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ROBUST PARAMETER IDENTIFIABILITY ANALYSIS
VIA COLUMN SUBSET SELECTION*

KATHERINE J. PEARCE', ILSE C.F. IPSENf, MANSOOR A. HAIDERS, ARVIND K.
SAIBABAY, AND RALPH C. SMITH/

Abstract. We advocate a numerically reliable and accurate approach for practical parameter
identifiability analysis: Applying column subset selection (CSS) to the sensitivity matrix, instead of
computing an eigenvalue decomposition of the Fischer information matrix. Identifiability analysis
via CSS has three advantages: (i) It quantifies reliability of the subsets of parameters selected as
identifiable and unidentifiable. (ii) It establishes criteria for comparing the accuracy of different
algorithms. (iii) The implementations are numerically more accurate and reliable than eigenvalue
methods applied to the Fischer matrix, yet without an increase in computational cost. The effective-
ness of the CSS methods is illustrated with extensive numerical experiments on sensitivity matrices
from six physical models, as well as on adversarial synthetic matrices. Among the CSS methods,
we recommend an implementation based on the strong rank-revealing QR algorithm because of its
rigorous accuracy guarantees for both identifiable and non-identifiable parameters.

Key words. Sensitivity matrix, Fischer information matrix, systems of ordinary differential
equations, dynamical systems, eigenvalue decomposition, singular value decomposition, pivoted QR
decomposition, rank-revealing QR decomposition
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1. Introduction. In data-driven mathematical modeling, the ability to reliably
estimate model parameters depends on the set of available observations, the scope of
system responses for which such observations are available, the inherent mathematical
structure of the model, and the parameter estimation method. Identifiability analysis
evaluates the ability to accurately estimate each parameter in a model and, in some
cases, quantifies the extent to which this estimate is reliable. It has wide-ranging im-
plications for a variety of applications, including analysis of disease and epidemiology
models to guide treatment regimes, physiologically-based pharmacokinetic (PBPK)
and quantitative system pharmacology (QSP) models for drug development, and cou-
pled multi-physics models for next-generation nuclear power plant design. In partic-
ular, identifiability analysis can be more challenging, yet also have greater impact,
in applications where the number of model variables and parameters is significantly
greater than the number of responses with available data.

Practical identifiability analysis refers to the partitioning of parameters in a math-
ematical model into two groups: identifiable parameters that can be reliably estimated
from data and those that cannot, termed unidentifiable. At the heart of many practi-
cal identifiability methods is the sensitivity matrix .S, whose columns represent model
parameters and whose rows represent observations (data) for a quantity of interest. A
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2 PEARCE, IPSEN, HAIDER, SAIBABA, SMITH

common approach extracts identifiable and unidentifiable parameters from eigenval-
ues and eigenvectors of the Fischer information matrix ST 8. However, the sensitivity
matrix S is often ill-conditioned, that is, sensitive to small perturbations, so that the
explicit formation of the cross product ST S can inflict a serious loss of accuracy.

We apply instead column subset selection (CSS) to the sensitivity matrix S, which
has the same computational complexity as eigenvalue methods on the Fischer matrix
STS. We derive bounds that show the superior accuracy of CSS, and corroborate
this with extensive numerical experiments on a variety of model-based and adversarial
synthetic matrices. The higher accuracy of the CSS methods produces a more reli-
able distinction between identifiable and unidentifiable parameters, as illustrated by
their highly consistent performance across across this suite of test matrices. This is
especially critical when the identifiable parameters inform subsequent investigations
[3, 9, 38].

1.1. Contributions. We advocate a numerically reliable and accurate approach
for practical parameter identifiability analysis: Applying column subset selection to
the sensitivity matrix, instead of computing an eigenvalue decomposition of the Fis-
cher information matrix.

1. We interpret algorithms based on eigenvalue decompositions of the Fischer
matrix [27] as known column subset selection (CSS) methods applied to the
sensitivity matrix (section 3). This connection allows us to derive rigorous
guarantees for the accuracy and reliability of the parameter identification that
were previously lacking.

2. Identifiability analysis via CSS (section 4) has five advantages:

(a) It broadens the applicability of parameter identifiability analysis by per-
mitting the use of synthetic data generated from an additive observation
model. This is crucial when experimental data are not available or op-
timization for determining nominal parameter values is not feasible.

(b) It incorporates parameter correlation.

(c) It quantifies reliability of the subsets of parameters selected as identifi-

able and unidentifiable.
It establishes criteria for comparing the accuracy of different algorithms.

(e) The implementations are numerically more accurate and reliable than
eigenvalue methods applied to the Fischer matrix, yet without an in-
crease in computational cost.

3. We perform extensive numerical experiments (section 5.1) on sensitivity ma-
trices from six physical models (section 2.2, Appendix B) to illustrate the
accuracy and reliability of the CSS methods.

4. Among the four CSS methods (Algorithms 4.1-4.4), we recommend an imple-
mentation based on the strong rank-revealing QR algorithm (Algorithm 4.4)
because of its rigorous accuracy guarantees for both, identifiable and uniden-
tifiable parameters, through bounds that have only a polynomial dependence
on the number of relevant parameters, rather than an exponential dependence
as in Algorithms 4.1-4.3.

5. We construct an adversarial matrix, the SHIPS matrix (section 5.2) to am-
plify accuracy differences among the CSS methods. Although synthetic, the
adversarial matrices (section 5.2) still admit an interpretation as sensitivity
matrices for certain dynamical systems (Appendix C).

The CSS algorithms (section 4) are based on existing work and presented with
a view towards understanding rather than efficiency. In the same vein, the correct-
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ROBUST PARAMETER IDENTIFIABILITY ANALYSIS 3

ness proofs (section A) are geared towards exposition: self-contained, as simple as
possible, and more general with slightly fewer assumptions. With a view towards
reproducibility, our implementations are available on https://github.com/kjpearce/
CSS- Algs-for-Sens-Identifiability.

2. Parameter sensitivity and identifiability. We define the notion of pa-
rameter identifiability (section 2.1), and present real applications that require it (sec-
tion 2.2).

2.1. Parameter identifiability. We assume that a model’s quantity of interest
y, such as a state variable in a system of differential equations, can be expressed
as a scalar-valued function of system inputs and parameters, y = h(u;q). Here the
vector u represents system inputs, such as time, and the vector q € R? the model
parameters.

We denote the sensitivity of y with respect to the parameter g;, evaluated at the
ith observation and a specific point q* in the admissible parameter space, by

5 = Ohi(wa) |
dq; a=q*

The sensitivity matrix is S = (s;;) € R"*P, and has more rows than columns, n > p.
The parameters q are sensitivity-identifiable at q* if STS is invertible [9, 32, 42].
Our goal is to determine those columns of S that correspond to the most sensitivity-
identifiable and the least sensitivity-identifiable parameters.

2.2. Practical applications with sensitivity matrices. We describe an epi-
demiological compartment model in detail (section 2.2.1), and summarize five other
mathematical models together with their quantities of interest (section 2.2.2).

2.2.1. SVIR Model. The epidemiological SVIR compartment model in Fig-
ure B.1(c), models the spread of disease among susceptible S, vaccinated V', infectious
I, and recovered R in a population of IV individuals; and consists of a coupled system
of four ordinary differential equations with specified initial conditions,

% :_5% S(0) = So
% :I/S—aﬁ%, V(0) = Vo,
6 apl o 1(0) = ko,
% ol R(0) = Ro.

The epidemiological parameters q = [ﬁ vV o« v]T govern the system dynamics;
the system input u is time ¢; and the quantity of interest is y = h(t;q) = I(¢;q) the
number of infectious individuals at time ¢. Discretization with respect to time t = ¢;,
1 <1 < n, produces a sensitivity matrix evaluated at a nominal point q*,

S — |9htsa)  Oh(tiig)  Oh(tisa)  Oh(tiq)

nx4
o8 v v oy € R™

:| ‘q:q*

Nominal parameter values are often selected from the literature, as shown in Table B.1,
or as solutions of inverse problems with available data. Numerical sensitivities in S
are estimated from derivative approximations, such as finite difference or complex-step
approximations [33, 34].
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4 PEARCE, IPSEN, HAIDER, SAIBABA, SMITH

2.2.2. Six models from physical applications. We present numerical exper-
iments (section 5) for the six models below, with quantities of interest in Table 2.1.
More details can be found in section B.

e SVIR: See above.

e SEVIR [39]: This extension of SVIR model adds an additional compartment
for individuals £ who have been exposed but are not yet infectious.

e COVID [40]: This extension of SEVIR splits the infectious group into com-
partments for asymptomatic, symptomatic, and hospitalized individuals.

e HGO [19]: This model for the biomechanical deformation of the left pul-
monary artery vessel wall is based on nonlinear hyperelastic structural re-
lations, and calibrated to in vitro experiments on normal and hypertensive
mice.

e Wound [38]: This model for in vitro fibrin matrix polymerization during
hemostasis concerns clot formation during the first stage of wound healing,
and is based on biochemical reaction kinetics.

e Neuro [20]: This model of the neurovascular coupling (NVC) response de-
scribes local changes in vascular resistance that result from neuronal activity,
and is based on nonlinear ODEs.

Model Type
SVIR | Epidemiological
SEVIR | Epidemiological
COVID | Epidemiological # Infectious (sympt., asymp., hospitalized)
HGO Cardiovascular Vessel lumen area and wall thickness
Wound | Wound Healing | 11 | Fibrin matrix (in vitro clot) concentration

Neuro Neurological 175 Blood oxyhemoglobin concentration
TABLE 2.1
Number of parameters p and quantities of interest for the models in section 2.2

Quantity of Interest
# Infectious individuals
# Infectious individuals

oo| co| Ut ix|3

3. Background. We express sensitivity analysis on the eigenvectors of the Fis-
cher matrix F = ST8 as column subset selection on the sensitivity matrix S.

After briefly introducing notation (section 3.1), we review identfiability analy-
sis based on eigenvectors of the Fischer matrix (section 3.2), the singular value de-
composition of the sensitivity matrix (section 3.3), column subset selection on the
sensitivity matrix (section 3.4), determination of the number & of identifiable param-
eters (section 3.5), and finally the implementation of column subset selection via QR
decompositions (section 3.6).

3.1. Notation. We denote matrices by bold upper case letters. The identity
matrix is

—[er -+ ey] RV

1

with columns that are the canonical vectors e; € RP.

We assume that the sensitivity matrix S € R™*? is tall and skinny, with at least
as many rows as columns, n > p. The p columns of S represent parameters and
its rows represent observations. The Fischer information matrix is the cross product
matrix F = ST§ € RP*P, where the superscript T’ denotes the transpose.

This manuscript is for review purposes only.
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ROBUST PARAMETER IDENTIFIABILITY ANALYSIS 5

3.2. Eigenvalue decomposition of the Fischer matrix. Existing meth-
ods [27, 35] select parameters by inspecting the eigenvectors of the Fischer matrix
F = ST8 € RP*P. Since it is real symmetric positive semi-definite, its eigenvalue
decomposition has the form

A1
(3.1) F=V v N> >0, >0,
Ap
where \; are the eigenvalues. The eigenvector matrix V' € RP*? is an orthogonal
matrix with VIV = I,= VVT. Its columns and elements are

V11 . e Ulp
V= [vl vp} =
vpl PR Upp
In particular, the trailing column v, is an eigenvector associated with a smallest
eigenvalue Ay, so F'v, = A\,v,. If A, > 0, then F is nonsingular.
The parameter with index j is represented by column j of S. The corresponding
column of the Fischer matrix is
A1 V51
STSe;=Fe; =V V'e; where V'ej=|: |, 1<5<p.
Ap Ujp
Thus, column j of S depends on column j of VT which, in turn, contains element j
of each eigenvector.

Selecting element j of any eigenvector of F = ST 8
amounts to selecting the parameter with index j in S.

CAUTION. Eaplicit formation of the Fischer matriz F = 8T8 can lead to signif-
icant loss of information, thus affecting subsequent practical identifiability analysis.

For instance [16, Section 5.3.2], in customary double precision floating point arith-
metic with unit roundoff 27°% ~ 1.1- 10716, the sensitivity matriz

1 1
S= 107 0
0 107°

has linearly independent columns, and rank(S) = 2. In contrast, the Fischer infor-
mation matriz computed in double precision floating point arithmetic

A(S”S) = E ﬂ

is singular, because the diagonal elements computed in double precision are
fA(1+1072-107%) = (1 + 107 18) =1,

where the operator fl(-) represents the output of a computation in floating point arith-
metic.

This manuscript is for review purposes only.
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6 PEARCE, IPSEN, HAIDER, SAIBABA, SMITH

3.3. Singular value decomposition of the sensitivity matrix. We avoid
the explicit formation of the Fischer matrix F' = S78, and instead operate directly
on the sensitivity matrix S, without increasing the computation time.

This is done with the help of the (thin) singular value decomposition (SVD) [16,
section 8.6]

01

(3.2) S

I
G

vT, 01> >0, >0,

Op

where o; are the singular values of S, the left singular vector matrix U € R™*? has
orthonormal columns with UTU = I p, and the right singular vector matrix Vis is
identical to the orthogonal matrix in (3.1).

Substituting the SVD of S into F' gives (3.1) with eigenvalues \; = 0]2», 1<5<p.
Thus, squared singular values of S are the eigenvalues of F', and the right singular
vectors of S are eigenvectors of F'.

Selecting element j of any right singular vector of S
amounts to selecting the parameter
with index j in column j of S.

As a consequence, all information provided by the eigenvalue decomposition of
the Fischer matrix F = 8T S is available from the SVD of the sensitivity matrix S.
Computation of the SVD is not more expensive; see Remark 3.1.

3.4. Column subset selection on the sensitivity matrix. We go a step
further, and select the parameters directly from the sensitivity matrix S, rather than
detouring through an eigenvalue or singular value decomposition.

Specifically, we compute a permutation matrix P € RP*P that reorders the
columns of the sensitivity matrix S,

(3.3) SP=[S, S,

so that the, say k columns of S represent the identifiable parameters, and the p — k
columns of S5 the unidentifiable parameters.

In practice, one wants the columns of S to represent an approximate basis for
range(S). A basis satisfies two criteria: Its vectors are linearly independent, and they
span the host space.

1. Linear independence of the columns of §; € R"** is quantified by the magni-
tude of its smallest singular value, which is bounded above by the kth largest
singular value of the host matrix,

(34) O’k(Sl) Scrk.

The larger 01 (S1), the more linearly independent the columns of S;. A more
specific statement is presented in (3.9).

2. Spanning the host space range(S) is quantified by the accuracy of S; as a
low-rank approximation of the host matrix S. One measure of accuracy is
the residual norm, which is bounded below by the (k + 1)st singular value of

This manuscript is for review purposes only.



ROBUST PARAMETER IDENTIFIABILITY ANALYSIS 7
the host matrix!
(3.5) I(T — $181)S|l2 = [[(I = §181)S2l2 > x4

The smaller the residual, the better range(S1) spans the host space. Crite-
rion (3.5) is a special case of the subsequent (3.10).

Identifiable parameters are the ‘most linearly independent’ columns’ of S.
Unidentifiable parameters are the ‘most linearly dependent’ columns of S.

Algorithms 4.1 and 4.3 select unidentifiable parameters, Algorithm 4.2 selects
identifiable parameters, while Algorithm 4.4 selects both.

CAUTION. The separation into linearly dependent and independent columns is
highly non-unique. For instance, the matrix

o O o
o o= O
S o o
o o= O

has rank(S) = k = 2 with 01 = 09 = o}, = V2 and o4 = 03 = ok+1 = 0. Moving
two linearly independent columns of S to the front can be accomplished by any of the
following permutation matrices P,

1 0 0 0 0 010 1 0 0 0 0 010
01 00 00 01 0 010 10 0 0
0010 |2 00 0 (00O T1” JjO01 00
00 0 1 01 00 01 0 0 0 0 01
to produce the same matrix

10

0 1

S1= 1o 0

0 0

with residual (3.5) equal to o3 = 0.

One can require the criteria (3.4) or (3.5) to hold either for all 1 < k < p [21], or
else for only one specific k [7, 18]. In the latter case, section 3.5 discusses approaches
for selecting k.

3.5. Choosing the number k of identifiable parameters. If one knows a
bound 7 on the error or noise in the elements of S, one can use criterion (3.5) to
designate as small all those singular values below 7, in the absolute or the relative
sense,

Ok+1 <1 or Ok+1 S Noy.

I The superscript S J{ denotes the Moore-Penrose inverse, and the equalities follow from the Moore-

Penrose property 515151 = S and the unitary invariance of the two-norm with regard to the
permutation P.

This manuscript is for review purposes only.
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8 PEARCE, IPSEN, HAIDER, SAIBABA, SMITH

For instance, if 7 bounds the relative error in the elements of S, then the value of k
determined by ox1 < noq is called the numerical rank of S [15, Definition 2.1], [16,
section 5.4.2]. If S is accurate to double precision unit roundoff, then n ~ 1.1-10716.

Alternatively, one can use criterion (3.4) to designate as large all those singular
values exceeding 7, in the absolute or the relative sense,

O > or O > 1071.

If the accuracy of the elements in S is unknown, but its singular values contain a
prominent gap, then one can choose k to capture this gap,

1> op > opp > >0y

An upgrade [18, Algorithm 5] of Algorithm 4.4 looks for a large gap between adjacent
singular values, in order to compute k automatically [18, Remark 1].

The number k of identifiable parameters
can be chosen as the numerical rank of S,
or based on a large gap in the singular values.

3.6. Implementing column subset selection with QR decompositions.
We show how to compute, by means of pivoted QR decompositions, permutation
matrices P that try to optimize criteria (3.4) or (3.5). As a matter of exposition,
we introduce plain QR decompositions (section 3.6.1), pivoted QR decompositions
(section 3.6.2) and then rank revealing QR decompositions (section 3.6.3).

3.6.1. QR decompositions. Assume that the sensitivity matrix S € R™*? has
full column rank with rank(S) = p. A ‘thin QR decomposition’ [16, section 5.2], [22,
Chapter 19] is a basis transformation that transforms the basis for range(S) from
linearly independent columns of S to orthonormal columns of @,

(3.6) S =QR.

Here Q € R™ P has orthonormal columns with QTQ = T p,» and the nonsingular
upper triangular matrix R € RP*P represents an easy relation between the two bases.
Substituting (3.6) into S gives for Fischer information matrix

F=57S=R"R.

Thus the eigenvalues of F' are equal to the squared singular values of the triangular
matrix R.

3.6.2. Pivoted QR decompositions. These decompositions have more flexi-
bility because they can additionally permute (pivot) the columns of S to compute an
orthonormal basis for range(S) [16, 5.4.2], [22, Chapter 19],

(3.7) SP = QR,

where P € RP*P is the permutation matrix in (3.3); @ € R™*? has orthonormal
columns with Q7Q = I,; and R € RP*P is upper triangular. Substituting the
factorization (3.7) into the sensitivity matrix S gives for Fischer matrix

F=S"S=PR"RP".

This manuscript is for review purposes only.
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ROBUST PARAMETER IDENTIFIABILITY ANALYSIS 9

Since permutation matrices are orthogonal matrices, the eigenvalues of F' are still
equal to the squared singular values of R, while each eigenvector of RT R is a permu-
tation of the corresponding eigenvector of F'.

Algorithms 4.1-4.4 start with a preliminary QR decomposition to reduce the
dimension of the matrix. The following remark shows that such a preliminary decom-
position is also effective prior to an SVD computation, and the proofs in Appendix A
exploit this.

REMARK 3.1. A preliminary QR decomposition SP = QR is an efficient way to
compute the SVD of a dense matriz S € R™ P with n > p [6], since it reduces the
dimension for the SVD from that of a tall and skinny n X p matriz down to that of a
small square p x p matriz with the same dimension as the Fischer matrizc F = ST S.

To see this, compute the pivoted QR factorization SP = QR, and let the upper
triangular R have an SVD

01
R=U, vT,

Op

where U, and V' € RP*P are orthogonal matrices. Then the SVD of the permuted
sensitivity matrix SP is

01
SP = (QUT) “- . VT7

Op

where the left singular vector matriz QU , € R™"*P has orthonormal columns.

This approach retains the asymptotic complexity of an SVD of S, but has the
advantage of reducing the actual operation count, and, in particular, reducing the
problem dimension to that of the Fischer matriz F = ST 8.

3.6.3. Rank revealing QR decompositions. These pivoted QR decomposi-
tions are designed to ‘reveal’ the numerical rank of a matrix S that is rank deficient,
or ill-conditioned with regard to left inversion [7, section 2], [16, 5.4.2]. [18, section
1.1]. Although there are numerous ways to compute such decompositions [7, 18], most
share the same overall strategy.

Assume the sensitivity matrix has numerical rank(S) ~ k, where 1 < k < p.
Partition the pivoted QR decomposition (3.7) commensurately with the column par-
titioning (3.3),

59 s s)=s[p Pl=[a @[ R
22
sp P Q T

with submatrices Py € RP** Q, € R"*F R;; € R¥*F and Ry, € RP—F)*x(p=k),
Since S1 = Q; Ri1, the leading diagonal block R;; has the same singular values
as the matrix S of identifiable parameters

(39) O'j(Sl):O'j(Ru), 1§]§k
Similarly, since

(3.10)  o;(I —85181)8) = 0,;(I — 8151)85) = 0j(Ry2), 1<j<p—k,

This manuscript is for review purposes only.
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the trailing diagonal block Rgy has the same non-zero singular values as the residuals
of the low-rank approximation of range(.S) by range(S1).

We call a QR decomposition (3.8) qualitatively ‘rank-revealing’ if it tries to opti-
mize subselection criteria (3.4) or (3.5), that is,

ok (Ri1) = oy, or 01(R22) = || Razll2 = Okt1-

The first criterion tries to produce a well conditioned basis §1 = Q,Ri1, and its
approximation S Pf ~ S. The second criterion aligns with the popular and robust
requirement ||(I — S, SI)SHQ ~ 041 for low-rank approximations [12].

Rank-revealing QR decompositions try to select as identifiable parameters
those columns of S that are the most linearly independent or
that approximate well the unidentifiable parameters.

Rigorous, stringent versions of the subselection criteria (3.4) and (3.5) are pre-
sented in [18, Section 1.2] and Theorem 4.4.

4. Identifiability as column subset selection. We express practical iden-
tifiability analysis [35, Definition 5.11], [41, page 4 of 21] as column subset selec-
tion, to quantify accuracy and to compare the accuracy of different algorithms. We
start with Jollife’s methods [27, 35]: PCA method B1 (section 4.1), PCA method B4
(section 4.2), and PCA method B3 (section 4.3), and then propose the strong rank-
revealing QR factorization [18] as the most accurate option for practical identifiability
analysis (section 4.4).

Algorithms 4.1-4.4 input a tall and skinny sensitivity matrix S and the number k&
of identifiable parameters, say from section 3.5; and output the factors of a pivoted
QR decomposition SP = QR.

We recommend Algorithm 4.4 in section 4.4.
It has the most rigorous and realistic accuracy guarantees
for both, identifiable and unidentifiable parameters.

The algorithms are formulated with a focus on understanding, rather than effi-
ciency.

4.1. PCA method B1. This method [27, section 2.2], [35, (5.13)] selects un-
identifiable parameters, by detecting large-magnitude components in the eigenvectors
Vk+1,-- -, Vp corresponding to the p — k smallest eigenvalues of the Fischer matrix F,
starting from the smallest eigenvalue.

Method B1 starts with a unit-norm eigenvector v, corresponding to A,, picks a
magnitude largest element in v,

[vm,p| = max Jojp,

and designates the parameter with index m; as unidentifiable. Method B1 repeats
this on eigenvectors corresponding to eigenvalues A\p,_; < --- < Mgy in that order, by
selecting magnitude-largest elements that have not been selected previously,

[Vm,,e| = max lvjel, L=p—1,...,k+1,
1<j<p
JFEMIL,..Mp g1

and declares the parameters with indices my, ... my,_; as unidentifiable.
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Expressing PCA method B1 as column subset selection. PCA method B1
is almost identical to the subset selection algorithm in [5, Section 3], which is also [7,
Algorithm Chan-1I], and is related to the algorithms in [13, 17].

Algorithm 4.1, which represents [5, Algorithm RRQR(r)], selects p — k unidentifi-
able parameters Sy to optimize subset selection criterion (3.5) and moves them to the
back of the matrix. Once a column for Sy has been identified, Algorithm 4.1 ignores
it from then on, and continues on a lower-dimensional submatrix.

Algorithm 4.1 Column subset selection version of PCA Bl
Input: S € R"*P withn >p, 1 <k<p

Set P=1,

Compute decomposition (3.7): SP = QR {Unpivoted QR of S}

for/=p:k+1

{Ifé =D, then R11 =R }

Partition R — |70 12| here Ry, e RO {F leading ¢ x £ block
=10 Ry 11 ocus on leading £ x ock}
Compute right singular vector v € R of Ry; corresponding to o,(R1;)

- ~7
Compute permutation P € R*** so that |(P~ v)¢| = ||v]e
{Move magnitude-largest element of v to bottom}
Compute QR decomposition (3.6): R;1 P = QR {Unpivoted QR of Ry; P}

Update Q = Q {%2 IOJ, P:P[Ig IOJ, R.—
pP— pP—

0 Ryo

~ ~T
R, Q Rm]

end for
return P, Q, R

Theorem 4.1 shows that the unidentifiable parameters Ss from Algorithm 4.1 can
be interpreted as column subsets satisfying criterion (3.5).

THEOREM 4.1. Let S € R™*P with n > p be the sensitivity matriz, and 1 < k < p.
Algorithm 4.1 computes a pivoted QR decomposition

SP=[51 S;]=[Q, Q] [IE)H g;j 7 Ry, € RP-F)x(p=k)
where
o1 < [I(I = S181)Ssll2 = | Raslls < 27 * 1oy
If the mumerical rank(S) = k, then the columns of So represent the p—k unidentifiable

parameters.

Proof. The equality follows from (3.10), while the lower bound follows from in-
terlacing (A.1). The upper bound is derived in section A.1, and in particular in
Lemma A.3. O

Theorem 4.1 bounds the residual in the low rank approximation S; according to
criterion (3.5). Like many subset selection bounds, the upper bound can be achieved
by artificially contrived matrices [22, section 8.3], but tends to be quantitatively pes-
simistic in practice. Fortunately, it is informative from a qualitative perspective.

This manuscript is for review purposes only.
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4.2. PCA method B4. This method [27, section 2.2], [35, (5.15)], [41, Ap-
pendix C] selects identifiable parameters, by detecting large-magnitude components
in the eigenvectors vi,..., v corresponding to the k largest eigenvalues of the Fis-
cher matrix, starting from the largest eigenvalue. Our detailed interpretation of the
algorithm follows that in [41, Appendix C, Third Criterion].

Method B4 starts with a unit-norm eigenvector vy corresponding to A1, picks a
magnitude largest element in vy,

[Umy 1] = nax [vj1l,

and declares the parameter with index m; as identifiable. Method B4 repeats this on
eigenvectors corresponding to eigenvalues Ao > --- > Ag in that order, by selecting
magnitude-largest elements that have not been selected previously,

|Um£7‘e| = maX |,U]Z|7 6227...,]{,
1<j<p
JFEmML,...,my

and declares the parameters with indices my, ..., m; as identifiable.

Expressing PCA method B4 as column subset selection. PCA method
B4 is almost identical to the subset selection algorithm in [6, Section 3], which is also
[7, Algorithm Chan-I].

Algorithm 4.2, which represents [6, Algorithm L-RRQR], selects k identifiable
parameters S; to optimize subset selection criterion (3.4) and moves them to the
front of the matrix. Once a column for S; has been identified, Algorithm 4.2 ignores
it from then on, and continues on a lower-dimensional submatrix.

Algorithm 4.2 Column subset selection version of PCA B4
Input: S e R"*P withn>p, 1 <k<p

Set P =1,

Compute decomposition (3.7): SP = QR {Unpivoted QR of S}

for/=1:k

{Ifé = 1, then R22 =R }
Ry Ry where Ryp € RO—HDX(p—t+1)
{Focus on trailing (p — £+ 1) x (p — ¢ + 1) block}

Compute right singular vector v € RP~*+1 of Ryy corresponding to oy (Rao)

Compute permutation P € RP—+Dx(#=+1) g4 that |(ﬁTv)1| = ||l
{Move magnitude-largest element of v to top}
Compute QR decomposition (3.6): RooP = QRa22 {Unpivoted QR of Ry P}

Update Q = Q {I“ 9}, P:=P {I“ 9], R.— [RU 1312]

Partition R =

0 Q 0o P 0 Ry
end for
return P, Q, R

Theorem 4.2 shows that the identifiable parameters S; from Algorithm 4.2 can
be interpreted as parameters that satisfy criterion (3.4).
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THEOREM 4.2. Let S € R™*P with n > p be the sensitivity matriz, and 1 < k < p.
Then Algorithm /.2 computes a QR decomposition

Ry R12:| Ry, € RE*E

SP =[S S:]=[Q; Q] [ 0 Ry

where

27" gy, < ok (R11) = 0%(S1) < oy
If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-
eters.

Proof. The equality follows from (3.9), while the upper bound follows from in-
terlacing (A.1). The lower bound is derived in section A.2, and in particular in
Lemma A.6. ]

Theorem 4.2 bounds the linear independence of the columns in S; according to
criterion (3.4). As before, the lower bound in Theorem 4.2 can be quantitatively very
pessimistic in practice, but tends to be qualitatively informative.

4.3. PCA method B3. This method [27, section 2.2], [35, (5.14)] selects uniden-
tifiable parameters by detecting large squared row sums in the matrix V41, =
[Vk+1 Vp] of eigenvectors corresponding to the p — k smallest eigenvalues of
the Fischer matrix.

The squared row norms of V1.,

wj = [[[vjesr o v Hg Z v, 1<j<p,
t=k+1

are called ‘leverage scores’ in the statistics literature [8, 23, 50]. The largest leverage
score

max wj; = max Uj@
1<5<p 1<j<p
l=k+1

is called ‘coherence’ in the compressed sensing literature [11] and reflects the difficulty

of sampling rows from V' 1.p.
Method B3 picks a largest leverage score from V4 1.p,

P
2
Wm, = MaX wj = max U
1<j<p 1<j<p£ 1
and declares the parameter with index m; as unidentifiable. Method B3 repeats this
on the remaining rows of V1., by selecting parameters that have not been selected
previously,

Wi, = max wj, l=p—1,....k+1,
. k+1<j<p
JAEML, ey Mp oy 1

and declares the parameters with index m;,...,m,_j as unidentifiable.
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Expressing PCA method B3 as column subset selection. PCA method
B3 can be interpreted in two ways: Either as selecting parameters according to the
largest leverage scores of the subdominant eigenvector matrix V'j41., of the Fischer
matrix [8, 23, 50]; or else as selecting parameters based on column subset selection
with [7, Algorithm GKS-II]. We choose the latter interpretation.

Algorithm 4.3 may look different from PCA method B3 but accomplishes the
same thing in an easier manner (in exact arithmetic). The algorithm in [15, Section
6], which is also [7, Algorithm GKS-I], operates instead the dominant right singular
vectors, and applies the column subset selection method [4, Section 4], [16, section
5.4.2], which is also [7, Algorithm Golub-I].

The idea is the following: partition the SVD of the triangular matrix R =
UTEVT in Remark 3.1,

b)) 0
zz{ol 22], U, =[U Us], V=[Vi Vy,
where 3; = diag (01 O’k) € RF*F contains the k dominant singular values

of R, hence S; and U, € RP*¥ and V| € RP*F are the k associated left and right
singular vectors, respectively. Applying a permutation to VlT corresponds to applying
a permutation to R, hence S. In Algorithm 4.3, column j of W is denoted by We;.

Theorem 4.3 quantifies how well the identifiable parameters S from Algorithm 4.3
satisfy criterion (3.4).

THEOREM 4.3. Let S € R™*P with n > p be the sensitivity matriz, and 1 < k < p.
Then Algorithm /.3 computes a QR decomposition

R R
SP=[S1 S:=[Q Q)] { 011 Ru], Ry, € RF*F,
——— 22
———

@ R

where

or/ IVt |z < ok(Ru) < o,

Opt1 < 01(Ra2) < |\Vf11|‘20k+1

and V11 € R¥¥F is the leading principal submatriz of V' in the SVD R=U, XV,
If Algorithm 4.3 applies Algorithm 4.2 to VlT, then

IVil2 < 247

If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-
eters.

Proof. The upper bound for R;; and the lower bound for Rss follow from inter-
lacing (A.1). The remaining two bounds are derived in section A.3.

The bound for ||V}l = 1/0x(V11) follows by applying Theorem 4.2 to V' and
remembering that all singular values of V1 are equal to 1. ]

4.4. Strong rank-revealing QR decompositions. The final method [18, sec-

tion 4] selects identifiable parameters by trying to maximize the volume of Sy via
pairwise column permutations.
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Algorithm 4.3 Column subset selection version of PCA B3

Input: SER"™P n>p 1<k<p
Set P =1,
Compute decomposition (3.7): S = QR {Unpivoted QR of S}
for/=1:k
{Iff = ].7 then R22 =R }
ROH g;j where Ryy € RP—H1)x(p—t+1)
{Focus on trailing (p — £+ 1) x (p — ¢+ 1) block}
Compute k — £ + 1 right singular vectors V; € RP—+Dx(E—t+1) of Roo corre-
sponding to o1 > -+ > 0k—_y41
Set W =V € RUf D)X (p=t+1)
Compute permutation 13 € Re—D)x(p=t+1) 5o that
W (Pe1)|l2 = maxi<j<p—et1 [|[Wejll2
{Move column of W with largest norm to front}
Compute QR decomposition (3.6): Ry P = QR {Unpivoted QR of R221~3}

1 I,
Update Q := Q[él C%},P::P{Zol %],R:Z[Roll g;j

Partition R =

end for
return P, Q, R

A ‘strong rank-revealing’ QR decomposition tries to optimize both subset selection
criteria (3.4) and (3.5) and bounds every element of | Ry Ri2|. The component-wise
boundedness ensures that the columns of

R 'R
P 11 12:|
{ I, i

represents an approximate basis for the null space of S, provided Ri; is not too ill-
conditioned [18, section 1.2]. A rigorous definition of the strong rank-revealing QR
decomposition is presented in [18, Section 1.2] and Theorem 4.4 below.

Algorithm 4.4, which represents [18, Algorithm 4], exchanges a column of S; with
a column of Sy until det(STS;) = det(R;;)? stops increasing. More specifically [18,
Lemma 3.1], after permuting columns i and k + j of R with a permutation matrix
Pl ), and performing an unpivoted QR decomposition Spli) — QR we compare
the determinant of the leading principal submatrix R;; € R¥** of R with that of the
original submatrix Riq,

det(Ry;)

_ _ 2
P = Gerim = VBT R+ (Roseylo el Ry 1)

(4.1)

Given a user-specified tolerance f > 1, Algorithm 4.4 iterates as long as it can
find columns ¢ and j+ & with p;; > f and, by permuting columns 7 and j+k. increase
the determinant to det(Ry1) > f det(Ry1). The correctness of Algorithm 4.4 follows
from Lemma A.8.

Theorem 4.4 shows that the columns S from Algorithm 4.4 can be interpreted
as identifiable parameters that satisfy even stronger conditions than criteria (3.4) and
(3.5) combined.
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THEOREM 4.4. Let S € R™*P with n > p be the sensitivity matriz and 1 < k < p.
Algorithm 4./ with input f > 1 computes a QR decomposition

R R
sp-is, s)-[a @)% &)
where Ry; € R¥>¥F gnd Ryy € RP—F)X(p—F) satisfy

T4

oi(Ri1) > NES e 1<

0j(Ra2) < 0jpk\/1+ f2k(p — k), 1<j<p-—k,

and
IR Rua)ij < 1<i<k 1<j<p-k

If numerical rank(S) = k, then the columns of S1 represent the k identifiable param-
eters, and the columns of So the unidentifiable parameters.

Proof. This follows from [18, Lemma 3.1 and Theorem 3.2]. See section A.4, and
in particular in Lemma A.9. ]

Algorithm 4.4 Column subset selection with strong rank-revealing QR (srrqr)

Input: Sensitivity matrix S € R**P, n>p, 1 <k<p, f>1
Compute SP = QR {Pivoted QR to make R;; nonsingular}
Compute p;; as defined in (4.1), 1 <i <k, 1<j<k—p
while maxy <i<k, 1<j<p—k {pij} > [
Find some 1 <i < kand 1< j<k—pwith p;; > f
Compute permutation Pl o permute columns ¢ and j + k
Decomposition (3.6) RP™) = QR {Unpivoted QR of RP()}
Update P := PP Q:=QQ, R:=R
Update Pij

end while

return P, Q, R

5. Applications. We compare the accuracy of the four Algorithms 4.1-4.4 on
the sensitivity matrices from physical applications (section 5.1) and on the synthetic
matrices from classical column pivoting ‘counterexamples’ (section 5.2).

Numerical experiments were performed in MATLAB 2021b on a 16 GB MacBook
Pro with an M1 chip. We compute relative versions of the subset selection criteria
(3.4) and (3.5),

and

(T~ 8,5 Ssll>

(5.2) 72 7111 (5)
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The closer 1 and 72 are to 1, the more accurate the algorithm. We also compute the
improvement in condition number of the selected columns,

cond(S1)
cond(S)

The lower 71, the better the conditioning of the selected columns.

(5.3) T

5.1. Sensitivity matrices from physical models. We apply Algorithms 4.1-
4.4 to the sensitivity matrices from the mathematical models in sections 2.2 and B.

The sensitivity matrices S are evaluated at given nominal parameter values. For
the epidemiological models (SVIR, SEVIR, COVID) in particular, S is evaluated at
the nominal values in Table B.1, and additionally at 10,000 points sampled uniformly
within 50% of the nominal value.

Table 5.1. For each model, Algorithms 4.1-4.4 produce the same identifiable pa-
rameters, that is, the same column subsets and the same identical values for the subset
selection criteria 1 in (5.1) and -9 in (5.1). The consistent accuracy illustrates the
robustness of column subset selection for identifiability analysis in applications, par-
ticularly since each sensitivity matrix originates from a different type of mechanistic
model.

Model n P k T Y Ve
SVIR 31 4 3 | 1.6e-03 | 1.0 1.0
SEVIR | 31 5 4 | 1.2¢-02 | 1.0 1.0
COVID | 31 8 5 | 1.5e-03 | 0.9 1.1
HGO 14 8 5 | 4.0e-04 | 1.0 1.0
Wound | 46 11 6 | 2.2e-08 | 0.9 1.2
Neuro | 200 | 175 | 14 | 9.8e-23 | 0.6 1.7

TABLE 5.1
Identical accuracy of Algorithms J.1—/./ on the models in section 2.2. Here p = number of
parameters and number of columns of S; n = number of observations and number of rows of S; k=
numerical rank of S and number of identifiable parameters; T= ratio of condition numbers in (5.3);
and y1 and 2 are the subset selection criteria in (5.1), and in (5.2), respectively.

When applied to the physical models,
Algorithms 4.1-4.4 exhibit similar accuracy and reliability.
We recommend Algorithm 4.4 because, in theory,
it has the most stringent accuracy guarantees.

5.2. Synthetic adversarial matrices. We apply Algorithms 4.1-4.4 to syn-
thetic adversarial matrices designed to thwart the accuracy of subset selection al-
gorithms. Although synthetic, these matrices still represent sensitivity matrices for
specific dynamical systems (Appendix C). Each algorithm is applied to 10,000 real-
izations of each of the following matrices.

e Kahan [28]: S = D, K, € R"™*™ where

L —p
L =y —p
D, =diag(1 ¢ ¢ - ("), K,= PR
L =
1

This manuscript is for review purposes only.
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with (2 +¢? =1for (, >0, and k =n — 1.
We choose n = 100, and sample ¢ uniformly from [0.9,0.99999]. The average
condition number over 10,000 realizations is cond(S) ~ 2.4 - 109.

Gu-Fisenstat [18, Example 2]:

Dn73Kn73 0 0 _SODn73]]-n73

S = H 0 0 c 1Rn><n7
N 0
"

where Kk =n — 2, and

1 . -
p= e, min lef (Dn-3Kn-—3)""[5"

We choose n = 100, and sample ¢ uniformly from [0.9,0.99999]. The average
condition number over 10,000 realizations is cond(S) = 2.0 - 103%.

Jolliffe [27, Appendix Al]: S = UXVT, where U € R™™P has orthonor-
mal columns with Haar measure [47]; ¥ € RP*? is diagonal; and V is the
orthonormal factor from the QR factorization of

Ay T pi o p

Ao pi 1 - pi o

A= , ; A= . . . .| e RPPE
Ay pi pi -1

where p; ~ 1 and p = Zle D;.

We choose n = 200, p = 100, p; = 5, and k = 20; and sample the leading &k di-
agonal elements of 3 uniformly from [102,103], the p—k trailing diagonal ele-
ments of 3 uniformly from [1071°,10*9], and p; uniformly from [0.9, 0.99999].
The average condition number over 10,000 realizations is cond(S) ~ 4.8-10%%.

Sorensen-Embree [46]: § = ULV, where U € R™*? has Haar measure with
orthonormal columns; X € RP*?P is diagonal; and V' = (Vk Vp_k) € RP*P
is an orthogonal matrix, and V;, € RP** is the orthonormal factor from the
QR factorization of

1
-1 1

L=|-1 -+ =1 1 | e RP*F,
-1 -1 -1
-1 -1 -1

We choose n = 200, p = 100, and k£ = 20; and sample the leading k& diagonal
elements of ¥ uniformly from [102,103], the p — k trailing ones uniformly
from [10719,10!°]. The average condition number over 10,000 realizations is
cond(S) ~ 1.4 - 1014,
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e SHIPS: We constructed this matrix to amplify differences in the accuracy of
Algorithms 4.1-4.4. Here S = UXV”, where U and ¥ as for Joliffe, and
V = (Vk Vp_k) € RP*P is an orthogonal matrix with

_ Vi pxk
Vi = <U(I _ V11V11)1/2) €R

where U € R?P~*)** has orthonormal columns with Haar measure [47], and

1 -1 - -1

T kexk L

Vi=——¢€R , T = . . ERka.
2[|T[2 SR

1
We choose n = 200, p = 100, and k = 20. The leading k diagonal elements
of ¥ are logarithmically spaced in [102,10%], and the p — k trailing ones
logarithmically spaced in [1071%,101-9]. The average condition number over
10,000 realizations is cond(S) ~ 1.0 - 1013.

In Algorithm 4.4, we set f = v/2 for the Gu-Fisenstat matrix, and f = 1 for all
other matrices.

Table 5.2. It displays the average of the condition number ratio (5.3), and subset
selection criteria (5.1) and (5.2) for 10,000 realizations of each synthetic matrix.

Algorithm 4.2 produces the smallest values of 7 and 7, that is, the worst condi-
tioned columns S+, for the Kahan and Gu-FEisenstat matrices.

Algorithm 4.3 produces the smallest values of v, that is, the best low-rank ap-
proximation S;. Algorithms 4.1 and 4.4 are close with only slightly larger v on all
matrices except for the Sorensen-Embree matrix, where their 5 is more than 5 times
larger than that of Algorithm 4.3.

Algorithms 4.1 and 4.4 produce better conditioned S; than Algorithm 4.3, most
notably for the Sorensen-Embree and SHIPS matrices.

The Jolliffe matrix was constructed to thwart Algorithm 4.3 [27, Appendix Al],
and there is slight evidence of its loss of accuracy with these matrices. While all
of the algorithms performed nearly identically, the absolute version of criterion (3.4)
for Algorithm 4.3 (to more digits than could be represented in Table 5.2) is 1.8e-14,
compared to 1.9e-14 for Algorithms 4.1, 4.2, and 4.4.

Figure 5.1. The box plots illustrate the accuracy of Algorithms 4.1-4.4 on 10,000
realizations of our SHIPS matrix. The top and bottom of each box represent the
first and third quartiles, respectively, while the red line through the box itself is the
average. Values below and above the short black horizontal lines are outliers, and the
horizontal lines themselves show the minimum and maximum excluding the outliers.

We constructed the SHIPS matrix to force differences in the accuracy of Algo-
rithms 4.1-4.4. It illustrates the superior accuracy of Algorithm 4.4 in the conditioning
(5.3) of the selected columns S, as well as subset selection criteria (5.1) and (5.2).

Figure 5.1(a). Algorithm 4.4 gives the best, that is smallest, ratio of condition
numbers. In contrast, Algorithms 4.3 and 4.2 have a larger number of outliers above
the maximum, illustrating more less reliable accuracy.

Figure 5.1(b). Algorithm 4.4 gives the best, that is closest to 1, values of ;. In
contrast, Algorithm 4.3 has more outliers below its minimum, indicating less reliable
accuracy.
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Figure 5.1(c). Algorithm 4.4 has the most consistent values of 72, but they are
slightly larger than those for Algorithms 4.3 and 4.2. Its maximum and the outliers
above are comparable to those of 4.3. In contrast, Algorithm 4.1 is much less accurate.

While there are differences among Algorithms 4.1-4.4 they are relatively small,
suggesting that all are effective in practice. However, we still recommend Algo-
rithm 4.4 since it is numerically stable, computationally efficient, and is the only
one whose bounds do not depend exponentially on p or k.

S Algorithms T Y1 Y2
4.1, 4.4 e 3.7e-03 e 1.0 1.8e03

Kahan | 4.2 6.4e-01 1.6e-03 1.9e15
4.3 e 3.7e-03 e10 e1.7e03

4.1, 4.4 4.1e-03 0.6 0.9

GuEis | 4.2 4.1e-03 0.6 5.2ell
4.3 4.1e-03 0.6 1.0

Joll | 4.1,4.2,4.3,4.4 1.6e-12 1.0 1.0
4.1, 4.4 o 1.4e-12 e 0.9 5.4

SorEm | 4.2 2.2e-12 0.5 1.1
4.3 2.3e-12 0.5 e 1.0

4.1 1.9e-12 0.3 2.4

4.2 2.9e-12 0.2 1.4

SHIPS | 3 2.0e-12 0.3 ol.4
4.4 o 1.6e-12 004 1.9

TABLE 5.2

Accuracy of Algorithms 4.1—4.4 on the synthetic matrices. For each matriz S, the average
condition number ratio T in (5.3), and the average subset selection criteria 1 in (5.1) and v2 in
(5.2) over 10,000 realizations are displayed. A e denotes an optimal value for the corresponding
criterion.

6. Conclusion. We have presented a numerically accurate and reliable approach
for practical parameter identifiability analysis in the context of physical models.

Our recommendation is to perform column subset selection (CSS) directly on the
sensitivity matrix S, rather than detouring through the error-prone formation of the
Fischer matrix F = S7'8 followed by an eigenvalue decomposition.

We applied the four CSS Algorithms 4.1-4.4, to a large variety of practical and
adversarial sensitivity matrices, and they produced almost identical sets of identifiable
parameters S with vastly improved condition numbers compared to the condition
number of the original matrix S.

The superior accuracy of CSS is important when identifiability analysis is part
of a larger application. In the context of inverse problems, for instance, parameters
designated as unidentifiable may be fixed at a nominal value, for the purpose of di-
mension reduction. If this is an iterative process, reliable designation of unidentifiable
parameters is important.
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Fia. 5.1. Application of Algorithms 4.1—4.4 to 10,000 realizations of the SHIPS matriz. Box
plots show (a) the ratio of condition numbers T in (5.3), and the subset selection criteria (b) v1 in
(5.1), and (c) v2 in (5.2).

Future research. We discuss several avenues for future research, many of which

will necessitate challenging modifications to Algorithms 4.1-4.4.

1. Efficient implementation of Algorithms 4.1-4.4.

This includes the choice of QR decompositions and data structure; as well as
fast updates, searches for magnitude-largest elements, and computation of k.

. Application of CSS methods to pharmacology.

Physiologically-based pharmacokinetic (PBPK) and quantitative systems phar-
macology (QSP) models exhibit moderate- to high-dimensional parameter
spaces with highly nonlinear dependencies in their ODEs. For example, the
minimal brain PBPK model in [2] has as many as 37 parameters in 16 cou-
pled ODEs. This requires that unidentifiable parameters be determined and
fixed at nominal values at the very start —prior to optimization, sensitiv-
ity analysis, Bayesian inference for computing parameter distributions, and
uncertainty propagation for constructing prediction intervals for Qols.
Another difficulty is the optimization of criteria (5.1)—(5.3) for larger QSP and
PBPK models, as they may depend strongly on the number n of observations,
the number p of parameters, and the number k of identifiable parameters.

. Global CSS algorithms.

Algorithms 4.1-4.4 are local in the sense that they operate on a single set
of nominal parameter values. However, there is significant motivation in the
PBPK and QSP communities to identify parameter dependencies for a range
of admissible parameter values. Although it might be tempting to simply
average the sensitivity values, in the manner of active subspace analysis [10],
the highly nonlinear nature of parameter dependencies tends to rule out this
approach.

Mixed effects.

Another challenge in PBPK and QSP models are the regimes that combine
both, population and individual attributes. This necessitates mixed-effects
models, which try to quantify the fixed-effects due to population parameters
on the one hand; and the distributions for random effects associated with
individuals on the other. A first step would be to incorporate CSS methods
into the initial parameter subset selection algorithm for mixed-effects models
in [45].
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5. Virtual populations.
A broad area of research in QSP models concerns the generation of virtual
populations for the purpose of safe and efficient drug development [1]. This
requires the perturbation of QSP models about nominal values and character-
ization of sensitivities and uncertainties associated with model parameters.
We anticipate that the CSS algorithms will play an increasing role in this
growing field of virtual population generation and selection.

Appendix A. Proofs. We present the proofs of Theorem 4.1 (section A.1
Theorem 4.2 (section A.2), Theorem 4.3 (section A.3), and Theorem 4.4 (section A.4

Let S € R™ P be the sensitivity matrix with n > p, singular values o1 > --- >
op > 0, and a pivoted QR decomposition, partitioned for some 1 < k < p so that

R R i )
SP=Q |: 011 R;z] ) Ry € Rka7 Ry, € R(P—E)x(p—Fk)

),
).

Singular value interlacing [16, Corollary 8.6.3] implies that the singular values of Ry
cannot exceed the corresponding dominant singular values of S, while the singular
values of Ry cannot be smaller than the corresponding subdominant singular values
of S, that is,

0j(R11) < 0y, 1<j<k

(A1) _
O'j(RQQ)ZO'k_H', 1S] Sp—k.

A.1. Proof of Theorem 4.1. We present an approximation for the smallest
singular value (Lemma A.1), a correctness proof Algorithm 4.1 (Lemma A.2), and a
proof of Theorem 4.1 (Lemma A.3).

In the subsequent proofs we combine different bits and pieces from [7, sections 7
and 8] and [5, section 3], and add more details for comprehension.

The key observation is that a judiciously chosen permutation can reveal a smallest
singular value in a diagonal element of the triangular matrix in a QR decomposition.
Below is a consequence of a more general statement in [5, Theorem 2.1].

LEMMA A.1 (Revealing a smallest singular value). Let v with ||[v]2 = 1 be a right
singular vector of B € R™*™ associated with a smallest singular value 0,,(B), so that
|Bv|2 = om(B). Let P € R™*™ be a permutation that moves a magnitude-largest
element of v to the bottom, |(P*v)m| = |[V]les. If BP = QR is an unpivoted QR
decomposition (3.6) of BP, then the trailing diagonal element of the upper triangular
matriz R satisfies

Proof. The lower bound follows from singular value interlacing (A.1). As for the
upper bound, the relation between the right singular vector v and a corresponding
left singular vector u with Bv = 0,,,(B)u and |Jul|2 = 1 implies

om(B)u= Bv = (BP)(P"v) = QR(P"v) = QR [ ( PT*V)TJ

From this, ||u]|2 = 1, the unitary invariance of the two-norm, and the upper triangular
nature of R follows

0n(B) = [lom(B)ullz = [RPTV) |2 > [rmm (P V)| = [rmm! 1V]lso > [Fmml/v/m.

The last inequality follows from the fact that v € R™ has unit two-norm ||v|js = 1,
so at least one of its m elements must be sufficiently large with ||v||s > 1/y/m. O
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LEMMA A.2 (Correctness of Algorithm 4.1). Let S € R™*P with n > p have
singular values oy > -+ > o, > 0, and pick some 1 < k < p. Then Algorithm 4.1
computes a QR decomposition SP = QR where the p — k trailing diagonal elements
of R satisfy

|Rye| < Vioy, k+1<0<p.

Proof. This is an induction proof on the iterations ¢ of Algorithm 4.1 with more
discerning notation. The initial pivoted decomposition reduces the problem size

(A.2) SspP© — Q(O)R(O),

where P(¥) € RPXP is a permutation, Q(O) € R™ P has orthonormal columns, and
R ¢ RPxP js upper triangular.

Induction basis. Set R\) = R € RP*P and let v(),u) € RP be right and left
singular vectors associated with a smallest singular value,

1
RIVY =g u® vy = @]y =1

~(1
Determine a permutation P( ) that moves a magnitude-largest element of v(!) to the
bottom,

=)
(P ) vl = vVl 2 1/v/p.
= (1) (1)

Compute an unpivoted QR decomposition Rgll)P =Q "Ry, where Q € RP*P
is an orthogonal matrix. Lemma A.1 implies that the trailing diagonal element of the

~(1
triangular matrix reveals a smallest singular value, |(R:(ll))pp\ < /Pop. Insert this
into the initial decomposition (A.2)

~(1) ( )
spP — Q(O)R(O) =Q O)Q R,/ (P )T_

Multiply by 13(1) on the right,

1) 1)

s pOp" — g™ g\ where  |R(V| < \/po,.
e — ppl — p
P® QW RO

Induction hypothesis. Assume that SpPY = Q(i)R(i) fori=p—fand {>k+1
with

IRY|<\/jo;, t<j<p.

Induction step. Here £ = k+2 is the dimension of the leading block, while i = p—/
is the dimension of the trailing block. Partition

| M Rl , L
(A.3) R = [R(;l 2%5] R) e R Ry} e R
22

Let v0tD ultD) ¢ RZ be right and left singular vectors associated with a smallest
singular value of R%) ,

(A4) RUOVED = y(RE))u D, VD ||y = lu D), = 1
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~ (i+1 .
Determine a permutation P(z ) that moves a magnitude-largest element of v(t1) to
the bottom,

~ (i+1) . ,
(P )TV = v Do > 1/VE.
iy = (i+1 1 1 ~ (i+1
Compute an unpivoted QR decomposition R(lll) P(H ) Q i )Rlz;r ), where Q(Pr )
R*¢ is an orthogonal matrix. Lemma A.1 implies that the trailing diagonal element
of the triangular matrix reveals a smallest singular value,

(i+1)

(A.5) (Ryy el < VEoy(RY)).

Insert this into the decomposition spY = Q(i)R(i) with partitioning (A.3), and

exploit the fact that the inverse of the orthogonal matrix Q(H_l) is (@(H_I))T,
~ (i+1) = (i+1) , ~(i+1) i
sp — QURH —w |@ Ry (P )T R
0 RY)
~ (i41) ~(i+1) (i+1) (z+1)
_ o0 |@ Ry (@ )RY| (P o

Multiply by the permutation on the right,

~ (i+1) ~ (i4+1) ~(i+1)  ~(i+1) i
sp |P ' 0| _ QY Q ' 0| By (@ )TRgz) )
0o I 0 L|| o RY)

pi+1) QU+1) R(G+1)

From (A.5), interlacing (A.1), and the fact that R has the same singular values
as S follows

i ~(i+1) i i
(RED)u| = [(Ry) eel < VIou(RY) < VIau(RY) = Vioy.
Together with the induction hypothesis, and ¢ = p — ¢ = p — (k + 2) this implies
IRV < oy,  k+1<j<p. O
LEMMA A.3 (Proof of Theorem 4.1). Let S € R"*P with n > p have singular

values o1 > -+ > o, > 0, and pick some 1 < k <p. Then Algorithm j.1 computes a
QR decomposition

sp-fen @[5 3

where the largest singular value of Ryy € RP=F)X(P=F) s bounded by
[Roll2 < p[[W ™2 op 1.

Here W € RO—FXxw=k) s ¢ triangular matriz with diagonal elements lw;;| =1,
1 < j <p—k; offdiagonal elements |w;;| <1 fori # j; and

W =Hl2 < 20700

Proof. Let SP = QR be computed by Algorithm 4.1 with input k. The proof
is an extension of Lemma A.1. From the right singular vectors in Algorithm 4.1 we
construct a matrix Z, and then bound ||RZ||2 to derive an upper bound for ||Raz||2-
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Construction of Z. The indexing of the partition is different than the one in (A.3),

) 0
RO — [R11 Ry, Rgfl) € R Réé) e RP—Ox(=0) E+1</¢<np.

o R

In the statement of this lemma, the partitioning is £ = k.
Let v©, u® € R’ be right and left singular vectors associated with a smallest

singular value of Rgel),

ROVO = gy(R)u®,  [vOly=uP)s=1, k+1<t<p.

Algorithm 4.1 has permuted the right singular vectors so that a magnitude-largest
element is at the bottom,

(A.6) v >1VE and OIS VY) 1<i<t k+1<e<p.
The trailing elements in singular vectors associated with larger-dimensional blocks are

not affected by subsequent permutations, see (A.3), where permutations in the (1, 1)
block do not affect the (2,2) block and its placement of diagonal elements.

Construct an upper trapezoidal matrix Z = [zl e zp_k] € RP*(P=k) wwhose
columns are the right singular vectors
v(®
Zo—k = s k+1§€§p
0,—¢

Factor out the diagonal elements and focus on the trailing (p — k) x (p — k) submatrix
k41
”l(c+1 )
] D, where D= - c RP=F)x(p—k)

v ;l()p)

Z,

(A7)  Z= [W

has diagonal elements |dg| = |véé)| > 1/V, k+1 < ¢ <p. From (A.6) follows that
W e Re—F)*x(»=F) is a nonsingular upper triangular matrix with elements

|w€Z|:17 |wfj|§17 1§€§p_ka .7>€

Bounds for |RZ||2. We derive an upper and a lower bound. Multiplying the QR
decomposition SP = QR by QT on the left and by Z on the right gives

QT'SPZ = RZ e RP %,
The columns of RZ are

() (0 )
R ot [

RZ@/C=|: :|, E+1<i<p.

Op_[ Op—Z
From |[ul® ||y = 1 and interlacing (A.1) follows

IRz 1|2 = 0e(R)) < o, kE+1<{¢<p.
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Bound the norm of RZ € RP*(P=F) in terms of its largest column norm [16, section
2.3.2] to obtain the upper bound

(A.8) IRZ|2 < v/p—Fk max |Rzi_klla<+vp—k max op<P0kt1.

k-+1<0<p k-+1<0<p
As for the lower bound, use the partitioning in the statement of this lemma,

Ry R12:| |:Z1D:| _ [R11Z1D+R12WD

0 Ry |WD| Ry ;WD ’

RZ = [
and bound ||RZ||> in terms of the trailing component

[| Roz]|2 [| Roz||2
- T 2 T
2D 2 — 2w 2

At last combine the above upper bound with the lower bound (A.8),

|RZ||2 > [[Ro2W D2 >
W

[ Rl < pl|W |2 0p41-

The bound for |[W™!||5 is derived in [22, Theorem 8.14]; and there are classes of
matrices for which it can essentially be tight [22, section 8.3]. O

A.2. Proof of Theorem 4.2. We present an approximation for the largest
singular value (Lemma A.4), a correctness proof Algorithm 4.2 (Lemma A.5), and a
proof of Theorem 4.2 (Lemma A.6).

In the subsequent proofs, we present more general and simpler derivations than
the ones in [7, section 7] and [6, sections 2 and 3], and add more details for compre-
hension.

The key observation is that a judiciously chosen permutation can reveal a largest
singular value in a diagonal element of the triangular matrix in a QR decomposition.
The next statement represents part of [6, Theorem 2.1], however with a simpler proof
that does not require a pseudo inverse as in [6, Theorems 6.1 and 6.2].

LEMMA A.4 (Revealing a largest singular value). Let v with ||[v]2 = 1 be a
right singular vector of B € R™*™ agsociated with a largest singular value o1(B),
so that ||Bvlls = 01(B). Let P € R™*™ be a permutation that moves a magnitude-
largest element of v to the top, |(PTv)1| = ||[V]lee. If BP = QR is an unpivoted QR
decomposition (3.6) of BP, then the leading diagonal element of the upper triangular
matriz R satisfies

o1(B)/vm < |ri| < o1(B).

Proof. The upper bound follows from singular value interlacing (A.1). As for the
lower bound, the relation between the right singular vector v and a corresponding left
singular vector u with BTu = ¢, (B)v and |Jul|y = 1 implies

o1(B)P'v=P'Bu=R"Q"u.

From this, the lower triangular nature of RT, the Cauchy Schwartz inequality, and
|[u]l2 = 1 follows for the leading element

o1(B)[IVllso = [o1(B)(P"v)1| = e R"(Q )| < [|Re1[|2 Q" ull2 = |ru].

Then ||v||oo > 1/+4/m follows from the fact that v € R™ has unit two-norm ||v||2 = 1,
so at least one of its m elements must be sufficiently large.
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LEMMA A.5 (Correctness of Algorithm 4.2). Let S € R™*P with n > p have
singular values oy > -+ > o, > 0, and pick some 1 < k < p. Then Algorithm 4.2
computes a QR decomposition SP = QR where the k leading diagonal elements of R
satisfy

Ug/\/p—f—i-lg‘RuL 1</<k.

Proof. This is an induction proof on the iterations ¢ of Algorithm 4.2 with more
discerning notation. The initial pivoted decomposition reduces the problem size

(A.9) sp© — Q(O)R(O)7

where P¥) ¢ RPXP is a permutation, Q(O) € R™*P has orthonormal columns, and
R € RP*? js upper triangular.

Induction basis. Set RSQ) =R e R?*? and let v, u) € RP be right and left
singular vectors associated with a largest singular value,

RV =ou®, vy = [[u®]y = 1.

~(1
Determine a permutation P( ) that moves a magnitude-largest element of v(!) to the
top,

=(1)

(P )Ty = vWlee > 1/v/p.

~(1 ~ (1) ~(1 ~(1
Compute an unpivoted QR decomposition R%)P( ) Q( )R;Q), where Q( ) € RP*P
is an orthogonal matrix. Lemma A .4 implies that the leading diagonal element of the
~(1
triangular matrix reveals a largest singular value, |(R22))11| > 01//p- Insert this into
the initial decomposition (A.9)

~ (1) 5 (1), =(1)
spPO — Q(O)R(O) — Q(O)Q R,, (P )T_
. =1) .
Multiply by P~ on the right,
©pM _ © /D 51 O >
S PP QV"Q R, where |R35 | > o1/+/D-

PM Q® RO
Induction hypothesis. Assume that spY = Q(Z)R(Z) for £ < k with

IR >0;/p—j+1, 1<j<t

Induction step. Here £ = k —1. The dimension of the leading block is £ — 1, while
the dimension of the trailing block is i = p — (¢ — 1). Partition

0 RO -
(A.10) RY = lRSl Z%g)] R{) e RU-DxED  RY) ¢ RIX,
22

Let v(&D ul+D ¢ R? be right and left singular vectors associated with a largest
singular value of Rgé),

¢ ¢
(A.11) ROV — o (RE)uD, v |y = u D, = 1.
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~ (0+1
Determine a permutation P( )

v+ to the top,

(e+1) 1

(P )T

Compute an unpivoted QR decomposition Ry P =Q

E+1)) |

€ R that moves a magnitude-largest element of

IV Yoo > 1/ Vi

~ (4+1) = (£+1) ~ (£+1)

¢
Op e+ R,y ', where Q €

R**? is an orthogonal matrix. Lemma A.4 implies that the leading diagonal element
of the triangular matrix reveals a largest singular value,

= (+1) ¢ -
(A.12) (R il = 01(Ry)/ Vi
Insert this into the decomposition spPY = Q(e)R(E) with partitioning (A.10), and
~ (¢ ~ (¢
exploit the fact that the inverse of the orthogonal matrix Q( ) equals (Q( +1))T,
R R
SPO = QRO = QW | (T e
0 QRSP )
¢ ¢
_ QW I, ~(?+1) Rgl) 1(26%)1) I, 4 ~(£1)
0 Q 0 R, o (P )T
Multiply by the permutation on the right,
I, 4 0 I, 4 0 R(Z) R(e)
s pY (e+1) = QW ~ (£41) N
o P 0o Q o Ry,
PU+D) QU+ R(4D)

From (A.12), interlacing (A.1), and the fact that R") has the same singular values
as S follows

(e+1 )

IRV = (R, O))Vi = a0/ Vi

Together with the induction hypothesis, and ¢ = k — 1 this implies

IRY | >0;/\/p—j+1

LEMMA A.6 (Proof of Theorem 4.2). Let S € R"*P with n > p have singular
values o1 > --- > 0, > 0, and pick some 1 < k < p. Then Algorithm 4.2 computes a
QR decomposition

)1l = 01 (RS))/Vi > ou(R

1<j<k O

Ry

SP=[Q, Q) [ ' R”}

Ry,

where the smallest singular value of Ryy € R¥** is bounded by

Ok

ox(R11) > ————.
pIW !,

Here W € R¥*k s q triangular matriz with diagonal elements lwijl=1,1<j <k
offdiagonal elements |w;;| <1 fori # j; and

Wl < 21,
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Proof. Let SP = QR be computed by Algorithm 4.2 with input k. The proof is
an extension of Lemma A.4, and is more general than the one in [7, section 7] due to
the absence of inverses and no need for the requirement oy > 0.

From the right singular vectors in Algorithm 4.2 we construct a matrix Z, and
also a matrix Y of left singular vectors. Then we bound the kth singular value of a
top submatrix of RTY, to derive a lower bound for oy (Ry1).

Construction of Z and Y. Consider the partitionings as in (A.10) with ¢ =

p—(£—-1)

(0) (0 oy
R(@) _ Rll R%@Q) Rj(Lel) c R(Z—l)x(@—l)’ Rég) c R1X17 1 S ¢ S k.
0 Ry
In the statement of this lemma, the partitioning is £ = k + 1.
Let v(© u® e R’ be right and left singular vectors associated with a largest
singular value of Rgé),

ROV =01 (RE)u®,  [vOlh = u@)s =1, 1<¢<k

Algorithm 4.2 has permuted the right singular vectors so that a magnitude-largest
element is at the top, for 1 < /¢ < k

(A.13) V1 >1/Vi and V<YL 1< <

The leading elements in singular vectors associated with larger-dimensional blocks are
not affected by subsequent permutations, see (A.10), where permutations in the (2, 2)
block do not affect the (1, 1) block and its placement of diagonal elements.

Construct a lower trapezoidal matrix Z = [zl cee zk] € RP** whose columns
are the right singular vectors

0y_1
= </ <
zZy |:V(€):|’ 1_£_k
Factor out the diagonal elements and distinguish the leading k x k submatrix
oD
(A.14) Z = B/] D, where D= € Rk
2

of¥

has diagonal elements |dg| = |v¥)| >1/vp—0+1,1<¢<k. From (A.13) follows
that W € R*** is a nonsingular lower triangular matrix with elements

|wee| = 1, lwje| <1, 1<l<k, j>L

Analogously, construct a second lower trapezoidal matrix Y = [yl e yk} € RP¥k,
whose columns are the right left vectors

0,
Y= [Uf(é)l] g lyellz =1, 1 <<k,
and distinguish the leading k x k submatrix
(A.15) Y = {ij , where Y, € RF*F V12 < VE.
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1043 Bounds for oi,(R{,Y 1). We derive an upper and a lower bound.
1044 The columns of R'Y are for 1 </It<k,

RHT o 0,1 0,1 0,
1015 Ry, = (R, = ¢ = ¢ = 01(R5,) 2
1046 ‘ LR%))T (Réez))T e (Réz))Tué o1(Ryg)ve 22
1047 Collecting all the columns gives
1
01 (Réz))
1048 RTY =ZA  where A= e RF*k,
k
1049 Ul(Réz))

1050  With the partitioning of R as in the statement of this lemma, the top k x k submatrix
1051 of RTY = ZA equals

1653 RTY, =WDA.

1054 First derive the lower bound from the right side. The Weyl product inequalities [26,
1055 7.3.P16] imply

O
1056 (A.16) oR(RELY 1) = op(WDA) > 01,(W) o (D) i (A) > -
B (A.16) (R11Y1) ( ) (W) or(D)or(A) R I W |,

1058 where the last inequality follows from applying interlacing (A.1) to

1059 ox(A) = min o1(RY)) > oy,
1060 Ist<k

1061 and bounding the diagonal elements of D in (A.14) by

1062 ox(D) = IIllIl |v1 )| >1/\/p—k+1

1063

1064 Now derive the lower bound from the left side. The Weyl product inequalities [26,
1065 7.3.P16] and (A.15) imply

1665 ox(RY1) < 03(R11)||Y 1|2 < VEoy(Run).

1068 At last, combine this with (A.16) to obtain

Ok
1069 & (R11) .
1070 \/ (p— k+ DW= — pH "o
1071 The bound for ||[W ™|y follows as in the proof of Lemma A.3. O
1072 A.3. Proof of Theorem 4.3. The following is an extension of [16, Theorem
1073 5.5.2].
1074 LEMMA A.7 (Proof of Theorem 4.3). Let S € R™ P with n > p have singular

1075 values o1 > -+ > 0, > 0, and pick some 1 < k < p. If Algorithm 4.3 computes a QR
1076 decomposition

R R
1077 SP=[Q, Q)] [ 011 R;ﬂ ,

1078
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1079 and chooses the permutation P so that V11 € RFX* is nonsingular, then Ry, € RExk
1080 and Rgo € RP=RIXP=k) sqtisfy

1081 oi/IVii 2 < ok(Bu1) < o
1683 okt1 < 01(Ra2) < |V ll2 ohpa.
1084 Proof. Let S = QR be a preliminary unpivoted QR decomposition, where Q €

1085 R™*P has orthonormal columns, and R € RP*P is upper triangular. Then let R =
1086 U,EVT be an SVD of the triangular matrix as in Remark 3.1. Distinguish the
1087 matrix of k largest singular values 3; € R¥** of §, and the corresponding right
1088 singular vectors V; € RP*F

1089 ¥ = 0 c RP*P, V = [Vl Vg] € RP*P,

1090 0 %

1091 Main idea. Perform a QR decomposition with column pivoting on VT,
169 VIP=Q,[Viy Vi,

1094 where P € RPXP is a permutation matrix, Q; € R¥*¥ is an orthogonal matrix, and
1095 V11 € R¥** is nonsingular upper triangular. Partition commensurately,

1699 VIP=[Vy Vi,

I

1095 where Vo € RP—F)*(P—F)  Express the permuted upper triangular matrix RP in
1099 terms of these partitions,

RP=U,XV"P=U, [21 0} [Ql 0] [Vn Vu]

0 3|0 I||Vay Vo
1100 (A.17) s 0llVa V
=U, | ! H 12] here 31 = 3,Q,.
1101 {0 22} [V2l Va2 e ' 1

1102 Because Q; is an orthogonal matrix, ZAJl has the same singular values as 3, that is,

1105 Re-triangularize by computing an unpivoted QR decomposition of RP,

e _ Ri1 Ry
i (0 wrea g
1108 where Ry, € RF** is upper triangular.
1109 Inequality for Ri1. Equate (A.19) with (A.17) and move U, to the left
L T, |Bi1 Rz T £ 0] [V Vi

= " RP = .
i vra s i s [ 5] v

1112 The goal is to extract Rj;. To this end partition

Ui U
1113 uvfo =
1114 rQr [U21 Uzz}
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and substitute this into the above expression for U fRP,

Un Up| |BRu R _ 2 0] [V Vi
Usx Ux2|| 0 Rxp 0 35| [Var Vool
Due to the triangular and diagonal matrices, the (1,1) block of this equation is
UnRi =51V
Apply the Weyl product inequalities for singular values [26, (7.3.14)] to the smallest
singular value of the matrices on both sides and remember (A.18),
o ~ ~
fkl = 01(B1)ok (V1) <ox(B1V11) = o (U1 Ruy).
Vi lla

Because the orthogonal matrix U has all singular values equal to one,
0x(U11R11) < 01(Urr)or(Ra1) < 01 (U)o (Ri1) = ok (Ra1).

Combining the extreme ends of the sequence of inequalities gives o /||V [z <
Ok (R11 )

Inequality for Ros. Again, equate (A.19) with (A.17) but now move the V' matrix
to the left,

{Ru Rlz] [Vﬂ V’él]:{vﬂ UQTl] [i o}
0 Ry V1T2 VgQ U{z ng 0 3

As before, the triangular and diagonal matrices imply that the (2,2) block of this
equation is

Ry VL, =ULY,.

Apply the Weyl product inequalities for singular values [26, (7.3.14)] to the largest
singular value of the matrices on both sides,

o1 (R
M = 01(Ra2)0p—1(Va) < 01(R2aV i) = 01(Usy o).
22 |2

Because the orthogonal matrix U has all singular values equal to one,
01(U3,32) < 01(Uz2)01(Z2) < 01(U)0ks1 = O

Since V'1; is nonsingular, the CS decomposition [16, Theorem 2.5.3] implies that
IViillze = [V |l2. Combining the extreme ends of the sequence of the above in-
equalities gives o1 (Ra2)/||[Viill2 < 0hg1. O

A.4. Proof of Theorem 4.4. We prove the correctness of Algorithm 4.4 (Lem-
ma A.8), and present a proof of Theorem 4.4 (Lemma A.9).

Our proofs follow those in [18] but without the full rank assumption on the sen-
sitivity matrix and with more details. To keep the proofs simple, we assume that
the QR decompositions are implemented so that the upper triangular matrices have
non-negative diagonal elements [16, Theorem 5.2.3].

We prove the correctness of stopping criterion of Algorithm 4.4, which depends
on the row norms of Ry;' and the column norms of Ras,

wi(R11) = 1/[le] Riy'[|2, 1<i<k
v (Ra2) = || Razej|2, 1<j<p—-k
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LEMMA A.8 (Correctness of Algorithm 4.4). Let

_ |Ri1 R pxp
R_[O RJER

be upper triangular with non-negative diagonal elements, nonsingular Ry, € RF*¥,
and Ryy € RO=F)X(=F)  [et P pe q permutation that permutes columns i and k + j
of R for some1 < i<k and somel <j<p—Fk, andlet RP = QR be an unpivoted

QR decomposition with
B R 1312 .

Then

s = St = B Rl (0 (Raa) s (R

Proof. We give the proof for the special case i = k and j = 1, and first argue
that this represents no loss of generality. Note that column j of Ry corresponds to
column k + j of R.

Reduction to the case i = k and j = 1. Suppose that ¢ < k and j > 1. Let P,
be the permutation that permutes columns ¢ and & of R, and let Ry P; ) = Q, Ry,
be the unpivoted QR decomposition. Similarly, let P, ; be the permutation that
permutes columns k +j and k41 of R, and let Ryo Py ; = Q22R22 be the unpivoted
QR decomposition. With

_ . P, 0
Ry =Q | R2P, , P= _ O’k Pl,]} )
the matrix
RP — Ry Rp| [P O] _ [R11P; ) Ri2P1
0 Roo 0 Pl,j_ L 0 R22P1’j

has the unpivoted QR decomposition

= Q. O ] (R R12}
RP — | Rz |
[ 0 Qun]| 0 Ry

The assumption of non-negative diagonal elements in the upper triangular matrices
implies det(R11) = det(R11). From

-1 _T 1, AT _
R111R12 = (QRuPix) ' (QRi2Py ) = P?flefRqu

the invariance of the two-norm under multiplication by orthogonal matrices, and the
non-negativity of the diagonal elements follows

‘Ru Ryl

i = Ry Ruialet,  wiRi) =wi(Ru1), i (Raz) = 7 (Raa).

Thus, the relevant quantities do not change under permutations and subsequent QR
decompositions.
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Relevant quantities induced by the partitioning of upper triangular matrices. With
i =k and j = 1, distinguish?® rows and columns k and &k + 1,

R— R ‘ Ry _ w|p
| Ry, g flT
Ry

where Ry, € RE-Dx(k—1) Ry, € RE=Dx@=k=1) ", > 0 and v > 0. Upper triangu-
larity implies the determinant relation

(A.20) det(Ry1) = w det(Ryy).

Looking at the trailing row of Ry} and the leading column of Ry,

A —1 ~—1 T
-1 _ |Ry ”Rna _ v d
R11 [ 0 ] R22 0 R22 }

w
gives
Vlleg Ry fl2 = wp(Ri) =w,  [[Razer]l2 = m(Ra2) = .
Element (k,1) of R;}' Ry2 equals
A —1 A —1 ~
- R, -1R b R b] B
(R111R12)k,1 = ef [ 61 w1 a] [ﬁ le?} e = [() l] [ } ==,

w

The action. Let P be the permutation that permutes columns k and £+ 1 of R,

Rll b|a R12

- Blw T

RP = ~ 10 ar
Rj»

To return to upper triangular form, perform an unpivoted QR decomposition RP =
QR that zeros out v by rotating rows k£ and k£ + 1. The resulting triangular matrix
R has a leading principal submatrix

11 0 /762 e
with the determinant relation

det(Ryy) = /B2 + 12 det(Ryy).

Combine this with the old determinant relation (A.20)

det(Ryy) \/ﬂ2 e g 2

det(Ru) w
= \/ (R Ri2); 1 + (71(Raz) /wi(Ra1))?. O

2To increase readability, we sometimes use blank spaces to represent 0 elements.

_|_
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The following proof of Theorem 4.4 relies on results from [25, section 3.3] and [18,
section 3] but without the assumption that S has full column rank.

LEMMA A.9 (Proof of Theorem 4.4). Let S € R"*P with n > p have singular
values o1 > -+ > 0, > 0; and QR decomposition S = QR. Let 1 < k < p so that
the leading k x k principal submatriz of R is non-singular. Then Algorithm /.4 with
f>1 computes a QR decomposition

SP = [Q1 Q2] [ROH g;ﬂ )

with singular values

05

0;(R11) > , 1<i<k,
N R

0j(Ra2) < ojpiV/ 1+ fPh(p—Fk), 1<j<p-—k

Additionally, the elements of Ry, Ria are bounded by

IR'Ryli; <f, 1<i<kl1<j<p—k

Proof. We prove the inequality in the reverse order.
Third inequality. It follows from the observation that Algorithm 4.4 terminates
once

IR Riali; < \/\RﬁlRlz\%j + (v (Ra2) /wi(R11))? < f

holdsfor 1 <i <k, 1<j<p—k.
Second inequality. We scale the leading diagonal block so that it contains the
k dominant singular values by o = o1(Ra2)/0k(R11). Extract a judiciously scaled
block-diagonal matrix
Rp = |:04R11 0 :| _ |:R11 R12:| |:0<Ik —R1_11R12
0 Ry 0 Ry 0 Ip,k

R w

where aR1; contains the k£ dominant singular values, because
O'k(OéRll) = OtO'k(Rll) =01 (RQQ).

This means the largest singular value of Rs9s is equal to the smallest singular value
of aRy1, thus less than or equal to all other singular values of aR1;. Therefore, the
trailing block Roo contains the p — k smallest singular values of Rp.

The Weyl product inequality [26, (7.3.13)] implies

(A.21) oj+k(Rp) = 0j(Ra2) < 011 (R)|W |2, 1<j<p-—k

We bound ||W ||z, by bounding the two-norm in terms of the Frobenius norm and, in
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turn, expressing this as a sum,

W3 < 1+||R; Ruall5 + o
=1+ ||R;) Ri2|l5 + [| Rz /13| Ry 13
< 1+ ||Ry) Rioll% + || Rz || 7| R (I3
k p—k
=14+> Y ((R'R12)}; + (7;(Ra2) /wi(R11))?)
i=1 j=1
k ;—k

ST+ Y > 2 =1+ fk(p— k).

i=1 j=1

Now substitute [|[W |2 < y/1+ f2k(p — k) into (A.21).
First inequality. If o1(Rao2) = 0, then Rgs = 0 and the first inequality holds.
Thus assume that o1(Ra2) > 0 so that a = 01(Rag)/okx(R11) > 0. Deriving a
lower bound for the large singular values requires a slightly different ansatz. We scale
the trailing block by 1/« so that it contains the p— k smallest singular values. Extract
a differently scaled block-diagonal matrix,

R— Ry Rix| _ |Rn 0 I, R 'Ry
0 R22 0 RQQ/(X 0 OéIp_k ’

Rp w
where Rgs/a contains the p — k subdominant singular values, because

0’1(R22/a) = 0'1(R22)/Oé = Uk(Rll)-

This means the smallest singular value of Rj; is equal to the smallest singular value
of Ras/a, thus larger or equal to all other singular values of Rgs/. Therefore, the
leading block R;; contains the k largest singular values of Rp.

An analogous argument as above shows

0i(R) < 0i(Rp)||W |2 = 03(R11) [W ]

SO’Z‘(RH)\/l—Fka(p—k), ISZSIC O

Appendix B. Supplemental Material. We present more details for the mod-
els in section 2.2: Epidemiological (section B.1), cardiovascular tissue (section B.2),
fibrin polymerization (section B.3), and neurological (section B.4). All models are
represented as coupled systems of ODEs (ordinary differential equations), and pa-
rameter sensitivities are determined from their numerical solution via complex-step
or finite differences.

B.1. Epidemiological Models. We implemented five (nested) epidemiological
compartment models in section 2.2 that represent COVID-19 spread among the US
population for identifiability anaylsis of the model parameters.

Figure B.1 displays the different compartments associated with the state variables
in each model, and the possible transitions from one infection status to another within
a population [49, 39]. The parameters above the arrows represent the transition rates.
From these diagrams, nonlinear ordinary differential equations for each system can
be derived by analogy with leading-order mass action reaction kinetics.
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A For the SIR, SEIR, SVIR, and SEVIR models in Figure B.1, the quantity of
5 interest is the number I(t) of infectious individuals at time ¢; and for the COVID
6 model it is (A+ I+ H)(t).

7 We calibrated the models to the spread of COVID-19 through the US based on
g8 CDC data and relevant studies. Table B.1 describes the physical interpretation of
9 each parameter and the average nominal value for generating sensitivities.

1310 As outlined in §5.1, letting q; represent the nominal value of the jth parameter
1311 in Table B.1, the algorithms were tested on 10,000 matrices for each model, evaluated
1312 at parameter vectors for which the jth component is sampled uniformly from the
1313 interval [0.5¢}, 1.5¢}].

(a) (b)
s Fl 1 S R N s [ S I ERAN
(c) p , (d) s . ’
| R E | > R
v ‘VJ'
af af
\Y;
(e) ,
£ m'/v A
v E (1-8)y, ©
ap (1-o)n I pe

Fic. B.1. Compartment diagrams for the epidemiological models in section 2.2 to illustrate the
possible transitions from one infection statius to another within a population for (a) SIR, (b) SEIR,
(¢) SVIR, (d) SEVIR, and (e) COVID-19 models.

Par | Mean | Description Ref.
8 | 0.80 | Transmission coefficient [29]
n 0.33 | Rate of progression to infectiousness (following exposure) | [30, 31]
y 0.14 | Rate of progression through infectious stage [44, 37]
@ 0.10 | Probability of infection after vaccination [39]
v | 0.004 | Rate of vaccination [48]
o 0.35 | Percentage of infected that are asymptomatic [43]
4] 0.05 | Rate of hospitalization for symptomatic infected [14]
w 0.82 | Rate of recovery for hospitalized infections [36]

TABLE B.1
Parameter values and physical interpretations in epidemiological models from §5.1
1314 B.2. Cardiovascular Tissue Biomechanics (HGO) Model. The sensitiv-

1315 ity matrix corresponding to this model arose from a nonlinear hyperelastic struc-
1316 tural model of the vessel wall for a large pulmonary artery in the context of ex vivo
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biomechanical experiments. A two-layer, anisotropic vessel wall model was developed,
within the general framework of the Holzapfel-Gasser-Ogden (HGO) model [24], and
systematically reduced with identifiabilty techniques rooted in the scaled sensitivity
matrix. The quantity of interest was a hybrid normalized residual vector amalga-
mating data measuring lumen area and wall thickness changes with increasing fluid
pressure.

This data set arises from ex vivo biomechanical testing of coupled flow and defor-
mation for left pulmonary arteries excised from normal and hypertensive mice. This
model contains 16 model parameters: 8 are fixed based on values in the literature or
information from the experiments, while the remaining 8 are estimated via systematic
model reduction in the context of an inverse problem [19].

Results of the systematic model reduction in [19] are consistent with the value
k =5 for HGO in Table 4.1.

B.3. Fibrin Polymerization Model for Wound Healing Applications.
Motivated by a wound healing application, this is a biochemical reaction kinetics
model for in vitro fibrin polymerization, mediated by the enzyme thrombin, and [38].
The 46 x 11 sensitivity matrix represents 46 time points for the concentration of
fibrin matrix, i.e. in-vitro clots; and 11 parameters that represent reaction rates for
the associated biochemical reaction species. The parameters are chosen from the last
row of [38, Table 1] for a mathematical model of hemostasis, the first stage of wound
healing during which fibrin (extracellular) matrix polymerization occurs.

The corresponding system of ODEs is based on first-order reaction kinetics, anal-
ogous to the mass-action assumptions for the epidemiological compartment models
in section B.1. The systematic identifiability analysis and model reduction for the
inverse problem in [38] are consistent with the value k¥ = 6 under the "Wound” model
in Table 5.1.

B.4. Neurological Model. This complex model consists of a system of non-
linear ODEs [20] that quantify the neurovascular coupling (NVC) response, and the
local changes in vascular resistance due to neuronal activity [20]. The state variables
represent different components of the human brain, while the parameters represent
the ion channels and metabolic signalling among them.

The sensitivity matrix is the largest and most ill-conditioned sensitivity matrix
in Table 5.1, along with the largest number of state variables, parameters p = 175,
and observations n = 200.

Appendix C. Dynamical systems for adversarial CSS matrices.

Given an adversarial CSS matrix S € R™*P with n > p, we construct a dynamical
system whose sensitivity matrix is identical to S.

Let § = ULV " have have a thin SVD as in (3.2) and distinguish the columns
of the singular vector matrices,

U=[u ... uy] R, V=I[vi ... v, ERP*".
Pick some vector q € RP, we are going to construct a system of ODEs parameterized
by q.
To this end, let
A =diag(\ -+ Ap) €RPXP

be a diagonal matrix yet to be specified. Denote by x(t) € RP the state vector and
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by y(t) the observation vector, and combine everything into the initial value problem

dx T
(1) i Az, z(0)=V'q,
y(t) = Uz(t)

with solution x(t) = exp(tA)V ' q. Since A is diagonal, the observation equals

/4
y(t) =Uexp(tA)V q =) u;eviq
i=1

As in section 2.2.1, differentiate y with respect to q, and then evaluate at time
t =7 > 0. The rows of the resulting sensitivity matrix equal

y;
dq

p
= E uije”‘jva, 1<i<n.
i=1

Set o; = €7 so that \; = %ln 0j, 1 < j < p. Then the sensitivity matrix at time
t=71is

P
S(t;q) = Zujaj va =Uxv’,
j=1

Therefore, the dynamical system (C.1) has the desired sensitivity matrix S at time 7.
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