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Abstract. We advocate a numerically reliable and accurate approach for practical parameter5
identifiability analysis: Applying column subset selection (CSS) to the sensitivity matrix, instead of6
computing an eigenvalue decomposition of the Fischer information matrix. Identifiability analysis7
via CSS has three advantages: (i) It quantifies reliability of the subsets of parameters selected as8
identifiable and unidentifiable. (ii) It establishes criteria for comparing the accuracy of different9
algorithms. (iii) The implementations are numerically more accurate and reliable than eigenvalue10
methods applied to the Fischer matrix, yet without an increase in computational cost. The effective-11
ness of the CSS methods is illustrated with extensive numerical experiments on sensitivity matrices12
from six physical models, as well as on adversarial synthetic matrices. Among the CSS methods,13
we recommend an implementation based on the strong rank-revealing QR algorithm because of its14
rigorous accuracy guarantees for both identifiable and non-identifiable parameters.15
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1. Introduction. In data-driven mathematical modeling, the ability to reliably21

estimate model parameters depends on the set of available observations, the scope of22

system responses for which such observations are available, the inherent mathematical23

structure of the model, and the parameter estimation method. Identifiability analysis24

evaluates the ability to accurately estimate each parameter in a model and, in some25

cases, quantifies the extent to which this estimate is reliable. It has wide-ranging im-26

plications for a variety of applications, including analysis of disease and epidemiology27

models to guide treatment regimes, physiologically-based pharmacokinetic (PBPK)28

and quantitative system pharmacology (QSP) models for drug development, and cou-29

pled multi-physics models for next-generation nuclear power plant design. In partic-30

ular, identifiability analysis can be more challenging, yet also have greater impact,31

in applications where the number of model variables and parameters is significantly32

greater than the number of responses with available data.33

Practical identifiability analysis refers to the partitioning of parameters in a math-34

ematical model into two groups: identifiable parameters that can be reliably estimated35

from data and those that cannot, termed unidentifiable. At the heart of many practi-36

cal identifiability methods is the sensitivity matrix S, whose columns represent model37

parameters and whose rows represent observations (data) for a quantity of interest. A38
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common approach extracts identifiable and unidentifiable parameters from eigenval-39

ues and eigenvectors of the Fischer information matrix STS. However, the sensitivity40

matrix S is often ill-conditioned, that is, sensitive to small perturbations, so that the41

explicit formation of the cross product STS can inflict a serious loss of accuracy.42

We apply instead column subset selection (CSS) to the sensitivity matrix S, which43

has the same computational complexity as eigenvalue methods on the Fischer matrix44

STS. We derive bounds that show the superior accuracy of CSS, and corroborate45

this with extensive numerical experiments on a variety of model-based and adversarial46

synthetic matrices. The higher accuracy of the CSS methods produces a more reli-47

able distinction between identifiable and unidentifiable parameters, as illustrated by48

their highly consistent performance across across this suite of test matrices. This is49

especially critical when the identifiable parameters inform subsequent investigations50

[3, 9, 38].51

1.1. Contributions. We advocate a numerically reliable and accurate approach52

for practical parameter identifiability analysis: Applying column subset selection to53

the sensitivity matrix, instead of computing an eigenvalue decomposition of the Fis-54

cher information matrix.55

1. We interpret algorithms based on eigenvalue decompositions of the Fischer56

matrix [27] as known column subset selection (CSS) methods applied to the57

sensitivity matrix (section 3). This connection allows us to derive rigorous58

guarantees for the accuracy and reliability of the parameter identification that59

were previously lacking.60

2. Identifiability analysis via CSS (section 4) has five advantages:61

(a) It broadens the applicability of parameter identifiability analysis by per-62

mitting the use of synthetic data generated from an additive observation63

model. This is crucial when experimental data are not available or op-64

timization for determining nominal parameter values is not feasible.65

(b) It incorporates parameter correlation.66

(c) It quantifies reliability of the subsets of parameters selected as identifi-67

able and unidentifiable.68

(d) It establishes criteria for comparing the accuracy of different algorithms.69

(e) The implementations are numerically more accurate and reliable than70

eigenvalue methods applied to the Fischer matrix, yet without an in-71

crease in computational cost.72

3. We perform extensive numerical experiments (section 5.1) on sensitivity ma-73

trices from six physical models (section 2.2, Appendix B) to illustrate the74

accuracy and reliability of the CSS methods.75

4. Among the four CSS methods (Algorithms 4.1–4.4), we recommend an imple-76

mentation based on the strong rank-revealing QR algorithm (Algorithm 4.4)77

because of its rigorous accuracy guarantees for both, identifiable and uniden-78

tifiable parameters, through bounds that have only a polynomial dependence79

on the number of relevant parameters, rather than an exponential dependence80

as in Algorithms 4.1–4.3.81

5. We construct an adversarial matrix, the SHIPS matrix (section 5.2) to am-82

plify accuracy differences among the CSS methods. Although synthetic, the83

adversarial matrices (section 5.2) still admit an interpretation as sensitivity84

matrices for certain dynamical systems (Appendix C).85

The CSS algorithms (section 4) are based on existing work and presented with86

a view towards understanding rather than efficiency. In the same vein, the correct-87
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ness proofs (section A) are geared towards exposition: self-contained, as simple as88

possible, and more general with slightly fewer assumptions. With a view towards89

reproducibility, our implementations are available on https://github.com/kjpearce/90

CSS-Algs-for-Sens-Identifiability.91

2. Parameter sensitivity and identifiability. We define the notion of pa-92

rameter identifiability (section 2.1), and present real applications that require it (sec-93

tion 2.2).94

2.1. Parameter identifiability. We assume that a model’s quantity of interest95

y, such as a state variable in a system of differential equations, can be expressed96

as a scalar-valued function of system inputs and parameters, y = h(u; q). Here the97

vector u represents system inputs, such as time, and the vector q ∈ Rp the model98

parameters.99

We denote the sensitivity of y with respect to the parameter qj , evaluated at the100

ith observation and a specific point q∗ in the admissible parameter space, by101

sij =
∂hi(u; q)

∂qj

∣∣∣
q=q∗

, 1 ≤ i ≤ n, 1 ≤ j ≤ p.102
103

The sensitivity matrix is S = (sij) ∈ Rn×p, and has more rows than columns, n ≥ p.104

The parameters q are sensitivity-identifiable at q∗ if STS is invertible [9, 32, 42].105

Our goal is to determine those columns of S that correspond to the most sensitivity-106

identifiable and the least sensitivity-identifiable parameters.107

2.2. Practical applications with sensitivity matrices. We describe an epi-108

demiological compartment model in detail (section 2.2.1), and summarize five other109

mathematical models together with their quantities of interest (section 2.2.2).110

2.2.1. SVIR Model. The epidemiological SVIR compartment model in Fig-111

ure B.1(c), models the spread of disease among susceptible S, vaccinated V , infectious112

I, and recovered R in a population of N individuals; and consists of a coupled system113

of four ordinary differential equations with specified initial conditions,114

dS

dt
= −β IS

N
, S(0) = S0115

dV

dt
= νS − αβ IV

N
, V (0) = V0,116

dI

dt
= β

IS

N
+ αβ

IV

N
− γI, I(0) = I0,117

dR

dt
= γI, R(0) = R0.118

119

The epidemiological parameters q =
[
β ν α γ

]>
govern the system dynamics;120

the system input u is time t; and the quantity of interest is y = h(t; q) ≡ I(t; q) the121

number of infectious individuals at time t. Discretization with respect to time t = ti,122

1 ≤ i ≤ n, produces a sensitivity matrix evaluated at a nominal point q∗,123

S =
[
∂h(ti;q)
∂β

∂h(ti;q)
∂ν

∂h(ti;q)
∂α

∂h(ti;q)
∂γ

]∣∣∣
q=q∗

∈ Rn×4.124
125

Nominal parameter values are often selected from the literature, as shown in Table B.1,126

or as solutions of inverse problems with available data. Numerical sensitivities in S127

are estimated from derivative approximations, such as finite difference or complex-step128

approximations [33, 34].129
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2.2.2. Six models from physical applications. We present numerical exper-130

iments (section 5) for the six models below, with quantities of interest in Table 2.1.131

More details can be found in section B.132

• SVIR: See above.133

• SEVIR [39]: This extension of SVIR model adds an additional compartment134

for individuals E who have been exposed but are not yet infectious.135

• COVID [40]: This extension of SEVIR splits the infectious group into com-136

partments for asymptomatic, symptomatic, and hospitalized individuals.137

• HGO [19]: This model for the biomechanical deformation of the left pul-138

monary artery vessel wall is based on nonlinear hyperelastic structural re-139

lations, and calibrated to in vitro experiments on normal and hypertensive140

mice.141

• Wound [38]: This model for in vitro fibrin matrix polymerization during142

hemostasis concerns clot formation during the first stage of wound healing,143

and is based on biochemical reaction kinetics.144

• Neuro [20]: This model of the neurovascular coupling (NVC) response de-145

scribes local changes in vascular resistance that result from neuronal activity,146

and is based on nonlinear ODEs.147

Model Type p Quantity of Interest
SVIR Epidemiological 4 # Infectious individuals

SEVIR Epidemiological 5 # Infectious individuals
COVID Epidemiological 8 # Infectious (sympt., asymp., hospitalized)
HGO Cardiovascular 8 Vessel lumen area and wall thickness

Wound Wound Healing 11 Fibrin matrix (in vitro clot) concentration
Neuro Neurological 175 Blood oxyhemoglobin concentration

Table 2.1
Number of parameters p and quantities of interest for the models in section 2.2

3. Background. We express sensitivity analysis on the eigenvectors of the Fis-148

cher matrix F = STS as column subset selection on the sensitivity matrix S.149

After briefly introducing notation (section 3.1), we review identfiability analy-150

sis based on eigenvectors of the Fischer matrix (section 3.2), the singular value de-151

composition of the sensitivity matrix (section 3.3), column subset selection on the152

sensitivity matrix (section 3.4), determination of the number k of identifiable param-153

eters (section 3.5), and finally the implementation of column subset selection via QR154

decompositions (section 3.6).155

3.1. Notation. We denote matrices by bold upper case letters. The identity156

matrix is157

Ip ≡

1
. . .

1

 =
[
e1 · · · ep

]
∈ Rp×p158

159

with columns that are the canonical vectors ej ∈ Rp.160

We assume that the sensitivity matrix S ∈ Rn×p is tall and skinny, with at least161

as many rows as columns, n ≥ p. The p columns of S represent parameters and162

its rows represent observations. The Fischer information matrix is the cross product163

matrix F ≡ STS ∈ Rp×p, where the superscript T denotes the transpose.164
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3.2. Eigenvalue decomposition of the Fischer matrix. Existing meth-165

ods [27, 35] select parameters by inspecting the eigenvectors of the Fischer matrix166

F = STS ∈ Rp×p. Since it is real symmetric positive semi-definite, its eigenvalue167

decomposition has the form168

F = V

λ1 . . .

λp

V T , λ1 ≥ · · · ≥ λp ≥ 0,(3.1)169

170

where λj are the eigenvalues. The eigenvector matrix V ∈ Rp×p is an orthogonal171

matrix with V TV = Ip = V V T . Its columns and elements are172

V =
[
v1 · · · vp

]
=

v11 · · · v1p
...

...
vp1 · · · vpp

173

174

In particular, the trailing column vp is an eigenvector associated with a smallest175

eigenvalue λp, so Fvp = λpvp. If λp > 0, then F is nonsingular.176

The parameter with index j is represented by column j of S. The corresponding177

column of the Fischer matrix is178

STSej = Fej = V

λ1 . . .

λp

V Tej where V Tej =

vj1...
vjp

 , 1 ≤ j ≤ p.179

180

Thus, column j of S depends on column j of V T which, in turn, contains element j181

of each eigenvector.182

Selecting element j of any eigenvector of F = STS
amounts to selecting the parameter with index j in S.

183

Caution. Explicit formation of the Fischer matrix F = STS can lead to signif-184

icant loss of information, thus affecting subsequent practical identifiability analysis.185

For instance [16, Section 5.3.2], in customary double precision floating point arith-186

metic with unit roundoff 2−53 ≈ 1.1 · 10−16, the sensitivity matrix187

S =

 1 1
10−9 0

0 10−9

188

189

has linearly independent columns, and rank(S) = 2. In contrast, the Fischer infor-190

mation matrix computed in double precision floating point arithmetic191

fl(STS) =

[
1 1
1 1

]
192
193

is singular, because the diagonal elements computed in double precision are194

fl(1 + 10−9 · 10−9) = fl(1 + 10−18) = 1,195196

where the operator fl(·) represents the output of a computation in floating point arith-197

metic.198
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3.3. Singular value decomposition of the sensitivity matrix. We avoid199

the explicit formation of the Fischer matrix F = STS, and instead operate directly200

on the sensitivity matrix S, without increasing the computation time.201

This is done with the help of the (thin) singular value decomposition (SVD) [16,202

section 8.6]203

S = U

σ1 . . .

σp

V T , σ1 ≥ · · · ≥ σp ≥ 0,(3.2)204

205

where σj are the singular values of S, the left singular vector matrix U ∈ Rn×p has206

orthonormal columns with UTU = Ip, and the right singular vector matrix V is is207

identical to the orthogonal matrix in (3.1).208

Substituting the SVD of S into F gives (3.1) with eigenvalues λj = σ2
j , 1 ≤ j ≤ p.209

Thus, squared singular values of S are the eigenvalues of F , and the right singular210

vectors of S are eigenvectors of F .211

Selecting element j of any right singular vector of S
amounts to selecting the parameter

with index j in column j of S.
212

As a consequence, all information provided by the eigenvalue decomposition of213

the Fischer matrix F = STS is available from the SVD of the sensitivity matrix S.214

Computation of the SVD is not more expensive; see Remark 3.1.215

3.4. Column subset selection on the sensitivity matrix. We go a step216

further, and select the parameters directly from the sensitivity matrix S, rather than217

detouring through an eigenvalue or singular value decomposition.218

Specifically, we compute a permutation matrix P ∈ Rp×p that reorders the219

columns of the sensitivity matrix S,220

SP =
[
S1 S2

]
(3.3)221222

so that the, say k columns of S1 represent the identifiable parameters, and the p− k223

columns of S2 the unidentifiable parameters.224

In practice, one wants the columns of S1 to represent an approximate basis for225

range(S). A basis satisfies two criteria: Its vectors are linearly independent, and they226

span the host space.227

1. Linear independence of the columns of S1 ∈ Rn×k is quantified by the magni-228

tude of its smallest singular value, which is bounded above by the kth largest229

singular value of the host matrix,230

σk(S1) ≤ σk.(3.4)231232

The larger σk(S1), the more linearly independent the columns of S1. A more233

specific statement is presented in (3.9).234

2. Spanning the host space range(S) is quantified by the accuracy of S1 as a235

low-rank approximation of the host matrix S. One measure of accuracy is236

the residual norm, which is bounded below by the (k + 1)st singular value of237
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the host matrix1238

‖(I − S1S
†
1)S‖2 = ‖(I − S1S

†
1)S2‖2 ≥ σk+1.(3.5)239240

The smaller the residual, the better range(S1) spans the host space. Crite-241

rion (3.5) is a special case of the subsequent (3.10).242

Identifiable parameters are the ‘most linearly independent’ columns’ of S.
Unidentifiable parameters are the ‘most linearly dependent’ columns of S.

243

Algorithms 4.1 and 4.3 select unidentifiable parameters, Algorithm 4.2 selects244

identifiable parameters, while Algorithm 4.4 selects both.245

Caution. The separation into linearly dependent and independent columns is246

highly non-unique. For instance, the matrix247

S =


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

248

249

has rank(S) = k = 2 with σ1 = σ2 = σk =
√

2 and σ4 = σ3 = σk+1 = 0. Moving250

two linearly independent columns of S to the front can be accomplished by any of the251

following permutation matrices P ,252 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

253

254

to produce the same matrix255

S1 =


1 0
0 1
0 0
0 0

256

257

with residual (3.5) equal to σ3 = 0.258

One can require the criteria (3.4) or (3.5) to hold either for all 1 ≤ k ≤ p [21], or259

else for only one specific k [7, 18]. In the latter case, section 3.5 discusses approaches260

for selecting k.261

3.5. Choosing the number k of identifiable parameters. If one knows a262

bound η on the error or noise in the elements of S, one can use criterion (3.5) to263

designate as small all those singular values below η, in the absolute or the relative264

sense,265

σk+1 ≤ η or σk+1 ≤ η σ1.266267

1The superscript S†1 denotes the Moore-Penrose inverse, and the equalities follow from the Moore-

Penrose property S1S
†
1S1 = S1 and the unitary invariance of the two-norm with regard to the

permutation P .
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For instance, if η bounds the relative error in the elements of S, then the value of k268

determined by σk+1 ≤ η σ1 is called the numerical rank of S [15, Definition 2.1], [16,269

section 5.4.2]. If S is accurate to double precision unit roundoff, then η ≈ 1.1 · 10−16.270

Alternatively, one can use criterion (3.4) to designate as large all those singular271

values exceeding η, in the absolute or the relative sense,272

σk > η or σk > η σ1.273274

If the accuracy of the elements in S is unknown, but its singular values contain a275

prominent gap, then one can choose k to capture this gap,276

σ1 ≥ · · · ≥ σk � σk+1 ≥ · · · ≥ σp277278

An upgrade [18, Algorithm 5] of Algorithm 4.4 looks for a large gap between adjacent279

singular values, in order to compute k automatically [18, Remark 1].280

The number k of identifiable parameters
can be chosen as the numerical rank of S,

or based on a large gap in the singular values.
281

3.6. Implementing column subset selection with QR decompositions.282

We show how to compute, by means of pivoted QR decompositions, permutation283

matrices P that try to optimize criteria (3.4) or (3.5). As a matter of exposition,284

we introduce plain QR decompositions (section 3.6.1), pivoted QR decompositions285

(section 3.6.2) and then rank revealing QR decompositions (section 3.6.3).286

3.6.1. QR decompositions. Assume that the sensitivity matrix S ∈ Rn×p has287

full column rank with rank(S) = p. A ‘thin QR decomposition’ [16, section 5.2], [22,288

Chapter 19] is a basis transformation that transforms the basis for range(S) from289

linearly independent columns of S to orthonormal columns of Q,290

S = QR.(3.6)291292

Here Q ∈ Rn×p has orthonormal columns with QTQ = Ip, and the nonsingular293

upper triangular matrix R ∈ Rp×p represents an easy relation between the two bases.294

Substituting (3.6) into S gives for Fischer information matrix295

F = STS = RTR.296297

Thus the eigenvalues of F are equal to the squared singular values of the triangular298

matrix R.299

3.6.2. Pivoted QR decompositions. These decompositions have more flexi-300

bility because they can additionally permute (pivot) the columns of S to compute an301

orthonormal basis for range(S) [16, 5.4.2], [22, Chapter 19],302

SP = QR,(3.7)303304

where P ∈ Rp×p is the permutation matrix in (3.3); Q ∈ Rn×p has orthonormal305

columns with QTQ = Ip; and R ∈ Rp×p is upper triangular. Substituting the306

factorization (3.7) into the sensitivity matrix S gives for Fischer matrix307

F = STS = P RTRP T .308309
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Since permutation matrices are orthogonal matrices, the eigenvalues of F are still310

equal to the squared singular values of R, while each eigenvector of RTR is a permu-311

tation of the corresponding eigenvector of F .312

Algorithms 4.1–4.4 start with a preliminary QR decomposition to reduce the313

dimension of the matrix. The following remark shows that such a preliminary decom-314

position is also effective prior to an SVD computation, and the proofs in Appendix A315

exploit this.316

Remark 3.1. A preliminary QR decomposition SP = QR is an efficient way to317

compute the SVD of a dense matrix S ∈ Rn×p with n ≥ p [6], since it reduces the318

dimension for the SVD from that of a tall and skinny n× p matrix down to that of a319

small square p× p matrix with the same dimension as the Fischer matrix F = STS.320

To see this, compute the pivoted QR factorization SP = QR, and let the upper321

triangular R have an SVD322

R = U r

σ1 . . .

σp

V T ,323

324

where U r and V ∈ Rp×p are orthogonal matrices. Then the SVD of the permuted325

sensitivity matrix SP is326

SP = (QU r)

σ1 . . .

σp

V T ,327

328

where the left singular vector matrix QU r ∈ Rn×p has orthonormal columns.329

This approach retains the asymptotic complexity of an SVD of S, but has the330

advantage of reducing the actual operation count, and, in particular, reducing the331

problem dimension to that of the Fischer matrix F = STS.332

3.6.3. Rank revealing QR decompositions. These pivoted QR decomposi-333

tions are designed to ‘reveal’ the numerical rank of a matrix S that is rank deficient,334

or ill-conditioned with regard to left inversion [7, section 2], [16, 5.4.2]. [18, section335

1.1]. Although there are numerous ways to compute such decompositions [7, 18], most336

share the same overall strategy.337

Assume the sensitivity matrix has numerical rank(S) ≈ k, where 1 ≤ k < p.338

Partition the pivoted QR decomposition (3.7) commensurately with the column par-339

titioning (3.3),340 [
S1 S2

]︸ ︷︷ ︸
SP

= S
[
P 1 P 2

]︸ ︷︷ ︸
P

=
[
Q1 Q2

]︸ ︷︷ ︸
Q

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

,(3.8)341

342

with submatrices P 1 ∈ Rp×k, Q1 ∈ Rn×k, R11 ∈ Rk×k, and R22 ∈ R(p−k)×(p−k).343

Since S1 = Q1R11, the leading diagonal block R11 has the same singular values344

as the matrix S1 of identifiable parameters345

σj(S1) = σj(R11), 1 ≤ j ≤ k.(3.9)346347

Similarly, since348

σj((I − S1S
†
1)S) = σj((I − S1S

†
1)S2) = σj(R22), 1 ≤ j ≤ p− k,(3.10)349350
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the trailing diagonal block R22 has the same non-zero singular values as the residuals351

of the low-rank approximation of range(S) by range(S1).352

We call a QR decomposition (3.8) qualitatively ‘rank-revealing’ if it tries to opti-353

mize subselection criteria (3.4) or (3.5), that is,354

σk(R11) ≈ σk or σ1(R22) = ‖R22‖2 ≈ σk+1.355356

The first criterion tries to produce a well conditioned basis S1 = Q1R11, and its357

approximation S1P
T
1 ≈ S. The second criterion aligns with the popular and robust358

requirement ‖(I − S1S
†
1)S‖2 ≈ σk+1 for low-rank approximations [12].359

Rank-revealing QR decompositions try to select as identifiable parameters
those columns of S that are the most linearly independent or

that approximate well the unidentifiable parameters.
360

Rigorous, stringent versions of the subselection criteria (3.4) and (3.5) are pre-361

sented in [18, Section 1.2] and Theorem 4.4.362

4. Identifiability as column subset selection. We express practical iden-363

tifiability analysis [35, Definition 5.11], [41, page 4 of 21] as column subset selec-364

tion, to quantify accuracy and to compare the accuracy of different algorithms. We365

start with Jollife’s methods [27, 35]: PCA method B1 (section 4.1), PCA method B4366

(section 4.2), and PCA method B3 (section 4.3), and then propose the strong rank-367

revealing QR factorization [18] as the most accurate option for practical identifiability368

analysis (section 4.4).369

Algorithms 4.1–4.4 input a tall and skinny sensitivity matrix S and the number k370

of identifiable parameters, say from section 3.5; and output the factors of a pivoted371

QR decomposition SP = QR.372

We recommend Algorithm 4.4 in section 4.4.
It has the most rigorous and realistic accuracy guarantees

for both, identifiable and unidentifiable parameters.
373

The algorithms are formulated with a focus on understanding, rather than effi-374

ciency.375

4.1. PCA method B1. This method [27, section 2.2], [35, (5.13)] selects un-376

identifiable parameters, by detecting large-magnitude components in the eigenvectors377

vk+1, . . . ,vp corresponding to the p− k smallest eigenvalues of the Fischer matrix F ,378

starting from the smallest eigenvalue.379

Method B1 starts with a unit-norm eigenvector vp corresponding to λp, picks a380

magnitude largest element in vp,381

|vm1,p| = max
1≤j≤p

|vjp|,382
383

and designates the parameter with index m1 as unidentifiable. Method B1 repeats384

this on eigenvectors corresponding to eigenvalues λp−1 ≤ · · · ≤ λk+1 in that order, by385

selecting magnitude-largest elements that have not been selected previously,386

|vm`,`| = max
1≤j≤p

j 6=m1,...,mp−`+1

|vj`|, ` = p− 1, . . . , k + 1,387

388

and declares the parameters with indices m1, . . .mp−k as unidentifiable.389
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Expressing PCA method B1 as column subset selection. PCA method B1390

is almost identical to the subset selection algorithm in [5, Section 3], which is also [7,391

Algorithm Chan-II], and is related to the algorithms in [13, 17].392

Algorithm 4.1, which represents [5, Algorithm RRQR(r)], selects p−k unidentifi-393

able parameters S2 to optimize subset selection criterion (3.5) and moves them to the394

back of the matrix. Once a column for S2 has been identified, Algorithm 4.1 ignores395

it from then on, and continues on a lower-dimensional submatrix.396

Algorithm 4.1 Column subset selection version of PCA B1

Input: S ∈ Rn×p with n ≥ p, 1 ≤ k < p
Set P = Ip
Compute decomposition (3.7): SP = QR {Unpivoted QR of S}
for ` = p : k + 1

{If ` = p, then R11 = R }

Partition R =

[
R11 R12

0 R22

]
where R11 ∈ R`×` {Focus on leading `× ` block}

Compute right singular vector v ∈ R` of R11 corresponding to σ`(R11)

Compute permutation P̃ ∈ R`×` so that |(P̃
T
v)`| = ‖v‖∞

{Move magnitude-largest element of v to bottom}
Compute QR decomposition (3.6): R11P̃ = Q̃R̃11 {Unpivoted QR of R11P̃ }

Update Q := Q

[
Q̃ 0
0 Ip−`

]
, P := P

[
P̃ 0
0 Ip−`

]
, R :=

[
R̃11 Q̃

T
R12

0 R22

]
end for
return P , Q, R

Theorem 4.1 shows that the unidentifiable parameters S2 from Algorithm 4.1 can397

be interpreted as column subsets satisfying criterion (3.5).398

Theorem 4.1. Let S ∈ Rn×p with n ≥ p be the sensitivity matrix, and 1 ≤ k < p.399

Algorithm 4.1 computes a pivoted QR decomposition400

SP =
[
S1 S2

]
=
[
Q1 Q2

] [R11 R12

0 R22

]
, R22 ∈ R(p−k)×(p−k),401

402

where403

σk+1 ≤ ‖(I − S1S
†
1)S2‖2 = ‖R22‖2 ≤ 2p−k−1σk+1.404405

If the mumerical rank(S) = k, then the columns of S2 represent the p−k unidentifiable406

parameters.407

Proof. The equality follows from (3.10), while the lower bound follows from in-408

terlacing (A.1). The upper bound is derived in section A.1, and in particular in409

Lemma A.3.410

Theorem 4.1 bounds the residual in the low rank approximation S1 according to411

criterion (3.5). Like many subset selection bounds, the upper bound can be achieved412

by artificially contrived matrices [22, section 8.3], but tends to be quantitatively pes-413

simistic in practice. Fortunately, it is informative from a qualitative perspective.414
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4.2. PCA method B4. This method [27, section 2.2], [35, (5.15)], [41, Ap-415

pendix C] selects identifiable parameters, by detecting large-magnitude components416

in the eigenvectors v1, . . . ,vk corresponding to the k largest eigenvalues of the Fis-417

cher matrix, starting from the largest eigenvalue. Our detailed interpretation of the418

algorithm follows that in [41, Appendix C, Third Criterion].419

Method B4 starts with a unit-norm eigenvector v1 corresponding to λ1, picks a420

magnitude largest element in v1,421

|vm1,1| = max
1≤j≤p

|vj1|,422
423

and declares the parameter with index m1 as identifiable. Method B4 repeats this on424

eigenvectors corresponding to eigenvalues λ2 ≥ · · · ≥ λk in that order, by selecting425

magnitude-largest elements that have not been selected previously,426

|vm`,`| = max
1≤j≤p

j 6=m1,...,m`

|vj`|, ` = 2, . . . , k,427

428

and declares the parameters with indices m1, . . . ,mk as identifiable.429

Expressing PCA method B4 as column subset selection. PCA method430

B4 is almost identical to the subset selection algorithm in [6, Section 3], which is also431

[7, Algorithm Chan-I].432

Algorithm 4.2, which represents [6, Algorithm L-RRQR], selects k identifiable433

parameters S1 to optimize subset selection criterion (3.4) and moves them to the434

front of the matrix. Once a column for S1 has been identified, Algorithm 4.2 ignores435

it from then on, and continues on a lower-dimensional submatrix.436

Algorithm 4.2 Column subset selection version of PCA B4

Input: S ∈ Rn×p with n ≥ p, 1 ≤ k < p
Set P = Ip
Compute decomposition (3.7): SP = QR {Unpivoted QR of S}
for ` = 1 : k

{If ` = 1, then R22 = R }

Partition R =

[
R11 R12

0 R22

]
where R22 ∈ R(p−`+1)×(p−`+1)

{Focus on trailing (p− `+ 1)× (p− `+ 1) block}
Compute right singular vector v ∈ Rp−`+1 of R22 corresponding to σ1(R22)

Compute permutation P̃ ∈ R(p−`+1)×(p−`+1) so that |(P̃
T
v)1| = ‖v‖∞

{Move magnitude-largest element of v to top}
Compute QR decomposition (3.6): R22P̃ = Q̃R̃22 {Unpivoted QR of R22P̃ }

Update Q := Q

[
I`−1 0

0 Q̃

]
, P := P

[
I`−1 0

0 P̃

]
, R :=

[
R11 R12

0 R̃22

]
end for
return P , Q, R

Theorem 4.2 shows that the identifiable parameters S1 from Algorithm 4.2 can437

be interpreted as parameters that satisfy criterion (3.4).438
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Theorem 4.2. Let S ∈ Rn×p with n ≥ p be the sensitivity matrix, and 1 ≤ k < p.439

Then Algorithm 4.2 computes a QR decomposition440

SP =
[
S1 S2

]
=
[
Q1 Q2

] [R11 R12

0 R22

]
, R11 ∈ Rk×k,441

442

where443

2−k+1σk ≤ σk(R11) = σk(S1) ≤ σk.444445

If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-446

eters.447

Proof. The equality follows from (3.9), while the upper bound follows from in-448

terlacing (A.1). The lower bound is derived in section A.2, and in particular in449

Lemma A.6.450

Theorem 4.2 bounds the linear independence of the columns in S1 according to451

criterion (3.4). As before, the lower bound in Theorem 4.2 can be quantitatively very452

pessimistic in practice, but tends to be qualitatively informative.453

4.3. PCA method B3. This method [27, section 2.2], [35, (5.14)] selects uniden-454

tifiable parameters by detecting large squared row sums in the matrix V k+1:p ≡455 [
vk+1 · · · vp

]
of eigenvectors corresponding to the p − k smallest eigenvalues of456

the Fischer matrix.457

The squared row norms of V k+1:p,458

ωj ≡
∥∥[vj,k+1 · · · vjp

]∥∥2
2

=

p∑
`=k+1

v2j`, 1 ≤ j ≤ p,459

460

are called ‘leverage scores’ in the statistics literature [8, 23, 50]. The largest leverage461

score462

max
1≤j≤p

ωj = max
1≤j≤p

p∑
`=k+1

v2j`463

464

is called ‘coherence’ in the compressed sensing literature [11] and reflects the difficulty465

of sampling rows from V k+1:p.466

Method B3 picks a largest leverage score from V k+1:p,467

ωm1 = max
1≤j≤p

ωj = max
1≤j≤p

p∑
`=k+1

v2j`468

469

and declares the parameter with index m1 as unidentifiable. Method B3 repeats this470

on the remaining rows of V k+1:p, by selecting parameters that have not been selected471

previously,472

ωm`
= max

k+1≤j≤p

j 6=m1,...,mp−`+1

ωj , ` = p− 1, . . . , k + 1,473

474

and declares the parameters with index m1, . . . ,mp−k as unidentifiable.475

This manuscript is for review purposes only.



14 PEARCE, IPSEN, HAIDER, SAIBABA, SMITH

Expressing PCA method B3 as column subset selection. PCA method476

B3 can be interpreted in two ways: Either as selecting parameters according to the477

largest leverage scores of the subdominant eigenvector matrix V k+1:p of the Fischer478

matrix [8, 23, 50]; or else as selecting parameters based on column subset selection479

with [7, Algorithm GKS-II]. We choose the latter interpretation.480

Algorithm 4.3 may look different from PCA method B3 but accomplishes the481

same thing in an easier manner (in exact arithmetic). The algorithm in [15, Section482

6], which is also [7, Algorithm GKS-I], operates instead the dominant right singular483

vectors, and applies the column subset selection method [4, Section 4], [16, section484

5.4.2], which is also [7, Algorithm Golub-I].485

The idea is the following: partition the SVD of the triangular matrix R =486

U rΣV T in Remark 3.1,487

Σ =

[
Σ1 0
0 Σ2

]
, U r =

[
U1 U2

]
, V =

[
V 1 V 2

]
,488

489

where Σ1 = diag
(
σ1 · · · σk

)
∈ Rk×k contains the k dominant singular values490

of R, hence S; and U1 ∈ Rp×k and V 1 ∈ Rp×k are the k associated left and right491

singular vectors, respectively. Applying a permutation to V T
1 corresponds to applying492

a permutation to R, hence S. In Algorithm 4.3, column j of W is denoted by Wej .493

Theorem 4.3 quantifies how well the identifiable parameters S1 from Algorithm 4.3494

satisfy criterion (3.4).495

Theorem 4.3. Let S ∈ Rn×p with n ≥ p be the sensitivity matrix, and 1 ≤ k < p.496

Then Algorithm 4.3 computes a QR decomposition497

SP =
[
S1 S2

]
=
[
Q1 Q2

]︸ ︷︷ ︸
Q

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

, R11 ∈ Rk×k,498

499

where500

σk/‖V −111 ‖2 ≤ σk(R11) ≤ σk,501

σk+1 ≤ σ1(R22) ≤ ‖V −111 ‖2 σk+1502503

and V 11 ∈ Rk×k is the leading principal submatrix of V in the SVD R = U rΣV T .504

If Algorithm 4.3 applies Algorithm 4.2 to V T
1 , then505

‖V −111 ‖2 ≤ 2k−1506507

If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-508

eters.509

Proof. The upper bound for R11 and the lower bound for R22 follow from inter-510

lacing (A.1). The remaining two bounds are derived in section A.3.511

The bound for ‖V −111 ‖2 = 1/σk(V 11) follows by applying Theorem 4.2 to V T
1 and512

remembering that all singular values of V 1 are equal to 1.513

4.4. Strong rank-revealing QR decompositions. The final method [18, sec-514

tion 4] selects identifiable parameters by trying to maximize the volume of S1 via515

pairwise column permutations.516
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Algorithm 4.3 Column subset selection version of PCA B3

Input: S ∈ Rn×p, n ≥ p, 1 ≤ k < p
Set P = Ip
Compute decomposition (3.7): S = QR {Unpivoted QR of S}
for ` = 1 : k

{If ` = 1, then R22 = R }

Partition R =

[
R11 R12

0 R22

]
where R22 ∈ R(p−`+1)×(p−`+1)

{Focus on trailing (p− `+ 1)× (p− `+ 1) block}
Compute k − ` + 1 right singular vectors V 1 ∈ R(p−`+1)×(k−`+1) of R22 corre-
sponding to σ1 ≥ · · · ≥ σk−`+1

Set W = V T
1 ∈ R(k−`+1)×(p−`+1)

Compute permutation P̃ ∈ R(p−`+1)×(p−`+1) so that
‖W (P̃ e1)‖2 = max1≤j≤p−`+1 ‖Wej‖2

{Move column of W with largest norm to front}
Compute QR decomposition (3.6): R22P̃ = Q̃R̃22 {Unpivoted QR of R22P̃ }

Update Q := Q

[
I`−1 0

0 Q̃

]
, P := P

[
I`−1 0

0 P̃

]
, R :=

[
R11 R12

0 R̃22

]
end for
return P , Q, R

A ‘strong rank-revealing’ QR decomposition tries to optimize both subset selection517

criteria (3.4) and (3.5) and bounds every element of |R−111 R12|. The component-wise518

boundedness ensures that the columns of519

P

[
−R−111 R12

Ip−k

]
520
521

represents an approximate basis for the null space of S, provided R11 is not too ill-522

conditioned [18, section 1.2]. A rigorous definition of the strong rank-revealing QR523

decomposition is presented in [18, Section 1.2] and Theorem 4.4 below.524

Algorithm 4.4, which represents [18, Algorithm 4], exchanges a column of S1 with525

a column of S2 until det(ST1 S1) = det(R11)2 stops increasing. More specifically [18,526

Lemma 3.1], after permuting columns i and k + j of R with a permutation matrix527

P (ij), and performing an unpivoted QR decomposition SP (ij) = Q̃R̃, we compare528

the determinant of the leading principal submatrix R̃11 ∈ Rk×k of R̃ with that of the529

original submatrix R11,530

ρij ≡
det(R̃11)

det(R11)
=

√
(R−111 R12)2ij +

(
‖R22ej‖2 ‖eTi R

−1
11 ‖2

)2
.(4.1)531

532

Given a user-specified tolerance f > 1, Algorithm 4.4 iterates as long as it can533

find columns i and j+k with ρij > f and, by permuting columns i and j+k. increase534

the determinant to det(R̃11) ≥ f det(R11). The correctness of Algorithm 4.4 follows535

from Lemma A.8.536

Theorem 4.4 shows that the columns S1 from Algorithm 4.4 can be interpreted537

as identifiable parameters that satisfy even stronger conditions than criteria (3.4) and538

(3.5) combined.539
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Theorem 4.4. Let S ∈ Rn×p with n ≥ p be the sensitivity matrix and 1 ≤ k < p.540

Algorithm 4.4 with input f ≥ 1 computes a QR decomposition541

SP =
[
S1 S2

]
=
[
Q1 Q2

] [R11 R12

0 R22

]
,542

543

where R11 ∈ Rk×k and R22 ∈ R(p−k)×(p−k) satisfy544

σi(R11) ≥ σi√
1 + f2k(p− k)

, 1 ≤ i ≤ k545

σj(R22) ≤ σj+k
√

1 + f2k(p− k), 1 ≤ j ≤ p− k,546547

and548

|R−111 R12|ij ≤ f, 1 ≤ i ≤ k, 1 ≤ j ≤ p− k.549550

If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-551

eters, and the columns of S2 the unidentifiable parameters.552

Proof. This follows from [18, Lemma 3.1 and Theorem 3.2]. See section A.4, and553

in particular in Lemma A.9.554

Algorithm 4.4 Column subset selection with strong rank-revealing QR (srrqr)

Input: Sensitivity matrix S ∈ Rn×p, n ≥ p, 1 ≤ k < p, f ≥ 1
Compute SP = QR {Pivoted QR to make R11 nonsingular}
Compute ρij as defined in (4.1), 1 ≤ i ≤ k, 1 ≤ j ≤ k − p
while max1≤i≤k, 1≤j≤p−k {ρij} > f

Find some 1 ≤ i ≤ k and 1 ≤ j ≤ k − p with ρij > f

Compute permutation P (ij) to permute columns i and j + k
Decomposition (3.6) RP (ij) = Q̃R̃ {Unpivoted QR of RP (ij)}
Update P := PP (ij), Q := QQ̃, R := R̃
Update ρij

end while
return P , Q, R

5. Applications. We compare the accuracy of the four Algorithms 4.1–4.4 on555

the sensitivity matrices from physical applications (section 5.1) and on the synthetic556

matrices from classical column pivoting ‘counterexamples’ (section 5.2).557

Numerical experiments were performed in MATLAB 2021b on a 16 GB MacBook558

Pro with an M1 chip. We compute relative versions of the subset selection criteria559

(3.4) and (3.5),560

γ1 ≡
σk(S1)

σk(S)
,(5.1)561

562

and563

γ2 ≡
‖(I − S1S

†
1)S2‖2

σk+1(S)
.(5.2)564

565
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The closer γ1 and γ2 are to 1, the more accurate the algorithm. We also compute the566

improvement in condition number of the selected columns,567

τ ≡ cond(S1)

cond(S)
(5.3)568

569

The lower τ1, the better the conditioning of the selected columns.570

5.1. Sensitivity matrices from physical models. We apply Algorithms 4.1–571

4.4 to the sensitivity matrices from the mathematical models in sections 2.2 and B.572

The sensitivity matrices S are evaluated at given nominal parameter values. For573

the epidemiological models (SVIR, SEVIR, COVID) in particular, S is evaluated at574

the nominal values in Table B.1, and additionally at 10,000 points sampled uniformly575

within 50% of the nominal value.576

Table 5.1. For each model, Algorithms 4.1–4.4 produce the same identifiable pa-577

rameters, that is, the same column subsets and the same identical values for the subset578

selection criteria γ1 in (5.1) and γ2 in (5.1). The consistent accuracy illustrates the579

robustness of column subset selection for identifiability analysis in applications, par-580

ticularly since each sensitivity matrix originates from a different type of mechanistic581

model.582

Model n p k τ γ1 γ2
SVIR 31 4 3 1.6e-03 1.0 1.0

SEVIR 31 5 4 1.2e-02 1.0 1.0
COVID 31 8 5 1.5e-03 0.9 1.1
HGO 14 8 5 4.0e-04 1.0 1.0

Wound 46 11 6 2.2e-08 0.9 1.2
Neuro 200 175 14 9.8e-23 0.6 1.7

Table 5.1
Identical accuracy of Algorithms 4.1–4.4 on the models in section 2.2. Here p = number of

parameters and number of columns of S; n = number of observations and number of rows of S; k=
numerical rank of S and number of identifiable parameters; τ= ratio of condition numbers in (5.3);
and γ1 and γ2 are the subset selection criteria in (5.1), and in (5.2), respectively.

When applied to the physical models,
Algorithms 4.1–4.4 exhibit similar accuracy and reliability.

We recommend Algorithm 4.4 because, in theory,
it has the most stringent accuracy guarantees.

583

5.2. Synthetic adversarial matrices. We apply Algorithms 4.1–4.4 to syn-584

thetic adversarial matrices designed to thwart the accuracy of subset selection al-585

gorithms. Although synthetic, these matrices still represent sensitivity matrices for586

specific dynamical systems (Appendix C). Each algorithm is applied to 10,000 real-587

izations of each of the following matrices.588

• Kahan [28]: S = DnKn ∈ Rn×n, where589

Dn ≡ diag
(
1 ζ ζ2 · · · ζn−1

)
, Kn ≡


1 −ϕ −ϕ · · · −ϕ

1 −ϕ · · · −ϕ
. . .

. . .
...

1 −ϕ
1

 ,590

591
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with ζ2 + ϕ2 = 1 for ζ, ϕ > 0, and k = n− 1.592

We choose n = 100, and sample ζ uniformly from [0.9, 0.99999]. The average593

condition number over 10,000 realizations is cond(S) ≈ 2.4 · 1019.594

• Gu-Eisenstat [18, Example 2]:595

S =


Dn−3Kn−3 0 0 −ϕDn−311n−3

µ 0 0
µ 0

µ

 ∈ Rn×n,596

597

where k = n− 2, and598

µ ≡ 1√
k

min
1≤i≤n−3

‖eTi (Dn−3Kn−3)−1‖−12 .599
600

We choose n = 100, and sample ζ uniformly from [0.9, 0.99999]. The average601

condition number over 10,000 realizations is cond(S) ≈ 2.0 · 1034.602

• Jolliffe [27, Appendix A1]: S = UΣV T , where U ∈ Rn×p has orthonor-603

mal columns with Haar measure [47]; Σ ∈ Rp×p is diagonal; and V is the604

orthonormal factor from the QR factorization of605

Λ =


Λ1

Λ2

. . .

Λk

 , Λi =


1 ρi · · · ρi
ρi 1 · · · ρi
...

...
. . .

...
ρi ρi · · · 1

 ∈ Rpi×pi ,606

607

where ρi ≈ 1 and p =
∑k
i=1 pi.608

We choose n = 200, p = 100, pi = 5, and k = 20; and sample the leading k di-609

agonal elements of Σ uniformly from [102, 103], the p−k trailing diagonal ele-610

ments of Σ uniformly from [10−10, 101.9], and ρi uniformly from [0.9, 0.99999].611

The average condition number over 10,000 realizations is cond(S) ≈ 4.8 ·1014.612

613

• Sorensen-Embree [46]: S = UΣV T , where U ∈ Rn×p has Haar measure with614

orthonormal columns; Σ ∈ Rp×p is diagonal; and V =
(
V k V p−k

)
∈ Rp×p615

is an orthogonal matrix, and V k ∈ Rp×k is the orthonormal factor from the616

QR factorization of617

L =



1
−1 1
...

. . .
. . .

−1 · · · −1 1
−1 · · · −1 −1
...

...
...

−1 · · · −1 −1


∈ Rp×k.618

619

We choose n = 200, p = 100, and k = 20; and sample the leading k diagonal620

elements of Σ uniformly from [102, 103], the p − k trailing ones uniformly621

from [10−10, 101.9]. The average condition number over 10,000 realizations is622

cond(S) ≈ 1.4 · 1014.623
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• SHIPS : We constructed this matrix to amplify differences in the accuracy of624

Algorithms 4.1–4.4. Here S = UΣV T , where U and Σ as for Joliffe, and625

V =
(
V k V p−k

)
∈ Rp×p is an orthogonal matrix with626

V k =

(
V 11

Ũ(I − V 11V 11)1/2

)
∈ Rp×k627

628

where Ũ ∈ R(p−k)×k has orthonormal columns with Haar measure [47], and629

V 11 =
T

2‖T‖2
∈ Rk×k, T =


1 −1 · · · −1

1 · · · −1
. . .

...
1

 ∈ Rk×k.630

631

We choose n = 200, p = 100, and k = 20. The leading k diagonal elements632

of Σ are logarithmically spaced in [102, 103], and the p − k trailing ones633

logarithmically spaced in [10−10, 101.9]. The average condition number over634

10,000 realizations is cond(S) ≈ 1.0 · 1013.635

In Algorithm 4.4, we set f =
√

2 for the Gu-Eisenstat matrix, and f = 1 for all636

other matrices.637

Table 5.2. It displays the average of the condition number ratio (5.3), and subset638

selection criteria (5.1) and (5.2) for 10,000 realizations of each synthetic matrix.639

Algorithm 4.2 produces the smallest values of τ and γ1, that is, the worst condi-640

tioned columns S1, for the Kahan and Gu-Eisenstat matrices.641

Algorithm 4.3 produces the smallest values of γ2, that is, the best low-rank ap-642

proximation S1. Algorithms 4.1 and 4.4 are close with only slightly larger γ2 on all643

matrices except for the Sorensen-Embree matrix, where their γ2 is more than 5 times644

larger than that of Algorithm 4.3.645

Algorithms 4.1 and 4.4 produce better conditioned S1 than Algorithm 4.3, most646

notably for the Sorensen-Embree and SHIPS matrices.647

The Jolliffe matrix was constructed to thwart Algorithm 4.3 [27, Appendix A1],648

and there is slight evidence of its loss of accuracy with these matrices. While all649

of the algorithms performed nearly identically, the absolute version of criterion (3.4)650

for Algorithm 4.3 (to more digits than could be represented in Table 5.2) is 1.8e-14,651

compared to 1.9e-14 for Algorithms 4.1, 4.2, and 4.4.652

Figure 5.1. The box plots illustrate the accuracy of Algorithms 4.1–4.4 on 10,000653

realizations of our SHIPS matrix. The top and bottom of each box represent the654

first and third quartiles, respectively, while the red line through the box itself is the655

average. Values below and above the short black horizontal lines are outliers, and the656

horizontal lines themselves show the minimum and maximum excluding the outliers.657

We constructed the SHIPS matrix to force differences in the accuracy of Algo-658

rithms 4.1–4.4. It illustrates the superior accuracy of Algorithm 4.4 in the conditioning659

(5.3) of the selected columns S1, as well as subset selection criteria (5.1) and (5.2).660

Figure 5.1(a). Algorithm 4.4 gives the best, that is smallest, ratio of condition661

numbers. In contrast, Algorithms 4.3 and 4.2 have a larger number of outliers above662

the maximum, illustrating more less reliable accuracy.663

Figure 5.1(b). Algorithm 4.4 gives the best, that is closest to 1, values of γ1. In664

contrast, Algorithm 4.3 has more outliers below its minimum, indicating less reliable665

accuracy.666
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Figure 5.1(c). Algorithm 4.4 has the most consistent values of γ2, but they are667

slightly larger than those for Algorithms 4.3 and 4.2. Its maximum and the outliers668

above are comparable to those of 4.3. In contrast, Algorithm 4.1 is much less accurate.669

While there are differences among Algorithms 4.1–4.4 they are relatively small,670

suggesting that all are effective in practice. However, we still recommend Algo-671

rithm 4.4 since it is numerically stable, computationally efficient, and is the only672

one whose bounds do not depend exponentially on p or k.673

S Algorithms τ γ1 γ2

Kahan

4.1, 4.4
4.2
4.3

• 3.7e-03
6.4e-01

• 3.7e-03

• 1.0
1.6e-03

• 1.0

1.8e03
1.9e15

• 1.7e03

GuEis

4.1, 4.4
4.2
4.3

4.1e-03
4.1e-03
4.1e-03

0.6
0.6
0.6

0.9
5.2e11

• 1.0

Joll 4.1,4.2, 4.3, 4.4 1.6e-12 1.0 1.0

SorEm

4.1, 4.4
4.2
4.3

• 1.4e-12
2.2e-12
2.3e-12

• 0.9
0.5
0.5

5.4
1.1

• 1.0

SHIPS

4.1
4.2
4.3
4.4

1.9e-12
2.9e-12
2.0e-12

• 1.6e-12

0.3
0.2
0.3

• 0.4

2.4
1.4

•1.4
1.9

Table 5.2
Accuracy of Algorithms 4.1–4.4 on the synthetic matrices. For each matrix S, the average

condition number ratio τ in (5.3), and the average subset selection criteria γ1 in (5.1) and γ2 in
(5.2) over 10,000 realizations are displayed. A • denotes an optimal value for the corresponding
criterion.

6. Conclusion. We have presented a numerically accurate and reliable approach674

for practical parameter identifiability analysis in the context of physical models.675

Our recommendation is to perform column subset selection (CSS) directly on the676

sensitivity matrix S, rather than detouring through the error-prone formation of the677

Fischer matrix F = STS followed by an eigenvalue decomposition.678

We applied the four CSS Algorithms 4.1–4.4, to a large variety of practical and679

adversarial sensitivity matrices, and they produced almost identical sets of identifiable680

parameters S1 with vastly improved condition numbers compared to the condition681

number of the original matrix S.682

The superior accuracy of CSS is important when identifiability analysis is part683

of a larger application. In the context of inverse problems, for instance, parameters684

designated as unidentifiable may be fixed at a nominal value, for the purpose of di-685

mension reduction. If this is an iterative process, reliable designation of unidentifiable686

parameters is important.687
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Fig. 5.1. Application of Algorithms 4.1–4.4 to 10,000 realizations of the SHIPS matrix. Box
plots show (a) the ratio of condition numbers τ in (5.3), and the subset selection criteria (b) γ1 in
(5.1), and (c) γ2 in (5.2).

Future research. We discuss several avenues for future research, many of which688

will necessitate challenging modifications to Algorithms 4.1–4.4.689

1. Efficient implementation of Algorithms 4.1–4.4.690

This includes the choice of QR decompositions and data structure; as well as691

fast updates, searches for magnitude-largest elements, and computation of k.692

2. Application of CSS methods to pharmacology.693

Physiologically-based pharmacokinetic (PBPK) and quantitative systems phar-694

macology (QSP) models exhibit moderate- to high-dimensional parameter695

spaces with highly nonlinear dependencies in their ODEs. For example, the696

minimal brain PBPK model in [2] has as many as 37 parameters in 16 cou-697

pled ODEs. This requires that unidentifiable parameters be determined and698

fixed at nominal values at the very start –prior to optimization, sensitiv-699

ity analysis, Bayesian inference for computing parameter distributions, and700

uncertainty propagation for constructing prediction intervals for QoIs.701

Another difficulty is the optimization of criteria (5.1)–(5.3) for larger QSP and702

PBPK models, as they may depend strongly on the number n of observations,703

the number p of parameters, and the number k of identifiable parameters.704

3. Global CSS algorithms.705

Algorithms 4.1–4.4 are local in the sense that they operate on a single set706

of nominal parameter values. However, there is significant motivation in the707

PBPK and QSP communities to identify parameter dependencies for a range708

of admissible parameter values. Although it might be tempting to simply709

average the sensitivity values, in the manner of active subspace analysis [10],710

the highly nonlinear nature of parameter dependencies tends to rule out this711

approach.712

4. Mixed effects.713

Another challenge in PBPK and QSP models are the regimes that combine714

both, population and individual attributes. This necessitates mixed-effects715

models, which try to quantify the fixed-effects due to population parameters716

on the one hand; and the distributions for random effects associated with717

individuals on the other. A first step would be to incorporate CSS methods718

into the initial parameter subset selection algorithm for mixed-effects models719

in [45].720
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5. Virtual populations.721

A broad area of research in QSP models concerns the generation of virtual722

populations for the purpose of safe and efficient drug development [1]. This723

requires the perturbation of QSP models about nominal values and character-724

ization of sensitivities and uncertainties associated with model parameters.725

We anticipate that the CSS algorithms will play an increasing role in this726

growing field of virtual population generation and selection.727

Appendix A. Proofs. We present the proofs of Theorem 4.1 (section A.1),728

Theorem 4.2 (section A.2), Theorem 4.3 (section A.3), and Theorem 4.4 (section A.4).729

Let S ∈ Rn×p be the sensitivity matrix with n ≥ p, singular values σ1 ≥ · · · ≥730

σp ≥ 0, and a pivoted QR decomposition, partitioned for some 1 ≤ k < p so that731

SP = Q

[
R11 R12

0 R22

]
, R11 ∈ Rk×k, R22 ∈ R(p−k)×(p−k).732

733

Singular value interlacing [16, Corollary 8.6.3] implies that the singular values of R11734

cannot exceed the corresponding dominant singular values of S, while the singular735

values of R22 cannot be smaller than the corresponding subdominant singular values736

of S, that is,737

σj(R11) ≤ σj , 1 ≤ j ≤ k
σj(R22) ≥ σk+j , 1 ≤ j ≤ p− k.

(A.1)738

739

A.1. Proof of Theorem 4.1. We present an approximation for the smallest740

singular value (Lemma A.1), a correctness proof Algorithm 4.1 (Lemma A.2), and a741

proof of Theorem 4.1 (Lemma A.3).742

In the subsequent proofs we combine different bits and pieces from [7, sections 7743

and 8] and [5, section 3], and add more details for comprehension.744

The key observation is that a judiciously chosen permutation can reveal a smallest745

singular value in a diagonal element of the triangular matrix in a QR decomposition.746

Below is a consequence of a more general statement in [5, Theorem 2.1].747

Lemma A.1 (Revealing a smallest singular value). Let v with ‖v‖2 = 1 be a right748

singular vector of B ∈ Rm×m associated with a smallest singular value σm(B), so that749

‖Bv‖2 = σm(B). Let P ∈ Rm×m be a permutation that moves a magnitude-largest750

element of v to the bottom, |(P Tv)m| = ‖v‖∞. If BP = QR is an unpivoted QR751

decomposition (3.6) of BP , then the trailing diagonal element of the upper triangular752

matrix R satisfies753

σm(B) ≤ |rmm| ≤
√
mσm(B).754755

Proof. The lower bound follows from singular value interlacing (A.1). As for the756

upper bound, the relation between the right singular vector v and a corresponding757

left singular vector u with Bv = σm(B)u and ‖u‖2 = 1 implies758

σm(B)u = Bv = (BP ) (P Tv) = QR (P Tv) = QR

[
∗

(P Tv)m

]
759
760

From this, ‖u‖2 = 1, the unitary invariance of the two-norm, and the upper triangular761

nature of R follows762

σm(B) = ‖σm(B)u‖2 = ‖R(P Tv)‖2 ≥ |rmm(P Tv)m| = |rmm| ‖v‖∞ ≥ |rmm|/
√
m.763764

The last inequality follows from the fact that v ∈ Rm has unit two-norm ‖v‖2 = 1,765

so at least one of its m elements must be sufficiently large with ‖v‖∞ ≥ 1/
√
m.766
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Lemma A.2 (Correctness of Algorithm 4.1). Let S ∈ Rn×p with n ≥ p have767

singular values σ1 ≥ · · · ≥ σp ≥ 0, and pick some 1 ≤ k < p. Then Algorithm 4.1768

computes a QR decomposition SP = QR where the p− k trailing diagonal elements769

of R satisfy770

|R``| ≤
√
` σ`, k + 1 ≤ ` ≤ p.771772

Proof. This is an induction proof on the iterations i of Algorithm 4.1 with more773

discerning notation. The initial pivoted decomposition reduces the problem size774

SP (0) = Q(0)R(0),(A.2)775776

where P (0) ∈ Rp×p is a permutation, Q(0) ∈ Rn×p has orthonormal columns, and777

R(0) ∈ Rp×p is upper triangular.778

Induction basis. Set R
(1)
11 = R(0) ∈ Rp×p, and let v(1),u(1) ∈ Rp be right and left779

singular vectors associated with a smallest singular value,780

R
(1)
11 v(1) = σpu

(1), ‖v(1)‖2 = ‖u(1)‖2 = 1.781782

Determine a permutation P̃
(1)

that moves a magnitude-largest element of v(1) to the783

bottom,784

|((P̃
(1)

)Tv(1))p| = ‖v(1)‖∞ ≥ 1/
√
p.785786

Compute an unpivoted QR decomposition R
(1)
11 P̃

(1)
= Q̃

(1)
R̃

(1)

11 , where Q̃
(1)
∈ Rp×p787

is an orthogonal matrix. Lemma A.1 implies that the trailing diagonal element of the788

triangular matrix reveals a smallest singular value, |(R̃
(1)

11 )pp| ≤
√
p σp. Insert this789

into the initial decomposition (A.2)790

SP (0) = Q(0)R(0) = Q(0)Q̃
(1)

R̃
(1)

11 (P̃
(1)

)T .791792

Multiply by P̃
(1)

on the right,793

S P (0)P̃
(1)︸ ︷︷ ︸

P (1)

= Q(0)Q̃
(1)︸ ︷︷ ︸

Q(1)

R̃
(1)

11︸︷︷︸
R(1)

where |R(1)
pp | ≤

√
pσp.794

795

Induction hypothesis. Assume that SP (i) = Q(i)R(i) for i = p− ` and ` > k + 1796

with797

|R(i)
jj | ≤

√
j σj , ` ≤ j ≤ p.798

799

Induction step. Here ` = k+2 is the dimension of the leading block, while i ≡ p−`800

is the dimension of the trailing block. Partition801

R(i) =

[
R

(i)
11 R

(i)
12

0 R
(i)
22

]
R

(i)
11 ∈ R`×`, R

(i)
22 ∈ Ri×i.(A.3)802

803

Let v(i+1),u(i+1) ∈ R` be right and left singular vectors associated with a smallest804

singular value of R
(i)
11 ,805

R
(i)
11v(i+1) = σ`(R

(i)
11 ) u(i+1), ‖v(i+1)‖2 = ‖u(i+1)‖2 = 1.(A.4)806807
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Determine a permutation P̃
(i+1)

that moves a magnitude-largest element of v(i+1) to808

the bottom,809

|((P̃
(i+1)

)Tv(i+1))`| = ‖v(i+1)‖∞ ≥ 1/
√
`.810811

Compute an unpivoted QR decomposition R
(i)
11 P̃

(i+1)
= Q̃

(i+1)
R̃

(i+1)

11 , where Q̃
(i+1)

∈812

R`×` is an orthogonal matrix. Lemma A.1 implies that the trailing diagonal element813

of the triangular matrix reveals a smallest singular value,814

|(R̃
(i+1)

11 )``| ≤
√
` σ`(R

(i)
11 ).(A.5)815816

Insert this into the decomposition SP (i) = Q(i)R(i) with partitioning (A.3), and817

exploit the fact that the inverse of the orthogonal matrix Q̃
(i+1)

is (Q̃
(i+1)

)T ,818

SP (i) = Q(i)R(i) = Q(i)

[
Q̃

(i+1)
R̃

(i+1)

11 (P̃
(i+1)

)T R
(i)
12

0 R
(i)
22

]
819

= Q(i)

[
Q̃

(i+1)
0

0 Ii

][
R̃

(i+1)

11 (Q̃
(i+1)

)TR
(i)
12

0 R
(i)
22

][
(P̃

(i+1)
)T 0

0 Ii

]
820

821

Multiply by the permutation on the right,822

S P (i)

[
P̃

(i+1)
0

0 Ii

]
︸ ︷︷ ︸

P (i+1)

= Q(i)

[
Q̃

(i+1)
0

0 Ii

]
︸ ︷︷ ︸

Q(i+1)

[
R̃

(i+1)

11 (Q̃
(i+1)

)TR
(i)
12

0 R
(i)
22

]
︸ ︷︷ ︸

R(i+1)

.823

824

From (A.5), interlacing (A.1), and the fact that R(i) has the same singular values825

as S follows826

|(R(i+1))``| = |(R̃
(i+1)

11 )``| ≤
√
` σ`(R

(i)
11 ) ≤

√
` σ`(R

(i)) =
√
` σ`.827828

Together with the induction hypothesis, and i = p− ` = p− (k + 2) this implies829

|R(p−k+1)
jj | ≤

√
j σj , k + 1 ≤ j ≤ p.830

831

Lemma A.3 (Proof of Theorem 4.1). Let S ∈ Rn×p with n ≥ p have singular832

values σ1 ≥ · · · ≥ σp ≥ 0, and pick some 1 ≤ k < p. Then Algorithm 4.1 computes a833

QR decomposition834

SP =
[
Q1 Q2

] [R11 R12

0 R22

]
,835

836

where the largest singular value of R22 ∈ R(p−k)×(p−k) is bounded by837

‖R22‖2 ≤ p ‖W−1‖2 σk+1.838839

Here W ∈ R(p−k)×(p−k) is a triangular matrix with diagonal elements |wjj | = 1,840

1 ≤ j ≤ p− k; offdiagonal elements |wij | ≤ 1 for i 6= j; and841

‖W−1‖2 ≤ 2p−k−1.842843

Proof. Let SP = QR be computed by Algorithm 4.1 with input k. The proof844

is an extension of Lemma A.1. From the right singular vectors in Algorithm 4.1 we845

construct a matrix Z, and then bound ‖RZ‖2 to derive an upper bound for ‖R22‖2.846
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Construction of Z. The indexing of the partition is different than the one in (A.3),847

R(`) =

[
R

(`)
11 R

(`)
12

0 R
(`)
22

]
R

(`)
11 ∈ R`×`, R

(`)
22 ∈ R(p−`)×(p−`), k + 1 ≤ ` ≤ p.848

849

In the statement of this lemma, the partitioning is ` = k.850

Let v(`),u(`) ∈ R` be right and left singular vectors associated with a smallest851

singular value of R
(`)
11 ,852

R
(`)
11 v(`) = σ`(R

(`)
11 ) u(`), ‖v(`)‖2 = ‖u(`)‖2 = 1, k + 1 ≤ ` ≤ p.853854

Algorithm 4.1 has permuted the right singular vectors so that a magnitude-largest855

element is at the bottom,856

|v(`)
` | ≥ 1/

√
` and |v(`)

j | ≤ |v
(`)
` |, 1 ≤ j < `, k + 1 ≤ ` ≤ p.(A.6)857

858

The trailing elements in singular vectors associated with larger-dimensional blocks are859

not affected by subsequent permutations, see (A.3), where permutations in the (1, 1)860

block do not affect the (2, 2) block and its placement of diagonal elements.861

Construct an upper trapezoidal matrix Z =
[
z1 · · · zp−k

]
∈ Rp×(p−k), whose862

columns are the right singular vectors863

z`−k =

[
v(`)

0p−`

]
, k + 1 ≤ ` ≤ p.864

865

Factor out the diagonal elements and focus on the trailing (p−k)× (p−k) submatrix866

Z =

[
Z1

W

]
D, where D =


v
(k+1)
k+1

. . .

v
(p)
p

 ∈ R(p−k)×(p−k)(A.7)867

868

has diagonal elements |d``| = |v(`)` | ≥ 1/
√
`, k + 1 ≤ ` ≤ p. From (A.6) follows that869

W ∈ R(p−k)×(p−k) is a nonsingular upper triangular matrix with elements870

|w``| = 1, |w`j | ≤ 1, 1 ≤ ` ≤ p− k, j > `.871872

Bounds for ‖RZ‖2. We derive an upper and a lower bound. Multiplying the QR873

decomposition SP = QR by QT on the left and by Z on the right gives874

QTSPZ = RZ ∈ Rp−k.875876

The columns of RZ are877

Rz`−k =

[
R

(`)
11 v(`)

0p−`

]
= σ`(R

(`)
11 )

[
u(`)

0p−`

]
, k + 1 ≤ ` ≤ p.878

879

From ‖u(`)‖2 = 1 and interlacing (A.1) follows880

‖Rz`−k‖2 = σ`(R
(`)
11 ) ≤ σ`, k + 1 ≤ ` ≤ p.881882
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Bound the norm of RZ ∈ Rp×(p−k) in terms of its largest column norm [16, section883

2.3.2] to obtain the upper bound884

‖RZ‖2 ≤
√
p− k max

k+1≤`≤p
‖Rz`−k‖2 ≤

√
p− k max

k+1≤`≤p
σ` ≤

√
p σk+1.(A.8)885

886

As for the lower bound, use the partitioning in the statement of this lemma,887

RZ =

[
R11 R12

0 R22

] [
Z1D
WD

]
=

[
R11Z1D + R12WD

R22WD

]
,888

889

and bound ‖RZ‖2 in terms of the trailing component890

‖RZ‖2 ≥ ‖R22WD‖2 ≥
‖R22‖2

‖W−1‖2‖D−1‖2
≥ ‖R22‖2
√
p ‖W−1‖2

.891

892

At last combine the above upper bound with the lower bound (A.8),893

‖R22‖ ≤ p ‖W−1‖2 σk+1.894895

The bound for ‖W−1‖2 is derived in [22, Theorem 8.14]; and there are classes of896

matrices for which it can essentially be tight [22, section 8.3].897

A.2. Proof of Theorem 4.2. We present an approximation for the largest898

singular value (Lemma A.4), a correctness proof Algorithm 4.2 (Lemma A.5), and a899

proof of Theorem 4.2 (Lemma A.6).900

In the subsequent proofs, we present more general and simpler derivations than901

the ones in [7, section 7] and [6, sections 2 and 3], and add more details for compre-902

hension.903

The key observation is that a judiciously chosen permutation can reveal a largest904

singular value in a diagonal element of the triangular matrix in a QR decomposition.905

The next statement represents part of [6, Theorem 2.1], however with a simpler proof906

that does not require a pseudo inverse as in [6, Theorems 6.1 and 6.2].907

Lemma A.4 (Revealing a largest singular value). Let v with ‖v‖2 = 1 be a908

right singular vector of B ∈ Rm×m associated with a largest singular value σ1(B),909

so that ‖Bv‖2 = σ1(B). Let P ∈ Rm×m be a permutation that moves a magnitude-910

largest element of v to the top, |(P Tv)1| = ‖v‖∞. If BP = QR is an unpivoted QR911

decomposition (3.6) of BP , then the leading diagonal element of the upper triangular912

matrix R satisfies913

σ1(B)/
√
m ≤ |r11| ≤ σ1(B).914915

Proof. The upper bound follows from singular value interlacing (A.1). As for the916

lower bound, the relation between the right singular vector v and a corresponding left917

singular vector u with BTu = σ1(B)v and ‖u‖2 = 1 implies918

σ1(B)P Tv = P TB u = RTQTu.919920

From this, the lower triangular nature of RT , the Cauchy Schwartz inequality, and921

‖u‖2 = 1 follows for the leading element922

σ1(B)‖v‖∞ = |σ1(B)(P Tv)1| = |eT1 R
T (QTu)| ≤ ‖Re1‖2‖QTu‖2 = |r11|.923924

Then ‖v‖∞ ≥ 1/
√
m follows from the fact that v ∈ Rm has unit two-norm ‖v‖2 = 1,925

so at least one of its m elements must be sufficiently large.926
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Lemma A.5 (Correctness of Algorithm 4.2). Let S ∈ Rn×p with n ≥ p have927

singular values σ1 ≥ · · · ≥ σp ≥ 0, and pick some 1 ≤ k < p. Then Algorithm 4.2928

computes a QR decomposition SP = QR where the k leading diagonal elements of R929

satisfy930

σ`/
√
p− `+ 1 ≤ |R``|, 1 ≤ ` ≤ k.931932

Proof. This is an induction proof on the iterations ` of Algorithm 4.2 with more933

discerning notation. The initial pivoted decomposition reduces the problem size934

SP (0) = Q(0)R(0),(A.9)935936

where P (0) ∈ Rp×p is a permutation, Q(0) ∈ Rn×p has orthonormal columns, and937

R(0) ∈ Rp×p is upper triangular.938

Induction basis. Set R
(1)
22 = R(0) ∈ Rp×p, and let v(1),u(1) ∈ Rp be right and left939

singular vectors associated with a largest singular value,940

R
(1)
22 v(1) = σ1u

(1), ‖v(1)‖2 = ‖u(1)‖2 = 1.941942

Determine a permutation P̃
(1)

that moves a magnitude-largest element of v(1) to the943

top,944

|((P̃
(1)

)Tv(1))1| = ‖v(1)‖∞ ≥ 1/
√
p.945946

Compute an unpivoted QR decomposition R
(1)
22 P̃

(1)
= Q̃

(1)
R̃

(1)

22 , where Q̃
(1)
∈ Rp×p947

is an orthogonal matrix. Lemma A.4 implies that the leading diagonal element of the948

triangular matrix reveals a largest singular value, |(R̃
(1)

22 )11| ≥ σ1/
√
p. Insert this into949

the initial decomposition (A.9)950

SP (0) = Q(0)R(0) = Q(0)Q̃
(1)

R̃
(1)

22 (P̃
(1)

)T .951952

Multiply by P̃
(1)

on the right,953

S P (0)P̃
(1)︸ ︷︷ ︸

P (1)

= Q(0)Q̃
(1)︸ ︷︷ ︸

Q(1)

R̃
(1)

22︸︷︷︸
R(1)

where |R(1)
22 | ≥ σ1/

√
p.954

955

Induction hypothesis. Assume that SP (`) = Q(`)R(`) for ` < k with956

|R(`)
jj | ≥ σj/

√
p− j + 1, 1 ≤ j ≤ `.957

958

Induction step. Here ` = k−1. The dimension of the leading block is `−1, while959

the dimension of the trailing block is i ≡ p− (`− 1). Partition960

R(`) =

[
R

(`)
11 R

(`)
12

0 R
(`)
22

]
R

(`)
11 ∈ R(`−1)×(`−1), R

(`)
22 ∈ Ri×i.(A.10)961

962

Let v(`+1),u(`+1) ∈ Ri be right and left singular vectors associated with a largest963

singular value of R
(`)
22 ,964

R
(`)
22 v(`+1) = σ1(R

(`)
22 ) u(`+1), ‖v(`+1)‖2 = ‖u(`+1)‖2 = 1.(A.11)965966
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Determine a permutation P̃
(`+1)

∈ Ri×i that moves a magnitude-largest element of967

v(`+1) to the top,968

|((P̃
(`+1)

)Tv(`+1))1| = ‖v(`+1)‖∞ ≥ 1/
√
i.969970

Compute an unpivoted QR decomposition R
(`)
22 P̃

(`+1)
= Q̃

(`+1)
R̃

(`+1)

22 , where Q̃
(`+1)

∈971

Ri×i is an orthogonal matrix. Lemma A.4 implies that the leading diagonal element972

of the triangular matrix reveals a largest singular value,973

|(R̃
(`+1)

22 )11| ≥ σ1(R
(`)
22 )/
√
i.(A.12)974975

Insert this into the decomposition SP (`) = Q(`)R(`) with partitioning (A.10), and976

exploit the fact that the inverse of the orthogonal matrix Q̃
(`+1)

equals (Q̃
(`+1)

)T ,977

SP (`) = Q(`)R(`) = Q(`)

[
R

(`)
11 R

(`)
12

0 Q̃
(`+1)

R̃
(`+1)

22 (P̃
(`+1)

)T

]
978

= Q(`)

[
I`−1 0

0 Q̃
(`+1)

][
R

(`)
11 R

(`)
12

0 R̃
(`+1)

22

][
I`−1 0

0 (P̃
(`+1)

)T

]
979

980

Multiply by the permutation on the right,981

S P (`)

[
I`−1 0

0 P̃
(`+1)

]
︸ ︷︷ ︸

P (`+1)

= Q(`)

[
I`−1 0

0 Q̃
(`+1)

]
︸ ︷︷ ︸

Q(`+1)

[
R

(`)
11 R

(`)
12

0 R̃
(`+1)

22

]
︸ ︷︷ ︸

R(`+1)

.982

983

From (A.12), interlacing (A.1), and the fact that R(`) has the same singular values984

as S follows985

|R(`+1)
`` | = |(R̃

(`+1)

22 )11| ≥ σ1(R
(`)
22 )/
√
i ≥ σ`(R(`))/

√
i = σ`/

√
i.986987

Together with the induction hypothesis, and ` = k − 1 this implies988

|R(k)
jj | ≥ σj/

√
p− j + 1, 1 ≤ j ≤ k.989

990

Lemma A.6 (Proof of Theorem 4.2). Let S ∈ Rn×p with n ≥ p have singular991

values σ1 ≥ · · · ≥ σp ≥ 0, and pick some 1 ≤ k < p. Then Algorithm 4.2 computes a992

QR decomposition993

SP =
[
Q1 Q2

] [R11 R12

0 R22

]
,994

995

where the smallest singular value of R11 ∈ Rk×k is bounded by996

σk(R11) ≥ σk

p ‖W−1‖2
.997

998

Here W ∈ Rk×k is a triangular matrix with diagonal elements |wjj | = 1, 1 ≤ j ≤ k;999

offdiagonal elements |wij | ≤ 1 for i 6= j; and1000

‖W−1‖2 ≤ 2k−1.10011002
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Proof. Let SP = QR be computed by Algorithm 4.2 with input k. The proof is1003

an extension of Lemma A.4, and is more general than the one in [7, section 7] due to1004

the absence of inverses and no need for the requirement σk > 0.1005

From the right singular vectors in Algorithm 4.2 we construct a matrix Z, and1006

also a matrix Y of left singular vectors. Then we bound the kth singular value of a1007

top submatrix of RTY , to derive a lower bound for σk(R11).1008

Construction of Z and Y . Consider the partitionings as in (A.10) with i ≡1009

p− (`− 1)1010

R(`) =

[
R

(`)
11 R

(`)
12

0 R
(`)
22

]
R

(`)
11 ∈ R(`−1)×(`−1), R

(`)
22 ∈ Ri×i, 1 ≤ ` ≤ k.1011

1012

In the statement of this lemma, the partitioning is ` = k + 1.1013

Let v(`),u(`) ∈ Ri be right and left singular vectors associated with a largest1014

singular value of R
(`)
22 ,1015

R
(`)
22 v(`) = σ1(R

(`)
22 ) u(`), ‖v(`)‖2 = ‖u(`)‖2 = 1, 1 ≤ ` ≤ k.10161017

Algorithm 4.2 has permuted the right singular vectors so that a magnitude-largest1018

element is at the top, for 1 ≤ ` ≤ k1019

|v(`)
1 | ≥ 1/

√
i and |v(`)

j | ≤ |v
(`)
1 |, 1 < j ≤ i.(A.13)1020

1021

The leading elements in singular vectors associated with larger-dimensional blocks are1022

not affected by subsequent permutations, see (A.10), where permutations in the (2, 2)1023

block do not affect the (1, 1) block and its placement of diagonal elements.1024

Construct a lower trapezoidal matrix Z =
[
z1 · · · zk

]
∈ Rp×k, whose columns1025

are the right singular vectors1026

z` =

[
0`−1
v(`)

]
, 1 ≤ ` ≤ k.1027

1028

Factor out the diagonal elements and distinguish the leading k × k submatrix1029

Z =

[
W
Z2

]
D, where D =


v
(1)
1

. . .

v
(k)
1

 ∈ Rk×k(A.14)1030

1031

has diagonal elements |d``| = |v(`)1 | ≥ 1/
√
p− `+ 1, 1 ≤ ` ≤ k. From (A.13) follows1032

that W ∈ Rk×k is a nonsingular lower triangular matrix with elements1033

|w``| = 1, |wj`| ≤ 1, 1 ≤ ` ≤ k, j > `.10341035

Analogously, construct a second lower trapezoidal matrix Y =
[
y1 · · · yk

]
∈ Rp×k,1036

whose columns are the right left vectors1037

y` =

[
0`−1
u(`)

]
, ‖y`‖2 = 1, 1 ≤ ` ≤ k,1038

1039

and distinguish the leading k × k submatrix1040

Y =

[
Y 1

Y 2

]
, where Y 1 ∈ Rk×k, ‖Y 1‖2 ≤

√
k.(A.15)1041

1042
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Bounds for σk(RT
11Y 1). We derive an upper and a lower bound.1043

The columns of RTY are for 1 ≤ ` ≤ k,1044

RTy` =

[
(R

(`)
11 )T 0

(R
(`)
12 )T (R

(`)
22 )T

] [
0`−1
u`

]
=

[
0`−1

(R
(`)
22 )Tu`

]
=

[
0`1

σ1(R`
22)v`

]
= σ1(R`

22)z`.1045

1046

Collecting all the columns gives1047

RTY = Z∆ where ∆ =


σ1(R

(1)
22 )

. . .

σ1(R
(k)
22 )

 ∈ Rk×k.1048

1049

With the partitioning of R as in the statement of this lemma, the top k×k submatrix1050

of RTY = Z∆ equals1051

RT
11Y 1 = WD∆.10521053

First derive the lower bound from the right side. The Weyl product inequalities [26,1054

7.3.P16] imply1055

σk(RT
11Y 1) = σk(WD∆) ≥ σk(W )σk(D)σk(∆) ≥ σk√

p− k + 1 ‖W−1‖2
(A.16)1056

1057

where the last inequality follows from applying interlacing (A.1) to1058

σk(∆) = min
1≤`≤k

σ1(R
(`)
22 ) ≥ σk,1059

1060

and bounding the diagonal elements of D in (A.14) by1061

σk(D) = min
1≤`≤k

|v(`)1 | ≥ 1/
√
p− k + 1.1062

1063

Now derive the lower bound from the left side. The Weyl product inequalities [26,1064

7.3.P16] and (A.15) imply1065

σk(RT
11Y 1) ≤ σk(R11)‖Y 1‖2 ≤

√
kσk(R11).10661067

At last, combine this with (A.16) to obtain1068

σk(R11) ≥ σk√
k(p− k + 1) ‖W−1‖2

≥ σk

p ‖W−1‖2
.1069

1070

The bound for ‖W−1‖2 follows as in the proof of Lemma A.3.1071

A.3. Proof of Theorem 4.3. The following is an extension of [16, Theorem1072

5.5.2].1073

Lemma A.7 (Proof of Theorem 4.3). Let S ∈ Rn×p with n ≥ p have singular1074

values σ1 ≥ · · · ≥ σp ≥ 0, and pick some 1 ≤ k < p. If Algorithm 4.3 computes a QR1075

decomposition1076

SP =
[
Q1 Q2

] [R11 R12

0 R22

]
,1077

1078
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and chooses the permutation P so that V 11 ∈ Rk×k is nonsingular, then R11 ∈ Rk×k1079

and R22 ∈ R(p−k)×(p−k) satisfy1080

σk/‖V −111 ‖2 ≤ σk(R11) ≤ σk1081

σk+1 ≤ σ1(R22) ≤ ‖V −111 ‖2 σk+1.10821083

Proof. Let S = QR be a preliminary unpivoted QR decomposition, where Q ∈1084

Rn×p has orthonormal columns, and R ∈ Rp×p is upper triangular. Then let R =1085

U rΣV T be an SVD of the triangular matrix as in Remark 3.1. Distinguish the1086

matrix of k largest singular values Σ1 ∈ Rk×k of S, and the corresponding right1087

singular vectors V 1 ∈ Rp×k,1088

Σ =

[
Σ1 0
0 Σ2

]
∈ Rp×p, V =

[
V 1 V 2

]
∈ Rp×p.1089

1090

Main idea. Perform a QR decomposition with column pivoting on V T
1 ,1091

V T
1 P = Q1

[
V 11 V 12

]
,10921093

where P ∈ Rp×p is a permutation matrix, Q1 ∈ Rk×k is an orthogonal matrix, and1094

V 11 ∈ Rk×k is nonsingular upper triangular. Partition commensurately,1095

V T
2 P =

[
V 21 V 22

]
,10961097

where V 22 ∈ R(p−k)×(p−k). Express the permuted upper triangular matrix RP in1098

terms of these partitions,1099

RP = U rΣV TP = U r

[
Σ1 0
0 Σ2

] [
Q1 0
0 I

] [
V 11 V 12

V 21 V 22

]
= U r

[
Σ̂1 0
0 Σ2

] [
V 11 V 12

V 21 V 22

]
where Σ̂1 ≡ Σ1Q1.

(A.17)1100

1101

Because Q1 is an orthogonal matrix, Σ̂1 has the same singular values as Σ1, that is,1102

σj(Σ̂1) = σj(Σ1) = σj , 1 ≤ j ≤ k.(A.18)11031104

Re-triangularize by computing an unpivoted QR decomposition of RP ,1105

RP = Qr

[
R11 R12

0 R22

]
(A.19)1106

1107

where R11 ∈ Rk×k is upper triangular.1108

Inequality for R11. Equate (A.19) with (A.17) and move U r to the left1109

UT
r Qr

[
R11 R12

0 R22

]
= UT

r RP =

[
Σ̂1 0
0 Σ2

] [
V 11 V 12

V 21 V 22

]
.1110

1111

The goal is to extract R11. To this end partition1112

UT
r Qr =

[
U11 U12

U21 U22

]
1113
1114
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and substitute this into the above expression for UT
r RP ,1115 [

U11 U12

U21 U22

] [
R11 R12

0 R22

]
=

[
Σ̂1 0
0 Σ2

] [
V 11 V 12

V 21 V 22

]
.1116

1117

Due to the triangular and diagonal matrices, the (1,1) block of this equation is1118

U11R11 = Σ̂1V 11.11191120

Apply the Weyl product inequalities for singular values [26, (7.3.14)] to the smallest1121

singular value of the matrices on both sides and remember (A.18),1122

σk

‖V −111 ‖2
= σk(Σ̂1)σk(V 11) ≤ σk(Σ̂1V 11) = σk(U11R11).1123

1124

Because the orthogonal matrix U has all singular values equal to one,1125

σk(U11R11) ≤ σ1(U11)σk(R11) ≤ σ1(U)σk(R11) = σk(R11).11261127

Combining the extreme ends of the sequence of inequalities gives σk/‖V −111 ‖2 ≤1128

σk(R11).1129

Inequality for R22. Again, equate (A.19) with (A.17) but now move the V matrix1130

to the left,1131 [
R11 R12

0 R22

] [
V T

11 V T
21

V T
12 V T

22

]
=

[
UT

11 UT
21

UT
12 UT

22

] [
Σ̂1 0
0 Σ2

]
.1132

1133

As before, the triangular and diagonal matrices imply that the (2,2) block of this1134

equation is1135

R22V
T
22 = UT

22Σ2.11361137

Apply the Weyl product inequalities for singular values [26, (7.3.14)] to the largest1138

singular value of the matrices on both sides,1139

σ1(R22)

‖V −122 ‖2
= σ1(R22)σp−k(V 22) ≤ σ1(R22V

T
22) = σ1(UT

22Σ2).1140

1141

Because the orthogonal matrix U has all singular values equal to one,1142

σ1(UT
22Σ2) ≤ σ1(U22)σ1(Σ2) ≤ σ1(U)σk+1 = σk+1.11431144

Since V 11 is nonsingular, the CS decomposition [16, Theorem 2.5.3] implies that1145

‖V −111 ‖2 = ‖V −122 ‖2. Combining the extreme ends of the sequence of the above in-1146

equalities gives σ1(R22)/‖V −111 ‖2 ≤ σk+1.1147

A.4. Proof of Theorem 4.4. We prove the correctness of Algorithm 4.4 (Lem-1148

ma A.8), and present a proof of Theorem 4.4 (Lemma A.9).1149

Our proofs follow those in [18] but without the full rank assumption on the sen-1150

sitivity matrix and with more details. To keep the proofs simple, we assume that1151

the QR decompositions are implemented so that the upper triangular matrices have1152

non-negative diagonal elements [16, Theorem 5.2.3].1153

We prove the correctness of stopping criterion of Algorithm 4.4, which depends1154

on the row norms of R−111 and the column norms of R22,1155

ωi(R11) ≡ 1/‖eTi R
−1
11 ‖2, 1 ≤ i ≤ k1156

γj(R22) ≡ ‖R22ej‖2, 1 ≤ j ≤ p− k.11571158

This manuscript is for review purposes only.



ROBUST PARAMETER IDENTIFIABILITY ANALYSIS 33

Lemma A.8 (Correctness of Algorithm 4.4). Let1159

R =

[
R11 R12

0 R22

]
∈ Rp×p1160

1161

be upper triangular with non-negative diagonal elements, nonsingular R11 ∈ Rk×k,1162

and R22 ∈ R(p−k)×(p−k). Let P be a permutation that permutes columns i and k + j1163

of R for some 1 ≤ i ≤ k and some 1 ≤ j ≤ p− k, and let RP = Q̃R̃ be an unpivoted1164

QR decomposition with1165

R̃ =

[
R̃11 R̃12

0 R̃22

]
.1166

1167

Then1168

ρij ≡
det(R̃11)

det(R11)
=
√

(R−111 R12)2i,j + (γj(R22)/ωi(R11))2.1169
1170

Proof. We give the proof for the special case i = k and j = 1, and first argue1171

that this represents no loss of generality. Note that column j of R22 corresponds to1172

column k + j of R.1173

Reduction to the case i = k and j = 1. Suppose that i < k and j > 1. Let P i,k1174

be the permutation that permutes columns i and k of R, and let R11P i,k = Q̄11R̄111175

be the unpivoted QR decomposition. Similarly, let P 1,j be the permutation that1176

permutes columns k+ j and k+ 1 of R, and let R22P 1,j = Q̄22R̄22 be the unpivoted1177

QR decomposition. With1178

R̄12 ≡ Q̄
T
11R12P 1,j , P̄ ≡

[
P i,k 0

0 P 1,j

]
,1179

1180

the matrix1181

RP̄ =

[
R11 R12

0 R22

] [
P i,k 0

0 P 1,j

]
=

[
R11P i,k R12P 1,j

0 R22P 1,j

]
1182
1183

has the unpivoted QR decomposition1184

RP̄ =

[
Q̄11 0
0 Q̄22

] [
R̄11 R̄12

0 R̄22

]
.1185

1186

The assumption of non-negative diagonal elements in the upper triangular matrices1187

implies det(R11) = det(R̄11). From1188

R̄
−1
11 R̄12 = (Q̄

T
11R11P i,k)−1(Q̄

T
11R12P 1,j) = P T

i,kR
−1
11 R12P 1,j ,11891190

the invariance of the two-norm under multiplication by orthogonal matrices, and the1191

non-negativity of the diagonal elements follows1192

|R−111 R12|i,j = |R̄−111 R̄12|k,1, ωi(R11) = ωk(R̄11), γj(R22) = γ1(R̄22).11931194

Thus, the relevant quantities do not change under permutations and subsequent QR1195

decompositions.1196
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Relevant quantities induced by the partitioning of upper triangular matrices. With1197

i = k and j = 1, distinguish2 rows and columns k and k + 1,1198

R =

[
R11 R12

R22

]
=


R̂11 a b R̂12

ω β cT

γ dT

R̂22

1199

1200

where R̂11 ∈ R(k−1)×(k−1), R̂12 ∈ R(k−1)×(p−k−1), ω > 0 and γ > 0. Upper triangu-1201

larity implies the determinant relation1202

det(R11) = ω det(R̂11).(A.20)12031204

Looking at the trailing row of R−111 and the leading column of R22,1205

R−111 =

[
R̂
−1
11 − 1

ω R̂
−1
11 a

0 1
ω

]
, R22 =

[
γ dT

0 R̂22

]
,1206

1207

gives1208

1/‖eTkR
−1
11 ‖2 = ωk(R11) = ω, ‖R22e1‖2 = γ1(R22) = γ.12091210

Element (k, 1) of R−111 R12 equals1211

(R−111 R12)k,1 = eTk

[
R̂
−1
11 − 1

ω R̂
−1
11 a

0 1
ω

] [
b R̂12

β cT

]
e1 =

[
0 1

ω

] [b
β

]
=
β

ω
,1212

1213

The action. Let P be the permutation that permutes columns k and k+ 1 of R,1214

RP =


R̂11 b a R̂12

β ω cT

γ 0 dT

R̂22

1215

1216

To return to upper triangular form, perform an unpivoted QR decomposition RP =1217

Q̃R̃ that zeros out γ by rotating rows k and k + 1. The resulting triangular matrix1218

R̃ has a leading principal submatrix1219

R̃11 =

[
R̂11 b

0
√
β2 + γ2

]
1220

1221

with the determinant relation1222

det(R̃11) =
√
β2 + γ2 det(R̂11).12231224

Combine this with the old determinant relation (A.20)1225

det(R̃11)

det(R11)
=

√
β2 + γ2

ω
=

√(
β

ω

)2

+
( γ
ω

)2
1226

=
√

(R−111 R12)2k,1 + (γ1(R22)/ωk(R11))2.1227
1228

2To increase readability, we sometimes use blank spaces to represent 0 elements.
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The following proof of Theorem 4.4 relies on results from [25, section 3.3] and [18,1229

section 3] but without the assumption that S has full column rank.1230

Lemma A.9 (Proof of Theorem 4.4). Let S ∈ Rn×p with n > p have singular1231

values σ1 ≥ · · · ≥ σp ≥ 0; and QR decomposition S = QR. Let 1 ≤ k < p so that1232

the leading k × k principal submatrix of R is non-singular. Then Algorithm 4.4 with1233

f ≥ 1 computes a QR decomposition1234

SP =
[
Q1 Q2

] [R11 R12

0 R22

]
,1235

1236

with singular values1237

σi(R11) ≥ σi√
1 + f2k(p− k)

, 1 ≤ i ≤ k,1238

σj(R22) ≤ σj+k
√

1 + f2k(p− k), 1 ≤ j ≤ p− k.12391240

Additionally, the elements of R−111 R12 are bounded by1241

|R−111 R12|i,j ≤ f, 1 ≤ i ≤ k 1 ≤ j ≤ p− k.12421243

Proof. We prove the inequality in the reverse order.1244

Third inequality. It follows from the observation that Algorithm 4.4 terminates1245

once1246

|R−111 R12|i,j ≤
√
|R−111 R12|2i,j + (γj(R22)/ωi(R11))2 ≤ f1247

1248

holds for 1 ≤ i ≤ k, 1 ≤ j ≤ p− k.1249

Second inequality. We scale the leading diagonal block so that it contains the1250

k dominant singular values by α ≡ σ1(R22)/σk(R11). Extract a judiciously scaled1251

block-diagonal matrix1252

RD ≡
[
αR11 0

0 R22

]
=

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

[
αIk −R−111 R12

0 Ip−k

]
︸ ︷︷ ︸

W

.1253

1254

where αR11 contains the k dominant singular values, because1255

σk(αR11) = ασk(R11) = σ1(R22).12561257

This means the largest singular value of R22 is equal to the smallest singular value1258

of αR11, thus less than or equal to all other singular values of αR11. Therefore, the1259

trailing block R22 contains the p− k smallest singular values of RD.1260

The Weyl product inequality [26, (7.3.13)] implies1261

σj+k(RD) = σj(R22) ≤ σj+k(R)‖W ‖2, 1 ≤ j ≤ p− k.(A.21)12621263

We bound ‖W ‖2, by bounding the two-norm in terms of the Frobenius norm and, in1264
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turn, expressing this as a sum,1265

‖W ‖22 ≤ 1 + ‖R−111 R12‖22 + α2
1266

= 1 + ‖R−111 R12‖22 + ‖R22‖22‖R
−1
11 ‖221267

≤ 1 + ‖R−111 R12‖2F + ‖R22‖2F ‖R
−1
11 ‖2F1268

= 1 +

k∑
i=1

p−k∑
j=1

(
(R−111 R12)2i,j + (γj(R22)/ωi(R11))2

)
1269

≤ 1 +

k∑
i=1

p−k∑
j=1

f2 = 1 + f2k(p− k).1270

1271

Now substitute ‖W ‖2 ≤
√

1 + f2k(p− k) into (A.21).1272

First inequality. If σ1(R22) = 0, then R22 = 0 and the first inequality holds.1273

Thus assume that σ1(R22) > 0 so that α ≡ σ1(R22)/σk(R11) > 0. Deriving a1274

lower bound for the large singular values requires a slightly different ansatz. We scale1275

the trailing block by 1/α so that it contains the p−k smallest singular values. Extract1276

a differently scaled block-diagonal matrix,1277

R =

[
R11 R12

0 R22

]
=

[
R11 0
0 R22/α

]
︸ ︷︷ ︸

R̂D

[
Ik R−111 R12

0 αIp−k

]
︸ ︷︷ ︸

Ŵ

.1278

1279

where R22/α contains the p− k subdominant singular values, because1280

σ1(R22/α) = σ1(R22)/α = σk(R11).12811282

This means the smallest singular value of R11 is equal to the smallest singular value1283

of R22/α, thus larger or equal to all other singular values of R22/α. Therefore, the1284

leading block R11 contains the k largest singular values of RD.1285

An analogous argument as above shows1286

σi(R) ≤ σi(R̂D)‖Ŵ ‖2 = σi(R11)‖Ŵ ‖21287

≤ σi(R11)
√

1 + f2k(p− k), 1 ≤ i ≤ k.12881289

Appendix B. Supplemental Material. We present more details for the mod-1290

els in section 2.2: Epidemiological (section B.1), cardiovascular tissue (section B.2),1291

fibrin polymerization (section B.3), and neurological (section B.4). All models are1292

represented as coupled systems of ODEs (ordinary differential equations), and pa-1293

rameter sensitivities are determined from their numerical solution via complex-step1294

or finite differences.1295

B.1. Epidemiological Models. We implemented five (nested) epidemiological1296

compartment models in section 2.2 that represent COVID-19 spread among the US1297

population for identifiability anaylsis of the model parameters.1298

Figure B.1 displays the different compartments associated with the state variables1299

in each model, and the possible transitions from one infection status to another within1300

a population [49, 39]. The parameters above the arrows represent the transition rates.1301

From these diagrams, nonlinear ordinary differential equations for each system can1302

be derived by analogy with leading-order mass action reaction kinetics.1303
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For the SIR, SEIR, SVIR, and SEVIR models in Figure B.1, the quantity of1304

interest is the number I(t) of infectious individuals at time t; and for the COVID1305

model it is (A+ I +H)(t).1306

We calibrated the models to the spread of COVID-19 through the US based on1307

CDC data and relevant studies. Table B.1 describes the physical interpretation of1308

each parameter and the average nominal value for generating sensitivities.1309

As outlined in §5.1, letting q∗j represent the nominal value of the jth parameter1310

in Table B.1, the algorithms were tested on 10,000 matrices for each model, evaluated1311

at parameter vectors for which the jth component is sampled uniformly from the1312

interval [0.5q∗j , 1.5q
∗
j ].1313

Fig. B.1. Compartment diagrams for the epidemiological models in section 2.2 to illustrate the
possible transitions from one infection statius to another within a population for (a) SIR, (b) SEIR,
(c) SVIR, (d) SEVIR, and (e) COVID-19 models.

Par Mean Description Ref.
β 0.80 Transmission coefficient [29]
η 0.33 Rate of progression to infectiousness (following exposure) [30, 31]
γ 0.14 Rate of progression through infectious stage [44, 37]
α 0.10 Probability of infection after vaccination [39]
ν 0.004 Rate of vaccination [48]
σ 0.35 Percentage of infected that are asymptomatic [43]
δ 0.05 Rate of hospitalization for symptomatic infected [14]
ω 0.82 Rate of recovery for hospitalized infections [36]

Table B.1
Parameter values and physical interpretations in epidemiological models from §5.1

B.2. Cardiovascular Tissue Biomechanics (HGO) Model. The sensitiv-1314

ity matrix corresponding to this model arose from a nonlinear hyperelastic struc-1315

tural model of the vessel wall for a large pulmonary artery in the context of ex vivo1316
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biomechanical experiments. A two-layer, anisotropic vessel wall model was developed,1317

within the general framework of the Holzapfel-Gasser-Ogden (HGO) model [24], and1318

systematically reduced with identifiabilty techniques rooted in the scaled sensitivity1319

matrix. The quantity of interest was a hybrid normalized residual vector amalga-1320

mating data measuring lumen area and wall thickness changes with increasing fluid1321

pressure.1322

This data set arises from ex vivo biomechanical testing of coupled flow and defor-1323

mation for left pulmonary arteries excised from normal and hypertensive mice. This1324

model contains 16 model parameters: 8 are fixed based on values in the literature or1325

information from the experiments, while the remaining 8 are estimated via systematic1326

model reduction in the context of an inverse problem [19].1327

Results of the systematic model reduction in [19] are consistent with the value1328

k = 5 for HGO in Table 4.1.1329

B.3. Fibrin Polymerization Model for Wound Healing Applications.1330

Motivated by a wound healing application, this is a biochemical reaction kinetics1331

model for in vitro fibrin polymerization, mediated by the enzyme thrombin, and [38].1332

The 46 × 11 sensitivity matrix represents 46 time points for the concentration of1333

fibrin matrix, i.e. in-vitro clots; and 11 parameters that represent reaction rates for1334

the associated biochemical reaction species. The parameters are chosen from the last1335

row of [38, Table 1] for a mathematical model of hemostasis, the first stage of wound1336

healing during which fibrin (extracellular) matrix polymerization occurs.1337

The corresponding system of ODEs is based on first-order reaction kinetics, anal-1338

ogous to the mass-action assumptions for the epidemiological compartment models1339

in section B.1. The systematic identifiability analysis and model reduction for the1340

inverse problem in [38] are consistent with the value k = 6 under the ”Wound” model1341

in Table 5.1.1342

B.4. Neurological Model. This complex model consists of a system of non-1343

linear ODEs [20] that quantify the neurovascular coupling (NVC) response, and the1344

local changes in vascular resistance due to neuronal activity [20]. The state variables1345

represent different components of the human brain, while the parameters represent1346

the ion channels and metabolic signalling among them.1347

The sensitivity matrix is the largest and most ill-conditioned sensitivity matrix1348

in Table 5.1, along with the largest number of state variables, parameters p = 175,1349

and observations n = 200.1350

Appendix C. Dynamical systems for adversarial CSS matrices.1351

Given an adversarial CSS matrix S ∈ Rn×p with n ≥ p, we construct a dynamical1352

system whose sensitivity matrix is identical to S.1353

Let S = UΣV > have have a thin SVD as in (3.2) and distinguish the columns1354

of the singular vector matrices,1355

U =
[
u1 . . . up

]
∈ Rn×p, V =

[
v1 . . . vp

]
∈ Rp×p.13561357

Pick some vector q ∈ Rp, we are going to construct a system of ODEs parameterized1358

by q.1359

To this end, let1360

Λ ≡ diag
(
λ1 · · · λp

)
∈ Rp×p13611362

be a diagonal matrix yet to be specified. Denote by x(t) ∈ Rp the state vector and1363
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by y(t) the observation vector, and combine everything into the initial value problem1364

dx

dt
= Λx, x(0) = V Tq,

y(t) = Ux(t)
(C.1)1365

1366

with solution x(t) = exp(tΛ)V Tq. Since Λ is diagonal, the observation equals1367

y(t) = U exp(tΛ)V Tq =

p∑
j=1

uje
tλjvTj q.1368

1369

As in section 2.2.1, differentiate y with respect to q, and then evaluate at time1370

t = τ > 0. The rows of the resulting sensitivity matrix equal1371

∂yi
∂q

=

p∑
j=1

uij e
τλj vTj , 1 ≤ i ≤ n.1372

Set σj = eτλj so that λj = 1
τ lnσj , 1 ≤ j ≤ p. Then the sensitivity matrix at time1373

t = τ is1374

S(t; q) =

p∑
j=1

ujσj vTj = UΣV T .1375

Therefore, the dynamical system (C.1) has the desired sensitivity matrix S at time τ .1376
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