = b, (1)

with symmetric positive definite coefficient matrix A ∈ Rn×n.

Probabilistic numerics. This area [10,18,29] seeks to quantify the uncertainty
due to limited computational resources, and to propagate these uncertain-
ties through computational pipelines—sequences of computations where the
output of one computation is the input for the next. At the core of many com-
putational pipelines are iterative linear solvers [7,16,28,31,35], whose compu-
tational resources are limited by the impracticality of running the solver to
completion. The premature termination generates uncertainty in the computed
solution.

Probabilistic numeric linear solvers. Probabilistic numeric extensions of Kry-
lov space and stationary iterative methods [2,7,8,11,17,32,39] model the ‘epis-
temic uncertainty’ in a quantity of interest, which can be the matrix inverse
A−1 [17,2,39] or the solution x∗ [8,2,7,11]. Our quantity of interest is the
solution x∗, and the ‘epistemic uncertainty’ is the uncertainty in the user’s
knowledge of the true value of x∗.

The probabilistic solver takes as input a prior distribution which models
the initial uncertainty in x∗ and then computes posterior distributions which
model the uncertainty remaining after each iteration. Figure 1 depicts a prior
and posterior distribution for the solution x∗ of 2-dimensional linear system.

Calibration. An important criterion of probabilistic solvers is the statistical
quality of their posterior distributions. A solver is ‘calibrated’ if its posterior
distributions accurately model the uncertainty in x∗ [8, Section 6.1]. Proba-
bilistic Krylov solvers are not always calibrated because their posterior distri-
butions tend to be pessimistic. This means, the posteriors imply that the error
is larger than it actually is [2, Section 6.4], [8, Section 6.1]. Previous efforts
for improving calibration have focused on scaling the posterior covariances [8,
Section 4.2], [11, Section 7], [39, Section 3].

BayesCG. We analyze the calibration of BayesCG under the Krylov prior [8,
32]. BayesCG was introduced in [8] as a probabilistic numeric extension of the
Conjugate Gradient (CG) method [19] for solving (1). The Krylov prior pro-
posed in [32] makes BayesCG competitive with CG. The numerical properties
of BayesCG under the Krylov prior are analysed in [32], while here we analyse
its statistical properties.
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Figure 1 Prior and posterior distributions for a linear system (1) with n = 2. Top plot:
prior distribution. Bottom plots: posterior distributions, where the bottom right is a zoomed
in version of the bottom left. The gray shaded contours represent the areas in which the
distributions are concentrated, the symbol ‘×’ represents the solution, and the symbol ‘+’
the mean of the prior or posterior.

1.1 Contributions and Overview

Overall Conclusion. BayesCG under the Krylov prior is not calibrated in the
strict sense, but has the desirable properties of a calibrated solver. Under the
efficient approximate Krylov posteriors, BayesCG is only slightly optimistic
and competitive with CG.

Background (Section 2). We present a short review of BayesCG, and the
Krylov prior and posteriors.

Approximate Krylov posteriors (Section 3). We define the A-Wasserstein dis-
tance (Definition 11, Theorem 12); determine the error between Krylov poste-
riors and their low-rank approximations in the A-Wasserstein distance (The-
orem 13); and present a statistical interpretation of a Krylov prior as an em-
pirical Bayesian procedure (Theorem 15, Remark 16).

Calibration (Section 4). We review the strict notion of calibration for proba-
bilistic solvers (Definition 17, Lemma 18), and show that it does not apply to
BayesCG under the Krylov prior (Remark 22).

We relax the strict notion above and propose as an alternative form of
assessment two test statistics that are necessary but not sufficient for cali-
bration: the Z-statistic (Theorem 25) and the new S-statistic (Theorem 31,
Definition 33). We present implementations for both (Algorithms 3 and 4);
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and apply a Kolmogorov-Smirnov statistic (Definition 27) for evaluating the
quality of samples from the Z-statistic.

The Z-statistic is inconclusive about the calibration of BayesCG under
the Krylov prior (Theorem 29), while the S-statistic indicates that it is not
calibrated (Section 4.3.4).

Numerical Experiments (Section 5). We create a calibrated but slowly con-
verging version of BayesCG which has random search directions, and use it as
a baseline for comparison with two BayesCG versions that both replicate CG:
BayesCG under the inverse and the Krylov priors.

We assess calibration with the Z- and S-statistics for BayesCG with ran-
dom search directions (Algorithms 5 and 6); BayesCG under the inverse prior
(Algorithms 1 and 7); and BayesCG under the Krylov prior with full posteriors
(Algorithm 8) and approximate posteriors (Algorithm 9).

Both, Z- and S statistics indicate that BayesCG with random search di-
rections is indeed a calibrated solver, while BayesCG under the inverse prior
is pessimistic.

The S-statistic indicates that BayesCG under full Krylov posteriors mimics
a calibrated solver, and that BayesCG under rank-50 approximate posteriors
does as well, although not as much, since it is slightly optimistic.

1.2 Notation

Matrices are represented in bold uppercase, such as A; vectors in bold lower-
case, such as b; and scalars in lowercase, such as m.

The m ×m identity matrix is Im, or just I if the dimension is clear. The
Moore-Penrose inverse of a matrix A is A†, and the matrix square root is A1/2

[20, Chapter 6].

Probability distributions are represented in lowercase Greek, such as µm;
and random variables in uppercase, such as X. The random variable X having
distribution µ is represented by X ∼ µ, and its expectation by E[X].

The Gaussian distribution with mean x ∈ Rn and covariance Σ ∈ Rn×n

is denoted by N (x,Σ), and the chi-squared distribution with f degrees of
freedom by χ2

f .

2 Review of Existing Work

We review BayesCG (Section 2.1), the ideal Krylov prior (Section 2.2), and
practical approximations for Krylov posteriors (Section 2.3). All statements in
this section hold in exact arithmetic.
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2.1 BayesCG

We review the computation of posterior distributions for BayesCG under gen-
eral priors (Theorem 1), and present a pseudo code for BayesCG (Algorithm 1).

Given an initial guess x0, BayesCG [8] solves symmetric positive definite
linear systems (1) by computing iterates xm that converge to the solution x∗.
In addition, BayesCG computes probability distributions that quantify the
uncertainty about the solution at each iteration m. Specifically, for a user-
specified Gaussian prior µ0 ≡ N (x0,Σ0), BayesCG computes posterior dis-
tributions µm ≡ N (xm,Σm), by conditioning a random variable X ∼ µ0 on
information from m search directions Sm.

Theorem 1 ([8, Proposition 1], [32, Theorem 2.1]) Let Ax∗ = b be
a linear system where A ∈ Rn×n is symmetric positive definite. Let µ0 ≡
N (x0,Σ0) be a prior with symmetric positive semi-definite covariance Σ0 ∈
Rn×n, and initial residual r0 ≡ b0 −Ax0.

Pick m ≤ n so that Sm ≡
[
s1 s2 · · · sm

]
∈ Rn×m has rank(Sm) = m

and Λm ≡ ST
mAΣ0AS is non-singular. Then, the BayesCG posterior µm ≡

N (xm,Σm) has mean and covariance

xm = x0 +Σ0ASmΛ−1
m ST

mr0 (2)

Σm = Σ0 −Σ0ASmΛ−1
m ST

mAΣ0. (3)

Algorithm 1 represents the iterative computation of the posteriors from
[8, Propositions 6 and 7], [32, Theorem 2.7]. To illustrate the resemblance of
BayesCG and the Conjugate Gradient method, we present the most common
implementation of CG in Algorithm 2.

BayesCG (Algorithm 1) computes specific search directions Sm with two
additional properties:

1. They are AΣ0A-orthogonal, which means that Λm = ST
mAΣ0ASm is

diagonal [8, Section 2.3], thus easy to invert.
2. They form a basis for the Krylov space [9, Proposition S4]

range(Sm) = Km(AΣ0A, r0) ≡ span{r0,AΣ0Ar0, . . . , (AΣ0A)m−1r0}.

Remark 2 The additional requirement x∗ − x0 ∈ range(Σ0) in Algorithm 1
ensures the nonsingularity of Λm as required by Theorem 1, even for singular
prior covariance matrices Σ0 [32, Theorem 2.7].

2.2 The ideal Krylov Prior

After defining the Krylov space of maximal dimension (Definition 3), we re-
view the ideal but impractical Krylov prior (Definition 4), and discuss its
construction (Lemma 6) and properties (Theorem 7).
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Algorithm 1 BayesCG [32, Algorithm 2.1]

1: Input: spd A ∈ Rn×n, b ∈ Rn, prior µ0 = N (x0,Σ0) ▷ with x∗ − x0 ∈ range(Σ0)
2: r0 = b−Ax0 ▷ Initial residual
3: s1 = r0 ▷ Initial search direction
4: m = 0 ▷ Initial iteration count
5: while not converged do
6: m = m+ 1 ▷ Increment iteration count
7: αm =

(
rTm−1rm−1

) / (
sTmAΣ0Asm

)
8: xm = xm−1 + αmΣ0Asm ▷ Next posterior mean

9: Σm = Σm−1 −Σ0Asm (Σ0Asm)T
/
(sTmAΣ0Asm) ▷ Next posterior covariance

10: rm = rm−1 − αmAΣ0Asm ▷ Next residual
11: βm =

(
rTmrm

) / (
rTm−1rm−1

)
12: sm+1 = rm + βmsm ▷ Next AΣ0A-orthogonal search direction
13: end while
14: Output: µm = N (xm,Σm) ▷ Final posterior

Algorithm 2 Conjugate Gradient Method (CG) [19, Section 3]

1: Input: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

2: r0 = b−Ax0 ▷ Initial residual
3: w1 = r0 ▷ Initial search direction
4: m = 0 ▷ Initial iteration count
5: while Not converged do
6: m = m+ 1 ▷ Increment iteration count
7: γm = (rTm−1rm−1)

/
(wT

mAwm) ▷ Next step size
8: xm = xm−1 + γmwm ▷ Next iterate
9: rm = rm−1 − γmAwm ▷ Next residual
10: δm = (rTmrm)

/
(rTm−1rm−1)

11: wm+1 = rm + δmwm ▷ Next search direction
12: end while
13: Output: xm ▷ Final approximation for x∗

Definition 3 The Krylov space of maximal dimension for Algorithm 2 is

Kg(A, r0) ≡ span{r0,Ar0, . . . ,A
g−1r0}.

Here g ≤ n represents the grade of r0 with respect to A ∈ Rn×n [25, Definition
4.2.1], or the invariance index for (A, r0) [4, Section 2], which is the minimum
value where

Kg(A, r0) = Kg+i(A, r0), i ≥ 1.

The Krylov prior is a Gaussian distribution whose covariance is constructed
from a basis for the maximal dimensional CG Krylov space.

Definition 4 ([32, Definition 3.1]) The ideal Krylov prior for Ax∗ = b is
η0 ≡ N (x0,Γ0) with symmetric positive semi-definite covariance

Γ0 ≡ VΦVT ∈ Rn×n. (4)

The columns of V ≡
[
v1 v2 · · · vg

]
∈ Rn×g are an A-orthonormal basis for

Kg(A, r0), which means that

VTAV = Ig and span{v1, . . . ,vi} = Ki(A, r0), 1 ≤ i ≤ g.
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The diagonal matrix Φ ≡ diag
(
ϕ1 · · · ϕg

)
∈ Rg×g has diagonal elements

ϕi = (vT
i r0)

2, 1 ≤ i ≤ g. (5)

Remark 5 The Krylov prior covariance satisfies the requirement of Algorithm 1
that x∗ − x0 ∈ range(Γ0). This follows from [25, Section 5.6],

x∗ ∈ x0 +Kg(A, r0) = range(Γ0).

If the maximal Krylov space Kg(A, r0) has dimension g < n, then Γ0 is sin-
gular.

Lemma 6 ([32, Remark SM2.1]) The Krylov prior Γ0 can be constructed
from quantities computed by CG (Algorithm 2),

vi ≡ wi/(w
T
i Awi), and ϕi ≡ γi∥ri−1∥22, 1 ≤ i ≤ g.

The posterior distributions from BayesCG under the Krylov prior depend
on submatrices of V and Φ,

Vi:j ≡
[
vi · · · vj

]
Φi:j ≡ diag

(
ϕi · · · ϕj

)
, 1 ≤ i ≤ j ≤ g,

(6)

where V1:g = V, Φ1:g = Φ, and Vj+1:j = Φj+1:j = 0, 1 ≤ j ≤ n.

Under suitable assumptions, BayesCG (Algorithm 1) produces the same
iterates as CG (Algorithm 2).

Theorem 7 ([32, Theorem 3.3]) Let x0 be the starting vector for CG (Algo-
rithm 2). Then BayesCG (Algorithm 1) under the Krylov prior η0 ≡ N (x0,Γ0)
produces Krylov posteriors ηm ≡ N (xm,Γm) whose mean vectors

xm = x0 +V1:mVT
1:mr0, 1 ≤ m ≤ g,

are identical to the iterates in CG (Algorithm 2), and whose covariance ma-
trices

Γm = Vm+1:gΦm+1:gV
T
m+1:g, 1 ≤ m < g, (7)

satisfy

trace(AΓm) = trace(Φm+1:g) = ∥x∗ − xm∥2A. (8)

Explicit construction of the ideal Krylov prior, followed by explicit com-
putation of the Krylov posteriors in Algorithm 1 is impractical, because it is
more expensive than solving the linear system (1) in the first place. That is
the reason for introducing practical, approximate Krylov posteriors.
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2.3 Practical Krylov posteriors

We dispense with the explicit computation of the Krylov prior, and instead
compute a low-rank approximation of the final posterior (Definition 8) by
running d additional iterations. The corresponding CG-based implementation
of BayesCG under approximate Krylov posteriors is relegated to Algorithm 9
in Appendix B.

Definition 8 ([32, Definition 3.4]) Given the Krylov prior η0 ≡ N (x0,Γ0)
with posteriors ηm ≡ N (xm,Γm), pick some d ≥ 1. The rank-d approximation

of ηm is a Gaussian distribution η̂m ≡ N (xm, Γ̂m) with the same mean xm

as ηm, and a rank-d covariance

Γ̂m ≡ Vm+1:m+dΦm+1:m+d V
T
m+1:m+d, 1 ≤ m < g − d,

that consists of the leading d columns of Vm+1:g.

In contrast to the full Krylov posteriors, which reproduce the error as in (8),
approximate Krylov posteriors underestimate the error [32, Section 3.4],

trace(AΓ̂m) = trace(Φm+1:m+d) = ∥x∗ − xm∥2A − ∥x∗ − xm+d∥2A, (9)

where ∥x∗−xm+d∥2A is the error after m+d iterations of CG. The error under-

estimate trace(AΓ̂m) is equal to [36, Equation(4.9)], and it is more accurate

when convergence is fast. Fast convergence makes trace(AΓ̂m) a more accurate
estimate because fast convergence implies that ∥x∗−xm+d∥2A ≪ ∥x∗−xm∥2A,

and this, along with (9), implies that trace(AΓ̂m) ≈ ∥x∗ − xm∥2A [36, Section
4].

3 Approximate Krylov Posteriors

We determine the error in approximate Krylov posteriors (Section 3.1), and
interpret the Krylov prior as an empirical Bayesian method (Section 3.2).

3.1 Error in Approximate Krylov Posteriors

We review the p-Wasserstein distance (Definition 9), extend the 2-Wasserstein
distance to the A-Wasserstein distance weighted by a symmetric positive def-
inite matrix A (Theorem 12), and derive the A-Wasserstein distance between
approximate and full Krylov posteriors (Theorem 13).

The p-Wasserstein distance is a metric on the set of probability distribu-
tions.

Definition 9 ([24, Definition 2.1], [38, Definition 6.1]) The p-Wasser-
stein distance between probability distributions µ and ν on Rn is

Wp(µ, ν) ≡
(

inf
π∈Π(µ,ν)

∫
Rn×Rn

∥M −N∥p2 dπ(M,N)

)1/p

, p ≥ 1, (10)
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where Π(µ, ν) is the set of couplings between µ and ν, that is, the set of prob-
ability distributions on Rn ×Rn that have µ and ν as marginal distributions.

In the special case p = 2, the 2-Wasserstein or Fréchet distance between
two Gaussian distributions admits an explicit expression.

Lemma 10 ([12, Theorem 2.1]) The 2-Wasserstein distance between Gaus-
sian distributions µ ≡ N (xµ,Σµ) and ν ≡ N (xν ,Σν) on Rn is

(W2(µ, ν))
2
= ∥xµ − xν∥22 + trace

(
Σµ +Σν − 2

(
Σ1/2

µ ΣνΣ
1/2
µ

)1/2)
.

We generalize the 2-Wasserstein distance to the A-Wasserstein distance
weighted by a symmetric positive definite matrix A.

Definition 11 The two-norm of x ∈ Rn weighted by a symmetric positive
definite A ∈ Rn×n is

∥x∥A ≡ ∥A1/2x∥2. (11)

The A-Wasserstein distance between Gaussian distributions µ ≡ N (xµ,Σµ)
and ν ≡ N (xν ,Σν) on Rn is

WA(µ, ν) ≡
(

inf
π∈Π(µ,ν)

∫
Rn×Rn

∥M −N∥2A dπ(M,N)

)1/2

, (12)

where Π(µ, ν) is the set of couplings between µ and ν.

We derive an explicit expression for the A-Wasserstein distance analogous
to the one for the 2-Wasserstein distance in Lemma 10.

Theorem 12 For symmetric positive definite A ∈ Rn×n, the A-Wasserstein
distance between Gaussian distributions µ ≡ N (xµ,Σµ) and ν ≡ N (xν ,Σν)
on Rn is

(WA(µ, ν))
2
= ∥xµ − xν∥2A + trace(Σ̃µ) + trace(Σ̃ν)

− 2 trace
(
(Σ̃1/2

µ Σ̃νΣ̃
1/2
µ )1/2

)
, (13)

where Σ̃µ ≡ A1/2ΣµA
1/2 and Σ̃ν ≡ A1/2ΣνA

1/2.

Proof First express the A-Wasserstein distance as a 2-Wasserstein distance,
by substituting (11) into (12),

(WA(µ, ν))
2
= inf

π∈Π(µ,ν)

∫
Rn×Rn

∥A1/2M −A1/2N∥22 dπ(M,N). (14)

Lemma 35 in Appendix A implies that A1/2M and A1/2N are again Gaussian
random variables with respective means and covariances

µ̃ ≡ N (A1/2xµ, A
1/2ΣµA

1/2︸ ︷︷ ︸
Σ̃µ

), ν̃ ≡ N (A1/2xν , A
1/2ΣνA

1/2︸ ︷︷ ︸
Σ̃ν

).
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Thus (14) is equal to the 2-Wasserstein distance

(WA(µ, ν))
2
= inf

π∈Π(µ̃,ν̃)

∫
Rn×Rn

∥M̃ − Ñ∥22 dπ(M̃, Ñ) = (W2(µ̃, ν̃))
2
. (15)

At last, apply Lemma 10 and the linearity of the trace. ⊓⊔

We are ready to derive the A-Wasserstein distance between approximate
and full Krylov posteriors.

Theorem 13 Let ηm ≡ N (xm,Γm) be a Krylov posterior from Theorem 7,

and for some d ≥ 1 let η̂m ≡ N (xm, Γ̂m) be a rank-d approximation from
Definition 8. The A-Wasserstein distance between ηm and η̂m is

WA(ηm, η̂m) =

(
g∑

i=m+d+1

ϕi

)1/2

. (16)

Proof We factor the covariances into square factors, to obtain an eigenvalue
decomposition for the congruence transformations of the covariances in (13).

Expand the column dimension of Vm+1:g from g−m to n by adding an A-
orthogonal complement V⊥

m ∈ Rn×(n−g+m) to create an A-orthogonal matrix

Ṽ ≡
[
Vm+1:g V⊥

m

]
∈ Rn×n

with ṼTAṼ = In. Analogously expand the dimension of the diagonal matrices
by padding with trailing zeros,

Φ̃m+1:g ≡ diag
(
ϕm+1 · · · ϕg 01×(n−g+m)

)
∈ Rn×n,

Φ̃m+1:m+d ≡ diag
(
ϕm+1 · · · ϕm+d 01×(n−d)

)
∈ Rn×n.

Factor the covariances in terms of the above square matrices,

Γm = ṼΦ̃m+1:gṼ
T and Γ̂m = ṼΦ̃m+1:m+dṼ

T .

Substitute the factorizations into (13), and compute the A-Wasserstein dis-
tance between ηm and η̂m as

(WA(ηm, η̂m))
2
= trace(G) + trace(J)− 2 trace

(
(G1/2 JG1/2)1/2

)
, (17)

where the congruence transformations of Γm and Γ̂m are again Hermitian,

G ≡ A1/2 ṼΦ̃m+1:gṼ
T︸ ︷︷ ︸

Γm

A1/2 = UΦ̃m+1:gU
T , U ≡ A1/2Ṽ

J ≡ A1/2 ṼΦ̃m+1:m+dṼ
T︸ ︷︷ ︸

Γ̂m

A1/2 = UΦ̃m+1:dU
T .
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Lemma 37 implies that U is an orthogonal matrix, so that the second factor-
izations of G and J represent eigenvalue decompositions. Commutativity of
the trace implies

trace(G) = trace(Φ̃m+1:g) =

g∑
i=m+1

ϕi

trace(J) = trace(Φ̃m+1:m+d) =

m+d∑
i=m+1

ϕi.

Since G and J have the same eigenvector matrix, they commute, and so do
diagonal matrices,

G1/2JG1/2 = UΦ̃m+1:gΦ̃m+1:m+dU
T

= U diag
(
ϕ2
m+1 · · ·ϕ2

m+d 01×(n−d)

)
UT

where the last equality follows from the fact that Φ̃m+1:g and Φ̃m+1:m+d share
the leading d diagonal elements. Thus

trace
(
(G1/2 JG1/2)1/2

)
=

m+d∑
i=m+1

ϕi.

Substituting the above expressions into (17) gives

(WA(ηm, η̂m))
2
=

g∑
i=m+1

ϕi +

m+d∑
i=m+1

ϕi − 2

m+d∑
i=m+1

ϕi =

g∑
i=m+d+1

ϕi.

⊓⊔

Theorem 13 implies that the A-Wasserstein distance between approximate
and full Krylov posteriors is the sum of the CG steps sizes skipped by the
approximate posterior, and this, as seen in (9) and [36, Equation (4.4)], is equal

to the distance between the error estimate trace(AΓ̂m) and the true error ∥x∗−
xm∥2A. As a consequence, the approximation error decreases as the convergence
of the posterior mean accelerates, or the rank d of the approximation increases.

Remark 14 The distance in Theorem 13 is a special case of the 2-Wasserstein
distance between two distributions whose covariance matrices commute [24,
Corollary 2.4].

To see this, consider the A-Wasserstein distance between ηm and η̂m from
Theorem 13, and the 2-Wasserstein distance between νm ≡ N (xm,A1/2ΓA1/2)

and ν̂m ≡ N (xm,A1/2Γ̂A1/2). Then (15) implies that the A-Wasserstein dis-
tance is equal to the 2-Wassterstein distance of a congruence transformation,

WA(ηm, η̂m) = W2(νm, ν̂m).

The covariance matrices A1/2ΓmA1/2 and A1/2Γ̂mA1/2 associated with the
2-Wasserstein distance commute because they are both diagonalized by the
same orthogonal matrix A1/2Ṽ.



12 Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, and Chris J. Oates

3.2 Probabilistic Interpretation of the Krylov Prior

We interpret the Krylov prior as an ‘empirical Bayesian procedure’ (Theo-
rem 15), and elucidate the connection between the random variables and the
deterministic solution (Remark 16).

An empirical Bayesian procedure estimates the prior from data [3, Sec-
tion 4.5]. Our ‘data’ are the pairs of normalized search directions vi and step
sizes ϕi, 1 ≤ i ≤ m + d, from m + d iterations of CG. In contrast, the usual
data for BayesCG are the inner products vT

i b, 1 ≤ i ≤ m. However, if we
augment the usual data with the search directions, which is natural due to
their dependence on x∗, then ϕi is just a function of the data.

From these data we construct a prior in an empirical Bayesian fashion,
starting with a random variable

X = x0 +

m+d∑
i=1

√
ϕiviQi ∈ Rn,

where Qi ∼ N (0, 1) are independent and identically distributed scalar Gaus-
sian random variables, 1 ≤ i ≤ m+ d. Due to the independence of the Qi, the
above sum is the matrix vector product

X = x0 +V1:m+d Φ
1/2
1:m+d Q (18)

where Q ∼ N (0, Im+d) is a vector-valued Gaussian random variable.
The distribution of X is the empirical prior, while the distribution of X

conditioned on the random variable Y ≡ VT
1:mAX taking the value VT

1:mb is
the empirical posterior. We relate these distributions to the Krylov prior.

Theorem 15 Under the assumptions of Theorem 7, the random variable X
in (18) is distributed according to the empirical prior

N
(
x0,V1:m+dΦ1:m+dV

T
1:m+d

)
,

which is the rank-(m+d) approximation of the Krylov prior Γ0. The variable X
conditioned on Y ≡ VT

1:mAX taking the value VT
1:mb is distributed according

to the empirical posterior

N
(
xm,Vm+1:m+dΦm+1:m+dV

T
m+1:m+d

)
= N

(
xm, Γ̂m

)
,

which, in turn, is the rank-d approximation of the Krylov posterior.

Proof As in the proof of Theorem 1 in [9, Proof of Proposition 1], we exploit
the stability and conjugacy of Gaussian distributions in Lemmas 35 and 36 in
Appendix A.

Prior. Lemma 35 implies that X in (18) is a Gaussian random variable with
mean and covariance

X ∼ N
(
x0,V1:m+dΦ1:m+dV

T
1:m+d

)
. (19)

Thus, the approximate Krylov prior is an empirical Bayesian prior.



Statistical Properties of the Probabilistic Numeric Linear Solver BayesCG 13

Posterior. From (19) follows that X and Y ≡ VT
1:mAX have the joint distri-

bution [
X
Y

]
∼ N

([
x0

E[Y ]

]
,

[
V1:m+dΦ1:m+dV

T
1:m+d Cov(X,Y )

Cov(X,Y )T Cov(Y, Y )

])
(20)

and that E[Y ] = VT
1:mAx0. This, together with the linearity of the expectation

and the A-orthonormality of V implies

Cov(Y, Y ) = E
[
(Y − E[Y ])(Y − E[Y ])T

]
= VT

1:mA E
[
(X − x0)(X − x0)

T
]
AV1:m

= VT
1:mA

(
V1:m+dΦ1:m+dV

T
1:m+d

)
AV1:m

=
[
Im 0

]
Φ1:m+d

[
Im
0

]
= Φ1:m.

Analogously,

Cov(X,Y ) = E[(X − x0)(Y − E[Y ])T ] = E[(X − x0)(Y −VT
1:mAx0)

T ]

= E[(X − x0)(X − x0)
T ]AV1:m = V1:m+dΦ1:m+dV

T
1:m+dAV1:m

= V1:m+dΦ1:m+d

[
Im 0

]
= V1:mΦ1:m.

From [37, Theorem 6.20] follows the expression for the posterior mean,

xm = x0 +Cov(X,Y ) Cov(Y, Y )−1
(
VT

1:mb−VT
1:mAx0

)
= x0 +V1:mΦ1:mΦ−1

1:mVT
1:mr0 = x0 +V1:mVT

1:mr0,

and for the posterior covariance

Γ̂m = V1:m+dΦ1:m+dV
T
1:m+d − Cov(X,Y ) Cov(Y, Y )−1 Cov(X,Y )T ,

where

Cov(X,Y ) Cov(Y, Y )−1 Cov(X,Y )T = V1:mΦ1:mΦ−1
1:mΦ1:mVT

1:m

= V1:mΦ1:mVT
1:m.

Substituting this into Γ̂m gives the expression for the posterior covariance

Γ̂m = V1:m+dΦ1:m+dV
T
1:m+d −V1:mΦ1:mVT

1:m

= Vm+1:m+dΦm+1:m+dV
T
m+1:m+d.

Thus, the posterior mean xm is equal to the one in Theorem 7, and the pos-
terior covariance Γ̂m is equal to the rank-d approximate Krylov posterior in
Definition 8. ⊓⊔
Remark 16 The random variable X in Theorem 15 is a surrogate for the un-
known solution x∗. The solution x∗ is a deterministic quantity, but prior to
solving the linear system (1), we are uncertain of x∗, and the prior models this
uncertainty.

During the course of the BayesCG iterations, we acquire information about x∗,
and the posterior distributions µm, 1 ≤ m ≤ n incorporate our increasing
knowledge and, consequently, our diminishing uncertainty.
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4 Calibration of BayesCG Under the Krylov Prior

We review the notion of calibration for probabilistic solvers, and show that
this notion does not apply to BayesCG under the Krylov prior (Section 4.1).
Then we relax this notion and analyze BayesCG with two test statistics that
are necessary but not sufficient for calibration: the Z-statistic (Section 4.2)
and the S-statistic (Section 4.3).

4.1 Calibration

We review the definition of calibration for probabilistic linear solvers (Defini-
tion 17, Lemma 18), discuss the difference between certain random variables
(Remark 19), present two illustrations (Examples 20 and 21), and explain why
this notion of calibration does not apply to BayesCG under the Krylov prior
(Remark 22).

Informally, a probabilistic numerical solver is calibrated if its posterior
distributions accurately model the uncertainty in the solution [6,7].

Definition 17 ([7, Definition 6]) Let AX∗ = B be a class of linear systems
where A ∈ Rn×n is symmetric positive definite, and the random right hand
sides B ∈ Rn are defined by random solutions X∗ ∼ µ0 ≡ N (x0,Σ0).

Assume that a probabilistic linear solver under the prior µ0 and applied
to a system AX∗ = B computes posteriors µm ≡ N (xm,Σm), 1 ≤ m ≤ n.
Let rank(Σm) = pm, and let Σm have an orthogonal eigenvector matrix U =[
Um U⊥

m

]
∈ Rn×n where Um ∈ Rn×pm and U⊥

m ∈ Rn×(n−pm) satisfy

range(Um) = range(Σm), range(U⊥
m) = ker(Σm).

The probabilistic solver is calibrated if all posterior covariances Σm are inde-
pendent of B and satisfy

(UT
mΣmUm)−1/2UT

m(X∗ − xm) ∼ N (0, Ipm
),

(U⊥
m)T (X∗ − xm) = 0, 1 ≤ m ≤ n.

(21)

Alternatively, one can think of a probabilistic linear solver as calibrated if
and only if the solutions X∗ are distributed according to the posteriors.

Lemma 18 Under the conditions of Definition 17, a probabilistic linear solver
is calibrated, if and only if

X∗ ∼ N (xm,Σm), 1 ≤ m ≤ n.

Proof Let Σm = UDUT be an eigendecomposition where the eigenvalue ma-
trix D = diag

(
Dm 0

)
is commensurately partitioned with U in Definition 17.

Multiply the first equation of (21) on the left by Dm = UT
mΣmUm,

UT
m(X∗ − xm) ∼ N (0,Dm),
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combine the result with the second equation in (21),

UT (X∗ − xm) ∼ N (0,D) .

and multiply by U on the left,

(X∗ − xm) ∼ N (0,UDUT ), 1 ≤ m ≤ n.

At last, substitute Σm = UDUT and subtract xm. ⊓⊔

Since the covariance matrix Σm is singular, its probability density function
is zero on the subspace of Rn where the solver has eliminated the uncertainty
about X∗. From (21) follows that X∗ = xm in ker(Σm). Hence, this subspace
must be ker(Σm), and any remaining uncertainty about X∗ lies in range(Σm).

Remark 19 We discuss the difference between the random variable X∗ in Def-
inition 17 and the random variable X in Theorem 15.

In the context of calibration, the random variable X∗ ∼ µ0 represents the
set of all possible solutions that are accurately modeled by the prior µ0. If
the solver is calibrated, then Lemma 18 shows that X∗ ∼ µm. Thus, solu-
tions accurately modeled by the prior µ0 are also accurately modeled by all
posteriors µm.

By contrast, in the context of a deterministic linear system Ax∗ = b, the
random variable X represents a surrogate for the particular solution x∗ and
can be viewed as an abbreviation for X | X∗ = x∗. The prior µ0 models the
uncertainty in the user’s initial knowledge of x∗, and the posteriors µm model
the uncertainty remaining after m iterations of the solver.

The following two examples illustrate Definition 17.

Example 20 Suppose there are three people: Alice, Bob, and Carol.

1. Alice samples x∗ from the prior µ0 and computes the matrix vector product
b = Ax∗.

2. Bob receives µ0, b, and A from Alice. He estimates x∗ by solving the linear
system with a probabilistic solver under the prior µ0, and then samples y
from a posterior µm.

3. Carol receives µm, x∗ and y, but she is not told which vector is x∗ and
which is y. Carol then attempts to determine which one of x∗ or y is the
sample from µm. If Carol cannot distinguish between x∗ and y, then the
solver is calibrated.

Example 21 This is the visual equivalent of Example 20, where Carol receives
the images in Figure 2 of three different probabilistic solvers, but without any
identification of the solutions and posterior samples.

– Top plot. This solver is calibrated because the solutions look indistinguish-
able from the samples of the posterior distribution.
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Calibrated

Not Calibrated, Optimistic Not Calibrated, Pessimistic

Figure 2 Posterior distributions and solutions from three different probabilistic solvers:
calibrated (top), optimistic (bottom left), and pessimistic (bottom right). The gray con-
tours represent the posterior distributions, the red symbols “×” the solutions, and the blue
symbols “+” samples from the posterior distributions.

– Bottom left plot. This solver is not calibrated because the solutions are
unlikely to be samples from the posterior distribution.
The solver is optimistic because the posterior distribution is concentrated
in an area of Rn that is too small to cover the solutions.

– Bottom right plot. The solver is not calibrated. Although the solutions
could plausibly be sampled from the posterior, they are concentrated too
close to the center of the distribution.
The solver is pessimistic because the area covered by the posterior distri-
bution is much larger than the area containing the solutions.

Remark 22 The posterior means and covariances from a probabilistic solver
can depend on the solution x∗, as is the case for BayesCG. If a solver is
applied to a random linear system in Definition 17 and if the posterior means
and covariances depend on the solution X∗, then the posterior means and
covariances are also random variables.

Definition 17 prevents the posterior covariances from being random vari-
ables by forcing them to be independent of the random right hand side B. Al-
though this is a realistic constraint for the stationary iterative solvers in [32],
it does not apply to BayesCG under the Krylov prior, because Krylov pos-
terior covariances depend non-linearly on the right-hand side. In Sections 4.2
and 4.3, we present a remedy for BayesCG in the form of test statistics that
are motivated by Definition 17 and Lemma 18.



Statistical Properties of the Probabilistic Numeric Linear Solver BayesCG 17

4.2 The Z-statistic

We assess BayesCG under the Krylov prior with an existing test statistic, the
Z-statistic, which is a necessary condition for calibration and can be viewed
as a weaker normwise version of criterion (21). We review the Z-statistic (Sec-
tion 4.2.1), and apply it to BayesCG under the Krylov prior (Section 4.2.2).

4.2.1 Review of the Z-statistic

We review the Z-statistic (Definition 23), and the chi-square distribution (Def-
inition 24), which links the Z-statistic to calibration (Theorem 25). Then we
discuss how to generate samples of the Z-statistic (Algorithm 3), how to use
them for the assessment of calibration (Remark 26), and then present the
Kolmogorov-Smirnov statistic as a computationally inexpensive estimate for
the difference between two general distributions (Definition 27).

The Z-statistic was introduced in [8, Section 6.1] as a means to assess the
calibration of BayesCG, and has subsequently been applied to other proba-
bilistic linear solvers [2, Section 6.4], [11, Section 9].

Definition 23 ([8, Section 6.1]) Let AX∗ = B be a class of linear systems
where A ∈ Rn×n is symmetric positive definite, and X∗ ∼ µ0 ≡ N (x0,Σ0).
Let µm ≡ N (xm,Σm), 1 ≤ m ≤ n, be the posterior distributions from a
probabilistic solver under the prior µ0 applied to AX∗ = B. The Z-statistic is

Zm(X∗) ≡ (X∗ − xm)TΣ†
m(X∗ − xm), 1 ≤ m ≤ n. (22)

The chi-squared distribution below furnishes the link from Z-statistic to
calibration.

Definition 24 ([33, Definition 2.2]) If X1, . . . , Xf ∈ N (0, 1) are indepen-

dent random normal variables, then
∑f

j=1 X
2
j is distributed according to the

chi-squared distribution χ2
f with f degrees of freedom and mean f .

In other words, if X ∼ N (0, If ), then XTX ∼ χ2
f and E[XTX] = f .

We show that the Z-statistic is a necessary condition for calibration. That
is: If a probabilistic solver is calibrated, then the Z-statistic is distributed
according to a chi-squared distribution.

Theorem 25 ([9, Proposition 1]) Let AX∗ = B be a class of linear systems
where A ∈ Rn×n is symmetric positive definite, and X∗ ∼ µ0 ≡ N (x0,Σ0).
Assume that a probabilistic solver under the prior µ0 applied to AX∗ = B
computes the posteriors µm ≡ N (xm,Σm) with rank(Σm) = pm, 1 ≤ m ≤ n.

If the solver is calibrated, then

Zm(X∗) ∼ χ2
pm

, 1 ≤ m ≤ n.

Proof Write Zm(X∗) = MT
mMm, where Mm ≡ (Σ†

m)1/2(X∗ − xm). Lemma 18
implies that a calibrated solver produces posteriors with

(X∗ − xm) ∼ N (0,Σm), 1 ≤ m ≤ n.
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With the eigenvector matrix Um ∈ Rn×pm as in Definition 17, Lemma 35 in
Appendix A implies

Mm ∼ N (0,UmUT
m), 1 ≤ m ≤ n.

Since the covariance of Mm is an orthogonal projector, Lemma 41 implies
Zm(X∗) = (MT

mMm) ∼ χ2
pm

. ⊓⊔

Theorem 25 implies that BayesCG is calibrated if the Z-statistic is dis-
tributed according to a chi-squared distribution with pm = rank(Σ0) − m
degrees of freedom. For the Krylov prior specifically, pm = g −m.

Generating samples from the Z-statistic and assessing calibration. For a user-
specified probabilistic linear solver and a symmetric positive definite ma-
trix A, Algorithm 3 samples Ntest solutions x∗ from the prior distribution µ0,
defines the systems b ≡ Ax∗, runs m iterations of the solver on b ≡ Ax∗,
and computes Zm(x∗) in (22).

The application of the Moore-Penrose inverse in Line 6 can be implemented
by computing the minimal norm solution q = Σ†

m(x∗−xm) of the least squares
problem

min
u∈Rn

∥(x∗ − xm)−Σmu∥2, (23)

followed by the inner product zi = (x∗ − xm)Tq.

Algorithm 3 Sampling from the Z-statistic

1: Input: spd A ∈ Rn×n, µ0 = N (x0,Σ0), solver, m, Ntest

2: for i = 1 : Ntest do
3: Sample x∗ from prior distribution µ0 ▷ Sample solution vector
4: b = Ax∗ ▷ Define test problem
5: [xm,Σm] = solver(A,b, µ0,m) ▷ Compute posterior µm ≡ N (xm,Σm)

6: zi = (x∗ − xm)TΣ†
m(x∗ − xm) ▷ Compute Z-statistic sample

7: end for
8: Output: Z-statistic samples zi, 1 ≤ i ≤ Ntest.

Remark 26 We assess calibration of the solver by comparing the Z-statistic
samples zi from Algorithm 3 to the chi-squared distribution χ2

pm
with pm ≡

rank(Σ0) − m degrees of freedom, based on the following criteria from [8,
Section 6.1].

Calibrated: If zi ∼ χ2
pm

, then x∗ ∼ µm and the solutions x∗ are distributed
according to the posteriors µm.

Pessimistic: If the zi are concentrated around smaller values than χ2
pm

, then
the solutions x∗ occupy a smaller area of Rn than predicted by µm.

Optimistic: If the zi are concentrated around larger values than χ2
pm

, then
the solutions cover a larger area of Rn than predicted by µm.
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In [8, Section 6.1] and [2, Section 6.4], the Z-statistic samples and the
predicted chi-squared distribution are compared visually. In Section 5, we make
an additional quantitative comparison with the Kolmogorov-Smirnov test to
estimate the difference between two probability distributions.

Definition 27 ([23, Section 3.4.1]) Given two distributions µ and ν on Rn

with cumulative distribution functions Fµ and Fν , the Kolmogorov-Smirnov
statistic is

KS(µ, ν) = sup
x∈R

|Fµ(x)− Fν(x)|,

where 0 ≤ KS(µ, ν) ≤ 1.
If KS(µ, ν) = 0, then µ and ν have the same cumulative distribution

functions, Fµ = Fν . If KS(µ, ν) = 1, then µ and ν do not overlap. In general,
the lower KS(µ, ν), the closer µ and ν are to each other.

In contrast to the Wasserstein distance in Definition 9, the Kolmogorov-
Smirnov statistic can be easier to estimate—especially if the distributions are
not Gaussian—but it is not a metric. Consequently, if µ and ν do not overlap,
then KS(µ, ν) = 1 regardless of how far µ and ν are apart, while the Wasser-
stein metric still gives information about the distance between µ and ν.

4.2.2 Z-Statistic for BayesCG under the Krylov prior

We apply the Z-statistic to BayesCG under the Krylov prior. We start with
an expression for the Moore-Penrose inverse of the Krylov posterior covari-
ances (Lemma 28). Then we show that the Z-statistic for the full Krylov
posteriors has the same mean as the corresponding chi-squared distribution
(Theorem 29), but its distribution is different. Therefore the Z-statistic is
inconclusive about the calibration of BayesCG under the Krylov prior (Re-
mark 30).

Lemma 28 In Definition 8, abbreviate V̂ ≡ Vm+1:m+d and Φ̂ ≡ Φm+1:m+d.
The rank-d approximate Krylov posterior covariances have the Moore-Penrose
inverse

Γ̂†
m =

(
V̂Φ̂V̂T

)†
= V̂(V̂T V̂)−1Φ̂−1(V̂T V̂)−1V̂T , 1 ≤ m ≤ g − d.

Proof We exploit the fact that all factors of Γ̂m have full column rank.
The factors V̂ and V̂T have full column and row rank, respectively, be-

cause V has A-orthonormal columns. Additionally, the diagonal matrix Φ̂ is
nonsingular. Then Lemma 39 in Appendix A implies that the Moore-Penrose
inverses can be expressed in terms of the matrices proper,

V̂† = (V̂T V̂)−1V̂T , (V̂T )† = V̂(V̂T V̂)−1, (24)

and

(Φ̂V̂T )† = (V̂T )†Φ̂−1 = V̂(V̂T V̂)−1Φ̂−1. (25)



20 Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, and Chris J. Oates

Since Φ̂V̂T also has full row rank, apply Lemma 39 to Γ̂m,

Γ̂†
m = (Φ̂V̂T )†V̂†,

and substitute (24) and (25) into the above expression. ⊓⊔
We apply the Z-statistic to the full Krylov posteriors, and show that Z-

statistic samples reproduce the dimension of the unexplored Krylov space.

Theorem 29 Under the assumptions of Theorem 7, let BayesCG under the
Krylov prior η0 ≡ N (x0,Γ0) produce full Krylov posteriors ηm ≡ N (xm,Γm).
Then the Z-statistic is equal to

Zm(x∗) = (x∗ − xm)TΓ†
m(x∗ − xm) = g −m, 1 ≤ m ≤ g.

Proof Express the error x0 − xm in terms of V̂ ≡ Vm+1:m+d by inserting

x∗ = x0 +V1:gV
T
1:gr0, xm = x0 +V1:mVT

1:mr0, 1 ≤ m ≤ g, (26)

from Theorem 7 into

x∗ − xm = Vm+1:gV
T
m+1:gr0 = V̂V̂T r0.

This expression is identical to [25, Equation (5.6.5)], which relates the CG
error to the search directions and step sizes of the remaining iterations.

With Lemma 28, this implies for the Z-statistic in Theorem 25

Zm(x∗) = (x∗ − xm)TΓ†
mx∗ − xm)

= rT0 V̂V̂T︸ ︷︷ ︸
(x∗−xm)T

V̂(V̂T V̂)−1Φ̂−1(V̂T V̂)−1V̂T︸ ︷︷ ︸
Γ†

m

V̂V̂T r0︸ ︷︷ ︸
(x∗−xm)

= rT0 V̂ (V̂T V̂)(V̂T V̂)−1︸ ︷︷ ︸
I

Φ̂−1 (V̂T V̂)−1(V̂T V̂)︸ ︷︷ ︸
I

V̂T r0

= rT0 V̂Φ̂−1V̂T r0.

In other words,

∥x∗ − xm∥2
Γ̂†

m
=
(
VT

m+1:gr0
)T

Φ−1
m+1:m+d

(
VT

m+1:gr0
)

=

g∑
j=m+1

ϕ−1
j (vT

j r0)
2 = g −m, 0 ≤ m < g,

where the last inequality follows from ϕj = (vT
j r0)

2 in Definition 4. ⊓⊔
Remark 30 The Z-statistic is inconclusive about the calibration of BayesCG
under the Krylov prior.

Theorem 29 shows that the Z-statistic is distributed according to a Dirac
distribution at g − m. Thus, the Z-statistic has the same mean as the chi-
squared distribution χ2

g−m, which suggests that BayesCG under the Krylov
prior is neither optimistic or pessimistic. However, although the means are
the same, the distributions are not. Hence, Theorem 29 does not imply that
BayesCG under the Krylov prior is calibrated.
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4.3 The S-statistic

We introduce a new test statistic for assessing the calibration of probabilis-
tic solvers, the S-statistic. After discussing the relation between calibration
and error estimation (Section 4.3.1), we define the S-statistic (Section 4.3.2),
compare the S-statistic to the Z-statistic (Section 4.3.3), and then apply the
S-statistic to BayesCG under the Krylov prior (Section 4.3.4).

4.3.1 Calibration and Error Estimation

We establish a relation between the error of the posterior means (approxima-
tions to the solution) and the trace of posterior covariances (Theorem 31).

Theorem 31 Let AX∗ = B be a class of linear systems where A ∈ Rn×n is
symmetric positive definite and X∗ ∼ µ0 ≡ N (x0,Σ0). Let µm ≡ N (xm,Σm),
1 ≤ m ≤ n be the posterior distributions from a probabilistic solver under the
prior µ0 applied to AX∗ = B.

If the solver is calibrated, then

E[∥X∗ − xm∥2A] = trace(AΣm), 1 ≤ m ≤ n. (27)

Proof For a calibrated solver Lemma 18 implies that X∗ ∼ µm. Then apply
Lemma 42 in Appendix A to the error ∥X∗ − xm∥2A. ⊓⊔

For a calibrated solver, Theorem 31 implies that the equality ∥x∗−xm∥2A =
trace(AΣm) holds on average. This means the trace can overestimate the error
for some solutions, while for others, it can underestimate the error.

We explain how Theorem 31 relates the errors of a calibrated solver to the
area in which its posteriors are concentrated.

Remark 32 The trace of a posterior covariance matrix quantifies the spread of
its probability distribution—because the trace is the sum of the eigenvalues,
which in the case of a covariance are the variances of the principal components
[22, Section 12.2.1].

In analogy to viewing the A-norm as the 2-norm weighted by A, we can
view trace(AΣm) as the trace of Σm weighted by A. Theorem 31 shows that
the A-norm errors of a calibrated solver are equal to the weighted sum of the
principal component variances from the posterior. Thus, the posterior means
xm and the areas in which the posteriors are concentrated both converge to
the solution at the same speed, provided the solver is calibrated.

4.3.2 Definition of the S-statistic

We introduce the S-statistic (Definition 33), present an algorithm for gener-
ating samples from the S-statistic (Algorithm 4), and discuss their use for
assessing calibration of solvers (Remark 34).

The S-statistic represents a necessary condition for calibration, as estab-
lished in Theorem 31.
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Definition 33 Let AX∗ = B be a class of linear systems where A ∈ Rn×n is
symmetric positive definite, andX∗ ∼ µ0 ≡ N (x0,Σ0). Let µm ≡ N (xm,Σm),
1 ≤ m ≤ n, be the posterior distributions from a probabilistic solver under
the prior µ0 applied to AX∗ = B. The S-statistic is

Sm(X∗) ≡ ∥X∗ − xm∥2A. (28)

If the solver is calibrated then Theorem 31 implies

E[S(X∗)] = trace(AΣm). (29)

Generating samples from the S-statistic and assessing calibration. For a user
specified probabilistic linear solver and a symmetric positive definite ma-
trix A, Algorithm 4 samples Ntest solutions x∗ from the prior distribution µ0,
defines the linear systems b = Ax∗, runs m iterations of the solver on the
system, and computes Sm(x∗) and trace(AΣm) from (28).

As with the Z-statistic, Algorithm 4 requires a separate reference µref

when sampling solutions x∗ for BayesCG under the Krylov prior.

Algorithm 4 Sampling from the S-statistic

1: Input: spd A ∈ Rn×n, µ0 = N (x0,Σ0), solver, m, Ntest

2: for i = 1 : Ntest do
3: Sample x∗ from prior distribution µ0 ▷ Sample solution vector
4: b = Ax∗ ▷ Define test problem
5: [xm,Σm] = solver(A,b, µ0,m) ▷ Compute posterior µm ≡ N (xm,Σm)
6: si = ∥x∗ − xm∥2A ▷ Compute S-statistic for test problem
7: ti = trace(AΣm) ▷ Compute trace for test problem
8: end for
9: h = (1/Ntest)

∑Ntest
i=1 si ▷ Compute empirical mean of S-statistic samples

10: Output: S-statistic samples si and traces ti, 1 ≤ i ≤ Ntest; S-statistic mean h

Remark 34 We assess calibration of the solver by comparing the S-statistic
samples si from Algorithm 4 to the traces ti, 1 ≤ i ≤ Ntest. The following
criteria are based on Theorem 31 and Remark 32.

Calibrated: If the solver is calibrated, the traces ti should all be equal to the
empirical mean h of the S-statistic samples si.

Pessimistic: If the si are concentrated around smaller values than the ti,
then the solutions x∗ occupy a smaller area of Rn than predicted by the
posteriors µm.

Optimistic: If the si are concentrated around larger values than the ti, then
the solutions x∗ occupy a larger area of Rn than predicted by µm.

We can also compare the empirical means of the si and ti, because a
calibrated solver should produce si and ti with the same mean. Note that a
comparison via the Kolmogorov-Smirnov statistic is not appropriate because
the empirical distributions of si and ti are generally different.



Statistical Properties of the Probabilistic Numeric Linear Solver BayesCG 23

4 2 0 2
4

2

0

2

4 2 0 2
4

2

0

2

4 2 0 2
4

2

0

2

Figure 3 Assessment of calibration from Z-statistic and S-statistic. The contour plots
represent the posterior distributions, and the symbol ‘×’ represents the solution.
Top left: Both statistics decide that the solver is not calibrated. Top right: The S-statistic
decides that the solver is calibrated, while the Z-statistic does not. Bottom: Both statistics
decide that the solver is calibrated.

4.3.3 Comparison of the Z- and S-statistics

Both, Z- and S-statistic represent necessary conditions for calibration ((27)
and (29)); and both measure the norm of the error X∗ − xm: The Z-statistic
in the Σ†

m-pseudo norm (Definition 23), and the S-statistic in the A-norm
(Definition 33). Deeper down, though, the Z-statistic projects errors onto a
single dimension (Theorem 25), while the S-statistic relates errors to the areas
in which the posterior distributions are concentrated.

Due to its focus on the area of the posteriors, the S-statistic can give a
false positive for calibration. This occurs when the solution is not in the area
of posterior concentration but the size of the posteriors is consistent with the
errors. The Z-statistic is less likely to encounter this problem, as illustrated
in Figure 3.

The Z-statistic is better at assessing calibration, while the S statistic pro-
duces accurate error estimates, which default to the traditional A-norm esti-
mates. The S-statistic is also faster to compute because it does not require
the solution of a least squares problem.

4.3.4 S-statistic for BayesCG under the Krylov prior

We show that BayesCG under the Krylov prior is not calibrated, but that it
is has similar performance to a calibrated solver under full posteriors and is
optimistic under approximate posteriors.
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Calibration of BayesCG under full Krylov posteriors. Theorem 7 implies that
the S-statistic for any solution x∗ is equal to

Sm(x∗) = ∥x∗ − xm∥2A = trace(AΓm), 1 ≤ m ≤ g.

Thus, the S-statistic indicates that the size of Krylov posteriors is consistent
with the errors, which is a desirable property of calibrated solvers. However,
BayesCG under the Krylov prior is not a calibrated solver because the traces
of posterior covariances from calibrated solvers are distributed around the
average error instead of always being equal to the error.

Calibration of BayesCG under approximate posteriors. From (9) follows that

trace(AΓ̂m) is concentrated around smaller values than the S-statistic; and
the underestimate of the trace is equal to the Wasserstein distance between
full and approximate Krylov posteriors in Theorem 13. This underestimate
points to the optimism of BayesCG under approximate Krylov posteriors. This
optimism is expected because approximate posteriors model the uncertainty
about x∗ in a lower dimensional space than full posteriors.

5 Numerical experiments

We present numerical assessments of BayesCG calibration via the Z- and S-
statistics.

After describing the setup of the numerical experiments (Section 5.1), we
assess the calibration of three implementations of BayesCG: (i) BayesCG with
random search directions (Section 5.2)—a solver known to be calibrated—so
as to establish a baseline for comparisons with other versions of BayesCG;
(ii) BayesCG under the inverse prior (Section 5.3); and (iii) BayesCG under
the Krylov prior (Section 5.4). We choose the inverse prior and the Krylov
priors because under each of these priors, the posterior mean from BayesCG
coincides with the solution from CG.

Conclusions from all the experiments. Both, Z- and S statistics indicate that
BayesCG with random search directions is indeed a calibrated solver, and that
BayesCG under the inverse prior is pessimistic.

The S-statistic indicates that BayesCG under full Krylov posteriors mimics
a calibrated solver, and that BayesCG under rank-50 approximate posteriors
does as well, but not as much since it is slightly optimistic.

However, among all versions, BayesCG under approximate Krylov poste-
riors is the only one that is computationally practical and that is competitive
with CG.
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5.1 Experimental Setup

We describe the matrix A in the linear system (Section 5.1.1); the setup of
the Z- and S-statistic experiments (Section 5.1.2); and the three BayesCG
implementations (Section 5.1.3).

5.1.1 The matrix A in the linear system (1)

The symmetric positive definite matrix A ∈ Rn×n of dimension n = 1806 is
a preconditoned version of the matrix BCSSTK14 from the Harwell-Boeing
collection in [1]. Specifically,

A = D−1/2BD−1/2, where D ≡ diag
(
B11 · · · Bnn

)
and B is BCSSTK14. Calibration is assessed at iterations m = 10, 100, 300.

5.1.2 Z-statistic and S-statistic

The Z-statistic and S-statistic experiments are implemented as described in
Algorithms 3 and 4, respectively. The calibration criteria for the Z-statistic
are given in Remark 26, and for the S-statistic in Remark 34.

We sample from Gaussian distributions by exploiting their stability. Ac-
cording to Lemma 35 in Appendix A, if Z ∼ N (0, I), and FFT = Σ is a
factorization of the covariance, then

FZ + z = X ∼ N (x,Σ).

Samples Z ∼ N (0, I) are generated with randn(n, 1) in Matlab, and with
numpy.random.randn(n, 1) in NumPy.

Z-statistic experiments. We quantify the distance between the Z-statistic sam-
ples and the chi-squared distribution by applying the Kolmogorov-Smirnov
statistic (Definition 27) to the empirical cumulative distribution function of
the Z-statistic samples and the analytical cumulative distribution function of
the chi-squared distribution.

The degree of freedom in the chi-squared distribution is chosen as the
median numerical rank of the posterior covariances. Note that the numerical
rank of Σm can differ from

rank(Σm) = rank(Σ0)−m,

and choosing the median rank gives an integer equal to the rank of at least
one posterior covariance.

In compliance with the Matlab function rank and the NumPy function
numpy.linalg.rank, we compute the numerical rank of Σm as

rank(Σm) = cardinality{σi | σi > nε∥Σm∥2}, (30)

where ε is machine epsilon and σi, 1 ≤ i ≤ n, are the singular values of Σm

[15, Section 5.4.1].



26 Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, and Chris J. Oates

0 200 400 600
Iteration

10 10

10 7

10 4

10 1
Re

la
tiv

e 
A-

no
rm

 E
rro

r

0 200 400 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

A-
no

rm
 E

rro
r

Figure 4 Relative error ∥x∗ − xm∥2A/∥x∗∥2A for BayesCG under the inverse prior (solid
line) and Krylov prior (dashed line), and BayesCG with random search directions (dotted
line). Vertical axis has a logarithmic scale (left plot) and a linear scale (right plot).

5.1.3 Three BayesCG implementations

We use three versions of BayesCG: BayesCG with random search directions,
BayesCG under the inverse prior, and BayesCG under the Krylov prior.

BayesCG with random search directions. The implementation in Algorithm 6
in Appendix B.2 computes posterior covariances that do not depend on the
solution x∗. This, in turn, requires search directions that do not depend on x∗
[7, Section 1.1] which is achieved by starting with a random search direction
s1 = u ∼ N (0, I) instead of the initial residual r0 ≡ b0 − Ax0. The prior is
N (0,A−1).

By design, this version of BayesCG is calibrated. However, it is also im-
practical due to its slow convergence, see Figure 4, and an accurate solution is
available only after n iterations. The random initial search direction s1 leads
to uninformative m-dimensional subspaces, so that the solver has to explore
all of Rn before finding the solution.

BayesCG under the inverse prior µ0 ≡ N (0,A−1). The implementation in
Algorithm 7 in Appendix B.3 is a modified version of Algorithm 1 for general
priors that maintains the posterior covariances in factored form.

BayesCG under the Krylov prior. For full posteriors, the modified Lanczos
solver Algorithm 5 in Appendix B.4 computes the full prior, which is then
followed by the direct computation of the posteriors from the prior in Algo-
rithm 6.

For approximate posteriors, Algorithm 9 in Appendix B.4 computes rank-d
covariances at the same computational cost as m+ d iterations of CG.

In Z- and S-statistic experiments, solutions x∗ are usually sampled from
the prior distribution. We cannot sample solutions from the Krylov prior be-
cause it differs from solution to solution. Instead we sample solutions from
the reference distribution N (0,A−1). This is a reasonable choice because the
posterior means in BayesCG under the inverse and Krylov priors coincide with
the CG iterates [8, Section 3].



Statistical Properties of the Probabilistic Numeric Linear Solver BayesCG 27

0 1000 2000 3000
Z Statistic Value

0.000

0.002

0.004

0.006

0.008

Pr
ob

ab
ilit

y
Iteration m = 10

0 1000 2000 3000
Z Statistic Value

0.0000

0.0025

0.0050

0.0075

0.0100

Pr
ob

ab
ilit

y

Iteration m = 100

0 1000 2000 3000
Z Statistic Value

0.0000

0.0025

0.0050

0.0075

0.0100

Pr
ob

ab
ilit

y

Iteration m = 300

Figure 5 Z-statistic samples for BayesCG with random search directions after m =
10, 100, 300 iterations. The solid curve represents the chi-squared distribution and the dashed
curve the Z-statistic samples.

Iteration Z-stat mean χ2 mean K-S statistic
10.0 1.79× 103 1.8× 103 0.139
100.0 1.69× 103 1.71× 103 0.161
300.0 1.5× 103 1.51× 103 9.65× 10−2

Table 1 This table corresponds to Figure 5. For BayesCG with random search direc-
tions, it shows the Z-statistic sample means; the chi-squared distribution means; and the
Kolmogorov-Smirnov statistic between the Z-statistic samples and the chi-squared distribu-
tion.

Iteration S-stat mean Trace mean Trace standard deviation
10.0 1.78× 103 1.8× 103 2.93× 10−12

100.0 1.69× 103 1.71× 103 2.29× 10−12

300.0 1.51× 103 1.51× 103 2.07× 10−12

Table 2 This table corresponds to Figure 6. For BayesCG with random search directions,
it shows the S-statistic sample means, the trace means, and the trace standard deviations.

5.2 BayesCG with random search directions

By design, BayesCG with random search directions is a calibrated solver. The
purpose is to establish a baseline for comparisons with BayesCG under the
inverse and Krylov priors, and to demonstrate that the Z- and S-statistics
perform as expected on a calibrated solver.

Summary of experiments below. Both, Z- and S-statistics strongly confirm
that BayesCG with random search directions is indeed a calibrated solver,
thereby corroborating the statements in Theorem 25 and Definition 33.
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Figure 6 S-statistic samples and traces for BayesCG with random search directions after
m = 10, 100, 300 iterations. The solid curve represents the traces and the dashed curve the
S-statistic samples.

Figure 5 and Table 1. The Z-statistic samples in Figure 5 almost match the
chi-squared distribution; and the Kolmogorov-Smirnov statistics in Table 1
are on the order of 10−1, meaning close to zero. This confirms that BayesCG
with random search directions is indeed calibrated.

Figure 6 and Table 2. The traces in Figure 6 are tightly concentrated around
the empirical mean of the S-statistic samples. Table 2 confirms the strong clus-
tering of the trace and S-statistic sample means around 10−3, together with
the very small deviation of the traces. Thus, the area in which the posteriors
are concentrated is consistent with the error, confirming again that BayesCG
with random search directions is calibrated.

5.3 BayesCG under the inverse prior µ0 = N (0,A−1).

Summary of experiments below. Both, Z- and S-statics indicate that BayesCG
under the inverse prior is pessimistic, and that the pessimism increases with
the iteration count. This is consistent with the experiments in [8, Section 6.1].

Figure 7 and Table 3. The Z-statistic samples in Figure 7 are concentrated
around smaller values than the predicted chi-squared distribution. The Kol-
-mogorov-Smirnov statistics in Table 3 are all equal to 1, indicating no over-
lap between Z-statistic samples and chi-squared distribution. The first two
columns of Table 3 show that Z-statistic samples move further away from
the chi-squared distribution as the iterations progress. Thus, BayesCG under
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Figure 7 Z-statistic samples for BayesCG under the inverse prior after m = 10, 100, 300
iterations. The solid curve represents the chi-squared distribution and the dashed curve the
Z-statistic samples.

Iteration Z-stat mean χ2 mean K-S statistic
10.0 51.9 1.8× 103 1.0
100.0 0.545 1.72× 103 1.0
300.0 1.33× 10−5 1.56× 103 1.0

Table 3 This table corresponds to Figure 7. For BayesCG under the inverse prior, it shows
the Z-statistic sample means; the chi-squared distribution means; and Kolmogorov-Smirnov
statistic between the Z-statistic samples and the chi-squared and distribution.

Iteration S-stat mean Trace mean Trace standard deviation
10.0 51.8 1.8× 103 2.99× 10−12

100.0 0.574 1.71× 103 0.164
300.0 3.57× 10−6 1.61× 103 1.02

Table 4 This table corresponds to Figure 8. For BayesCG under the inverse prior, it shows
the S-statistic sample means, the trace means, and the trace standard deviations.

the inverse prior is pessimistic, and the pessimism increases with the iteration
count.

Figure 8 and Table 4. The S-statistic samples in Figure 8 are concentrated
around smaller values than the traces. Table 4 indicates trace values at 103,
while the S-statistic samples move towards zero as the iteration progress. Thus
the errors are much smaller than the area in which the posteriors are concen-
trated, meaning the posteriors overestimate the error. This again confirms the
pessimism of BayesCG under the inverse prior.
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Figure 8 S-statistic samples and traces for BayesCG under the inverse prior after m =
10, 100, 300 iterations. The solid curve represents the traces and the dashed curve the S-
statistic samples.

Iteration Z-stat mean χ2 mean K-S statistic
10.0 631.0 566.0 0.902
100.0 509.0 450.0 0.752
300.0 201.0 152.0 0.941

Table 5 This table corresponds to Figure 9. For BayesCG under the Krylov prior and
full posteriors, it shows the Z-statistic sample means; the chi-squared distribution means;
and the Kolmogorov-Smirnov statistic between the Z-statistic samples and the chi-squared
distribution.

5.4 BayesCG under the Krylov prior

We consider full posteriors (Section 5.4.1), and then rank-50 approximate pos-
teriors (Section 5.4.2).

5.4.1 Full Krylov posteriors

Summary of experiments below. The Z-statistic indicates that BayesCG under
full Krylov posteriors is somewhat optimistic, while the S-statistic indicates
resemblance to a calibrated solver.

Figure 9 and Table 5. The Z-statistic samples in Figure 9 are concentrated
at somewhat larger values than the predicted chi-squared distribution. The
Kolmogorov-Smirnov statistics in Table 5 are around .8 and .9, thus close
to 1, and indicate very little overlap between Z-statistic samples and chi-
squared distribution. Thus, BayesCG under full Krylov posteriors is somewhat
optimistic.
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Figure 9 Z-statistic samples for BayesCG under the Krylov prior and full posteriors at
m = 10, 100, 300 iterations. The solid curve represents the predicted chi-squared distribution
and the dashed curve the Z-statistic samples.
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Figure 10 S-statistic samples and traces for BayesCG under the Krylov prior and full
posteriors at m = 10, 100, 300 iterations. The solid curve represents the traces and the
dashed curve the S-statistic samples.
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Iteration S-stat mean Trace mean Trace standard deviation
10.0 52.9 52.9 9.4
100.0 0.515 0.515 0.241
300.0 8.59× 10−7 8.59× 10−7 2.84× 10−7

Table 6 This table corresponds to Figure 10. For BayesCG under the Krylov prior and full
posteriors, it shows the S-statistic sample means, the trace means, and the trace standard
deviations.

Iteration Z-stat mean χ2 mean K-S statistic
10.0 319.0 50.0 1.0
100.0 375.0 50.0 1.0
300.0 194.0 50.0 1.0

Table 7 This table corresponds to Figure 11. For BayesCG under rank-50 approximate
Krylov posteriors, it shows the Z-statistic sample means; chi-squared distribution means;
and Kolmogorov-Smirnov statistic between the Z-statistic samples and the chi-squared dis-
tribution.

These numerical results differ from Theorem 29, which predicts Z-statistic
samples equal to g − m. A possible reason might be that the rank of the
Krylov prior computed by Algorithm 5 is smaller than the exact rank. In exact
arithmetic, rank(Γ0) = g = n = 1806. However, in finite precision, rank(Γ0)
is determined by the convergence tolerance which is set to 10−12, resulting in
rank(Γ0) < g.

Figure 10 and Table 6. The S-statistic samples in Figure 10 match the traces
extremely well, with Table 6 showing an agreement to 3 figures, as predicted
in Section 4.3.4, Thus, the area in which the posteriors are concentrated is
consistent with the error, as would be expected from a calibrated solver.

However, BayesCG under the Krylov prior does not behave exactly like
a calibrated solver, such as BayesCG with random search directions in Sec-
tion 5.2, where all traces are concentrated at the empirical mean of the S-
statistic samples. Thus, BayesCG under the Krylov prior is not calibrated but
has a performance similar to that of a calibrated solver.

5.4.2 Rank-50 approximate Krylov posteriors

Summary of the experiments below. Both, Z- and S-statistic indicate that
BayesCG under rank-50 approximate Krylov posteriors is somewhat opti-
mistic, and is not as close to a calibrated solver as BayesCG with full Krylov
posteriors. In contrast to the Z-statistic, the respective S-statistic samples and
traces for BayesCG under full and rank-50 posteriors are close.

Figure 11 and Table 7. The Z-statistic samples in Figure 11 are concentrated
around larger values than the predicted chi-squared distribution, which is
steady at 50. All Kolmogorov-Smirnov statistics in Table 7 are equal to 1,
indicating no overlap between Z-statistic samples and chi-squared distribu-
tion. Thus, BayesCG under approximate Krylov posteriors is more optimistic
than BayesCG under full posteriors.
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Figure 11 Z-statistic samples for BayesCG under rank-50 approximate Krylov posteriors
at m = 10, 100, 300 iterations. The solid curve represents the predicted chi-squared distri-
bution and the dashed curve the Z-statistic samples.
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Figure 12 S-statistic samples and traces for BayesCG under rank-50 approximate Krylov
posteriors at m = 10, 100, 300 iterations. The solid curve represents the traces and the
dashed curve the S-statistic samples.
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Iteration S-stat mean Trace mean Trace standard deviation
10.0 57.2 53.9 8.32
100.0 0.517 0.467 0.214
300.0 3.37× 10−6 3.29× 10−6 1.6× 10−6

Table 8 This table corresponds to Figure 12. For BayesCG under rank-50 approximate
Krylov posteriors, it shows the S-statistic sample means, trace means, and trace standard
deviations.

Figure 12 and Table 8. The traces in Figure 12 are concentrated around
slightly smaller values than the S-statistic samples, but they all have the
same order of magnitude, as shown in Table 8. This means, the errors are
slightly larger than the area in which the posteriors are concentrated; and the
posteriors slightly underestimate the errors.

A comparison of Tables 6 and 8 shows that the S-statistic samples and
traces, respectively, for full and rank-50 posteriors are close. From the point
of view of the S-statistic, BayesCG under approximate Krylov posteriors is
somewhat optimistic, and close to being a calibrated solver but not as close
as BayesCG under full Krylov posteriors.

A Auxiliary Results

We present auxiliary results required for proofs in other sections.
The stability of Gaussian distributions implies that a linear transformation of a Gaussian

random variable remains Gaussian.

Lemma 35 (Stability of Gaussian Distributions [27, Section 1.2]) Let X ∼ N (x,Σ)
be a Gaussian random variable with mean x ∈ Rn and covariance Σ ∈ Rn×n. If y ∈ Rn

and F ∈ Rn×n, then
Z = y + FX ∼ N (y + Fx,FΣFT ).

The conjugacy of Gaussian distributions implies that the distribution of a Gaussian
random variable conditioned on information that linearly depends on the random variable
is a Gaussian distribution.

Lemma 36 (Conjugacy of Gaussian Distributions [30, Section 6.1], [37, Corol-
lary 6.21]) Let X ∼ N (x,Σx) and Y ∼ N (y,Σy). The jointly Gaussian random variable[
XT Y T

]T
has the distribution[

X
Y

]
∼ N

([
x
y

]
,

[
Σx Σxy

ΣT
xy Σy

])
,

where Σxy ≡ Cov(X,Y ) = E[(X −x)(Y −y)T ] and the conditional distribution of X given
Y is

(X | Y ) ∼ N (

mean︷ ︸︸ ︷
x+ΣxyΣ

†
y(Y − y),

covariance︷ ︸︸ ︷
Σx −ΣxyΣ

†
yΣ

T
xy).

We show how to transform a B-orthogonal matrix into an orthogonal matrix.

Lemma 37 Let B ∈ Rn×n be symmetric positive definite, and let H ∈ Rn×n be a B-
orthogonal matrix with HTBH = HBHT = I. Then

U ≡ B1/2H

is an orthogonal matrix with UTU = UUT = I.
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Proof The symmetry of B and the B-orthogonality of H imply

UTU = HTBH = I.

From the orthonormality of the columns of U, and the fact that U is square follows that U
is an orthogonal matrix [21, Definition 2.1.3]. ⊓⊔

Definition 38 [21, Section 7.3] The thin singular value decomposition of the rank-p matrix
G ∈ Rm×n is

G = UDWT ,

where U ∈ Rm×p and W ∈ Rn×p are matrices with orthonormal columns and D ∈ Rp×p is
a diagonal matrix with positive diagonal elements. The Moore-Penrose inverse of G is

G† = WD−1UT .

If a matrix has full column-rank or full row-rank, then its Moore-Penrose can be ex-
pressed in terms of the matrix itself. Furthermore, the Moore-Penrose inverse of a product
is equal to the product of the Moore-Penrose inverses, provided the first matrix has full
column-rank and the second matrix has full row-rank.

Lemma 39 ([5, Corollary 1.4.2]) Let G ∈ Rm×n and J ∈ Rn×p have full column and
row rank respectively, so rank(G) = rank(J) = n. The Moore-Penrose inverses of G and J
are

G† = (GTG)−1GT and J† = JT (JJT )−1

respectively, and the Moore-Penrose inverse of the product equals

(GJ)† = J†G†.

Below is an explicit expression for the mean of a quadratic form of Gaussians.

Lemma 40 ([26, Sections 3.2b.1–3.2b.3]) Let Z ∼ N (xz ,Σz) be a Gaussian random
variable in Rn, and B ∈ Rn×n be symmetric positive definite. The mean of ZTBZ is

E[ZTBZ] = trace(BΣz) + xT
z Bxz .

We show that the squared Euclidean norm of a Gaussian random variable with an
orthogonal projector as its covariance matrix is distributed according to a chi-squared dis-
tribution.

Lemma 41 Let Z ∼ N (0,P) be a Gaussian random variable in Rn. If the covariance
matrix P is an orthogonal projector, that is, if P2 = P and P = PT , then

∥X∥22 = (XTX) ∼ χ2
p,

where p = rank(P).

Proof We express the projector in terms of orthonormal matrices and then use the invariance
of the 2-norm under orthogonal matrices and the stability of Gaussians.

Since P is an orthogonal projector, there exists U1 ∈ Rn×p such that U1UT
1 = P and

UT
1 U = Ip. Choose U2 ∈ Rn×(n−p) so that U =

[
U1 U2

]
is an orthogonal matrix. Thus,

XTX = XTUUTX = XTU1U
T
1 X +XTU2U

T
2 X. (31)

Lemma 35 implies that Y = UT
1 X is distributed according to a Gaussian distribution with

mean 0 and covariance UT
1 U1UT

1 U = Ip. Similarly, Z = UT
2 X is distributed according to

a Gaussian distribution with mean 0 and covariance UT
2 U1UT

1 U2 = 0, thus Z = 0.
Substituting Y and Z into (31) gives XTX = Y TY + 0T 0. From Y ∼ N (0, Ip) follows

(XTX) ∼ χ2
p. ⊓⊔
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Lemma 42 If A ∈ Rn×n is symmetric positive definite, and M ∼ N (xµΣµ) and N ∼
N (xν ,Σν) are independent random variables in Rn, then

E[∥M −N∥2A] = ∥xµ − xν∥2A + trace(AΣµ) + trace(AΣν).

Proof The random variable M −N has mean E[M −N ] = xµ − xν , and covariance

ΣM−N ≡ Cov(M −N,M −N)

= Cov(M,M) + Cov(N,N)− Cov(M,N)− Cov(N,M)

= Cov(M,M) + Cov(N,N) = Σµ +Σν ,

where the covariances Cov(M,N) = Cov(N,M) = 0 because M and N are independent.
Now apply Lemma 40 to M −N . ⊓⊔

B Algorithms

We present algorithms for the modified Lanczos method (Section B.1), BayesCG with ran-
dom search directions (Section B.2), BayesCG with covariances in factored form (Section
B.3), and BayesCG under the Krylov prior (Section B.4).

B.1 Modified Lanczos method

The Lanczos method [34, Algorithm 6.15] produces an orthonormal basis for the Krylov
space Kg(A,v1), while the modified version in Algorithm 5 produces an A-orthonormal
basis.

Algorithm 5 Modified Lanczos Method

1: Input: spd A ∈ Rn×n, v1 ∈ Rn, basis dimension m, convergence tolerance ε
2: v0 = 0 ∈ Rn

3: i = 1
4: β = (vT

i Avi)
1/2

5: vi = vi/β
6: while i ≤ m do
7: w = Avi − βvi−1

8: α = wTAvi

9: w = w − αvi

10: w = w −
∑i

j=1 vjv
T
j Aw ▷ Reorthogonalize w

11: w = w −
∑i

j=1 vjv
T
j Aw

12: β = (wTAw)1/2

13: if β < ε then
14: Exit while loop
15: end if
16: i = i+ 1
17: vi = w/β
18: end while
19: m = i− 1 ▷ Number of basis vectors
20: Output: {v1,v2, . . . ,vm} ▷ A-orthonormal basis of Km(A,v1)

Algorithm 5 reorthogonalizes the basis vectors vi with Classical Gram-Schmidt per-
formed twice, see Lines 10 and 11. This reorthogonalization technique can be implemented
efficiently and produces vectors that are orthogonal to machine precision [13,14].
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B.2 BayesCG with random search directions

The version of BayesCG in Algorithm 6 is designed to be calibrated because the search
directions do not depend on x∗, hence the posteriors do not depend on x∗ either [7, Section
1.1].

After sampling an initial random search direction s1 ∼ N (0, I), Algorithm 6 computes
an AΣ0A-orthonormal basis for the Krylov space Km(AΣ0A, s1) with Algorithm 5. Then
Algorithm 6 computes the BayesCG posteriors directly with (2) and (3) from Theorem 1. The
numerical experiments in Section 5 run Algorithm 6 with the inverse prior µ0 = N (0,A−1).

Algorithm 6 BayesCG with random search directions

1: Inputs: spd A ∈ Rn×n, b ∈ Rn, prior µ0 = N (x0,Σ0), iteration count m
2: r0 = b−Ax0 ▷ Initial residual
3: Sample s1 from N (0, I) ▷ Initial search direction
4: Compute columns of S with Algorithm 5
5: Λm = ST

mAΣ0ASm ▷ Λm is diagonal
6: xm = x0 +Σ0ASmΛ−1

m ST
mr0 ▷ Compute posterior mean with (2)

7: Σm = Σ0 −Σ0ASmΛ−1
m ST

mAΣ0 ▷ Compute posterior covariance with (3)
8: Output: µm = N (xm,Σm)

B.3 BayesCG with covariances in factored form

Algorithm 7 takes as input a general prior covariance Σ0 in factored form, and subsequently
maintains the posterior covariances Σm in factored form as well. Theorem 43 presents the
correctness proof for Algorithm 7.

Theorem 43 Under the conditions of Theorem 1, if Σ0 = F0FT
0 for F0 ∈ Rn×ℓ and some

m ≤ ℓ ≤ n, then Σm = FmFT
m with

Fm = F0

(
I− FT

0 ASm(ST
mAF0F

T
0 ASm)−1SmAF0

)
∈ Rn×ℓ, 1 ≤ m ≤ n.

Proof Fix m. Substituting Σ0 = F0FT
0 into (3) and factoring out F0 on the left and FT

0 on
the right gives Σm = F0PFT

0 where

P ≡ I− FT
0 ASm(ST

mAF0F
T
0 ASm)−1SmAF0

= (I−Q(QTQ)−1QT ) where Q ≡ FT
0 ASm.

Show that P is a projector,

P2 = I− 2Q(QTQ)−1QT +Q(QTQ)−1QTQ(QTQ)−1QT

= I−Q(QTQ)−1QT = P.

Hence Σm = F0PFT
0 = F0PPFT

0 = FmFT
m.

B.4 BayesCG under the Krylov prior

We present algorithms for BayesCG under full Krylov posteriors (Section B.4.1) and under
approximate Krylov posteriors (Section B.4.2).
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Algorithm 7 BayesCG with covariances in factored form

1: Input: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, F0 ∈ Rn×ℓ ▷ need x∗ − x0 ∈ range(Σ0)
2: r0 = b−Ax0

3: s1 = r0
4: P = 0 ∈ Rn×n

5: m = 0
6: while not converged do
7: m = m+ 1
8: P(:,m) = FT

0 Asm ▷ Save column m of P
9: q = F0P(:,m) ▷ Compute q = Σ0Asm
10: ηm = sTmAq
11: P(:,m) = P(:,m)

/
ηm ▷ Normalize column m of P

12: αm =
(
rTm−1rm−1

) /
ηm

13: xm = xm−1 + αmq
14: rm = rm−1 − αmAq
15: βm =

(
rTmrm

) / (
rTm−1rm−1

)
16: sm+1 = rm + βmsm
17: end while
18: P = P(:, 1 : m) ▷ Discard unused columns of P
19: Fm = F0(I−PPT )
20: Output: xm, Fm ▷ Final posterior

B.4.1 Full Krylov posteriors

Algorithm 8 computes the following: a matrix V whose columns are an A-orthonormal basis
for Kg(A, r0); the diagonal matrix Φ in (5); and the posterior mean xm in (26). The output
consists of the posterior mean xm, and the factors Vm+1:g and Φm+1:g for the posterior
covariance.

Algorithm 8 BayesCG under the Krylov prior with full posteriors

1: Inputs: spd A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, iteration count m
2: r0 = b−Ax0 ▷ Initial residual
3: v1 = r0 ▷ Initial search direction
4: Compute columns of V with Algorithm 5
5: Φ = diag((VT r0)2) ▷ Compute Φ with (5)
6: xm = x0 +V1:mVT

1:mr0 ▷ Compute posterior mean with (26)
7: Output: xm, Vm+1:g , Φm+1:g

B.4.2 Approximate Krylov posteriors

Algorithm 9 computes rank-d approximate Krylov posteriors in two main steps: (i) posterior

mean and iterates xm in Lines 5-14; and (ii) factorization of the posterior covariance Γ̂m in
Lines 16-26.
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