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A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a
Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not
possible. There are numerous efficient methods developed for this task, but they generally fail when some
control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new
technique called eigenvector continuation that can extend the reach of these methods. The key insight is that
while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated
by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We
prove this statement using analytic function theory and propose an algorithm to solve for the extremal
eigenvectors. We benchmark the method using several examples from quantum many-body theory.
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We address the problem of finding the extremal eigenval-
ues and eigenvectors of a Hamiltonian matrix that is too large
to store in computer memory. This problem occurs regularly
in quantummany-body theory and all existingmethods either
use Monte Carlo simulations, diagrammatic expansions,
variational methods, or some combination. While these
methods can be quite efficient, they can break down when
one or more parameters in the Hamiltonian exceed some
tolerance threshold. InMonte Carlo simulations the difficulty
is caused by sign oscillations that cause positive and negative
weights to cancel. In diagrammatric expansions the problem
is the divergence of the series expansion, and in variational
methods the obstacle is capturing the details of the wave
function using a variational ansatz or truncated basis expan-
sion. In this Letter we introduce a new variational technique
called eigenvector continuation (EC) that can be used to
salvage the most difficult cases.
In the mathematical literature, the terms eigenvector

continuation [1–3], subspace tracking [4], and successive
constraint method for subspace acceleration [5] refer to the
computation of smoothly varying bases for invariant sub-
spaces of parameter-dependent matrices. Although related,
our approach is aimed at determining eigenvalues and
eigenvectors in a vector space so large that linear algebra
operations on general vectors are not possible. As a result,
Krylov space methods such as the Lanczos algorithm [6,7]
are not applicable in their usual formulation. Some exam-
ples of computational methods that can tolerate extremely
large-dimensional spaces are quantum Monte Carlo sim-
ulations and many-body perturbation theory. We assume

that we have a computational method that can perform a
limited set of operations such as inner products between
eigenvectors of different Hamiltonian matrices and ampli-
tudes of eigenvectors sandwiching specific matrices such as
a Hamiltonian matrix. In order to obtain results using only
this limited information, we must be careful to maintain
numerical accuracy and robustness in the presence of
collinearities among the eigenvectors.
In the following we demonstrate that when a control

parameter in the Hamiltonian matrix is varied smoothly,
the extremal eigenvectors do not explore the large dimension-
ality of the linear space. Instead they trace out trajectorieswith
significant displacements in only a small number of linearly
independent directions. We prove this statement using the
principles of analytic continuation. Since the eigenvector
trajectory is a low-dimensional manifold embedded in a very
large space, we can “learn” the eigenvector trajectory using
data where the eigenvector is computable and apply eigen-
vector continuation to address problems where the computa-
tional method breaks down.
Let us consider a finite-dimensional linear space and a

family of Hamiltonian matrices HðcÞ ¼ H0 þ cH1 where
H0 and H1 are Hermitian. Let jψ jðcÞi denote the eigen-
vectors of HðcÞ with corresponding eigenvalues EjðcÞ.
Since HðcÞ is Hermitian for real c and thus diagonalizable,
EjðcÞ has no singularities on the real axis, and we can
define jψ jðcÞi so that it also has no singularities on the real
axis. We now expand jψ jðcÞi as a power series about the
point c ¼ 0. The series coefficients for cn are jψ ðnÞ

j ð0Þi=n!,
where the superscript (n) denotes the nth derivative. An
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analogous series expansion can also be applied to the
eigenvalue EjðcÞ. These series converge for all jcj < jzj,
where z and its complex conjugate z̄ are the closest
singularities to c ¼ 0 in the complex plane. In the following
we discuss perturbation theory, which can be regarded as
the calculation of these series expansions in cases where the
eigenvalues and eigenvectors of H0 are known or readily
computable.
In order to illuminate our discussion with a concrete

example, we consider a quantum Hamiltonian known as the
Bose-Hubbard model in three dimensions [8]. It describes a
system of identical bosons on a three-dimensional cubic
lattice. The Hamiltonian has a term proportional to t that
controls the lattice hopping of each boson, a term propor-
tional to U that controls the pairwise interactions between
bosons on the same site, and a chemical potential μ. The
full details of the model are given in Supplemental Material
[9]. We consider a system of four bosons with μ ¼ −6t on a
4 × 4 × 4 lattice. We first try to use perturbation theory to
compute the ground state energy eigenvalue E0 in units of
the hopping parameter t. In panel (a) of Fig. 1 we show
E0=t versus interaction strength U=t. The red asterisks
indicate the exact energies. The lines (1 ¼ red dashed,
2 ¼ magenta dotted, 3 ¼ grey dashed-dotted, 4 ¼ blue
solid, 5 ¼ black long-dashed-dotted, and 6 ¼ orange
long-dashed) denote the first six orders for the expansion
of E0=t as a power series around U=t ¼ 0. We see that
perturbation theory fails to converge when U=t is less than
about −3.8. (From the first six orders of the expansion, the
series might seem to converge to the wrong value for
U=t < −3.8. However the series is divergent at higher
orders.) This is caused by branch point singularities at
nearby points in the complex plane where the ground state
eigenvalue is merging with another eigenvalue.
The failure of perturbation theory is not surprising

considering that the physical character of the ground state
eigenvector changes significantly. It is a Bose gas for
U=t > 0, a weakly bound state for −3.8 < U=t < 0, and
then a tightly bound cluster for U=t < −3.8. Although the
eigenvector makes these changes in a linear space with
hundreds of thousands of dimensions (before symmetriza-
tion), the eigenvector traces out a path with significant
displacement in only a few independent directions. To
demonstrate this we compute the ground state eigenvectors
at three sampling points, U=t ¼ −5.0;−1.5, 2.0. These
three vectors span a three-dimensional subspace. We
project the Hamiltonian for general U=t onto this subspace
and find the lowest eigenvalue and eigenvector. This
technique is an example of an approach we call eigenvector
continuation. In panel (a) of Fig. 1 the black solid line
shows E0=t computed using EC with the three sampling
points shown as black diamonds. The agreement with the
exact energies is quite good, and the same level of accuracy
is found when comparing the eigenvector computed using
EC to the exact eigenvector.

Eigenvector continuation can be used to learn sampling
data from the region −3.8 < U=t < 0 and extrapolate to the
regions U=t < −3.8 and U=t > 0. To demonstrate this
we sample the ground state eigenvectors at five points,
U=t ¼ −2.0;−1.9;−1.8;−1.7;−1.6. The results are shown
in panel (b) of Fig. 1. The red asterisks are the exact
energies. The black diamonds show the five sampling
points, and the lines (1 ¼ red dashed, 2 ¼ magenta dotted,
3 ¼ grey dashed-dotted, 4 ¼ blue solid, and 5 ¼ black
long-dashed-dotted) denote the EC results for E0=t when
projecting onto 1, 2, 3, 4, or 5 vectors. We see that the
method converges rapidly and is able to capture the abrupt
change in slope near U=t ¼ −3.8.
Why eigenvector continuation works and how fast it

converges can be understood using analytic function theory.
We return to the series expansion for jψ jðcÞi. Although the
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FIG. 1. Ground state energy versus coupling. In each panel
(a) and (b) we plot the ground state energy E0=t versus coupling
U=t for four bosons in the three-dimensional Bose-Hubbard
model on a 4 × 4 × 4 periodic lattice. The red asterisks are
the exact energies. In panel (a) the lines (1 ¼ red dashed,
2 ¼ magenta dotted, 3 ¼ grey dashed-dotted, 4 ¼ blue solid,
5 ¼ black long-dashed-dotted, and 6 ¼ orange long-dashed)
denote the first six orders of the expansion of E0=t as a power
series around the point U=t ¼ 0. For comparison, the black solid
line shows E0=t computed using EC with the three sampling
points shown as black diamonds. In panel (b) the black diamonds
show the five sampling points, and the lines (1 ¼ red dashed,
2 ¼ magenta dotted, 3 ¼ grey dashed-dotted, 4 ¼ blue solid, and
5 ¼ black long-dashed-dotted) denote the EC results for E0=t
when projecting onto 1, 2, 3, 4, or 5 vectors.
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series expansion about c ¼ 0 fails to converge for points
jcj > jzj, we can define an analytic extension by construct-
ing a new series about another point c ¼ w, where w is real
and jwj < jzj. For this second series the coefficients of

ðc − wÞn are jψ ðnÞ
j ðwÞi=n!. We can use the original series to

express each jψ ðnÞ
j ðwÞi in terms of jψ ðmÞ

j ð0Þi. In this way we
can approximate jψ jðcÞi to arbitrary accuracy as a linear

combination of the vectors jψ ðnÞ
j ð0Þi in the region jc − wj <

jz − wj centered at w. Using this process of analytic
continuation repeatedly, we can reach any value of c and
express any jψ jðcÞi to arbitrary accuracy as a linear

combination of a finite number of vectors jψ ðnÞ
j ð0Þi. The

number of required vectors is determined by the number of
different expansion centers needed in the analytic continu-
ation and the rate of convergence of each series expansion.
This explains why the trajectory traced out by jψ jðcÞimoves
in a small number of linearly independent directions.
The basic strategy of eigenvector continuation is to learn

the low-dimensional subspace that contains the eigenvector
trajectory jψ jðcÞi. We start with the lowest eigenvalue and
eigenvector in a given symmetry class. We then sample
several values c ¼ ci with i ¼ 1;…; K and compute the
corresponding eigenvectors jψ jðciÞi. The sampling values ci
are chosen in the domain where the computational method of
choice is accurate. The target value c ¼ c⊙, where we want
to determine Ejðc⊙Þ and jψ jðc⊙Þi, often lies in a region
where direct calculation is no longer feasible. We then
compute the inner products Ni0;i ¼ hψ jðci0 Þjψ jðciÞi and
matrix elements Hi0;i¼hψ jðci0 ÞjHðc⊙Þjψ jðciÞi and solve
the generalized eigenvalue problem. This consists of finding
the eigenvalues and eigenvectors of the K-dimensional
matrix N−1=2HN−1=2, where N−1=2 is the inverse square
root of the positive matrix N. For the lowest eigenvalue and
eigenvector of each symmetry class, it suffices to compute
the lowest eigenvalue and eigenvector of the K-dimensional
matrix. We then proceed to the next-lowest eigenvalue and
eigenvector in the symmetry class with the additional
constraint that it is orthogonal to the lowest eigenvector.
Continuing on in this manner, any eigenvalue and eigen-
vector can, in principle, be calculated. In cases where there
are singularities near the real axis, the convergence of the
method can be accelerated by including several eigenvectors
jψ jðciÞi; jψ j0 ðciÞi; � � � for each ci. This procedure and the
connection to Riemann sheets at branch point singularities is
discussed in Supplemental Material [9].
We now test the eigenvector continuation in a many-

body quantumMonte Carlo calculation. We consider lattice
simulations of pure neutron matter at leading order in
chiral effective field theory. Instead of using the lattice
actions used in recent work [10,11], we purposely use the
computationally difficult action described in Ref. [12].
Because of severe sign oscillations, it is not possible to do
accurate simulations for more than four neutrons. Even

extrapolation methods such as those discussed in
Refs. [13,14] provide no significant improvement due to
the rapid onset of sign cancellations. The leading-order
action consists of the free neutron action, a single-site
contact interaction between neutrons of opposite spins, and
the two-body potential generated from the exchange of a
pion. This one-pion exchange potential is proportional to
g2A, the square of the axial-vector coupling constant. In
contrast with the lattice actions used in Refs. [10,11], the
short distance behavior of this one-pion exchange potential
is not softened and, as a result, causes severe sign
oscillations in the Monte Carlo simulations. We consider
the one-parameter family of lattice Hamiltonians Hðg2AÞ,
which results from varying g2A. The desired target value of
g2A is the value 1.66 used in Ref. [12]. Details of the lattice
action are presented in Supplemental Material [9].
The systems we calculate are the ground state energies of

six and fourteen neutrons on a 4 × 4 × 4 lattice with spatial
lattice spacing 1.97 fm and time lattice spacing 1.32 fm.
We are using natural units where ℏ and the speed of light
are set to 1. We use projection Monte Carlo simulations
with auxiliary fields to calculate the ground state energy.
Details of the simulation are presented in Supplemental
Material [9], and some reviews of the lattice methods can
be found in Refs. [12,15]. We first attempt to compute the
ground state energies by direct calculation. The errors are
quite large due to sign oscillations. For six neutrons the
ground state energy is E0 ¼ 12ðþ3

−4Þ MeV, and for fourteen
neutrons E0 ¼ 42ðþ7

−15Þ MeV.
Next we use eigenvector continuation for the same

systems with sampling data g2A ¼ c1, c2, c3, where c1 ¼
0.25, c2 ¼ 0.60, and c3 ¼ 0.95. We use Monte Carlo
simulations to calculate the ground state eigenvectors for
c1, c2, c3. In Table I we show the EC results using just one
of the three vectors, two of the vectors, or all three vectors.
The error bars are estimates of the stochastic error and
extrapolation error when taking the limit of infinite pro-
jection time. For comparison we also show the direct
calculation results. We see that the EC results converge

TABLE I. Eigenvector continuation results for the ground state
energy for six and fourteen neutrons using sampling data
g2A ¼ c1, c2, c3, where c1 ¼ 0.25, c2 ¼ 0.60, and c3 ¼ 0.95.
For comparison we also show the direct calculation results.

g2A values E0ðN ¼ 6Þ [MeV] E0ðN ¼ 14Þ [MeV]

c1 14.0(4) 48.8(6)
c2 13.7(4) 48.5(7)
c3 13.8(6) 48.8(8)
c2, c3 13.7(4) 48.4(7)
c3, c1 13.8(4) 48.8(6)
c1, c2 13.7(4) 48.4(7)
c1, c2, c3 13.7(4) 48.4(7)

Direct calculation 12ðþ3
−4 Þ 42ðþ7

−15Þ
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quite rapidly with the number of vectors included. The
results are also consistent with the direct calculation results,
though with an error bar that is smaller by an order of
magnitude.
Our calculations demonstrate the potential value of

eigenvector continuation for quantum Monte Carlo simu-
lations. One can use eigenvector continuation for inter-
actions that produce sign oscillations or noisy Monte Carlo
simulations. Eigenvector continuation can also be used to
significantly extend the convergence of perturbation theory,
and this will be demonstrated in a forthcoming publication.
While eigenvector continuation would not improve a
Lanczos calculation using a truncated basis with fixed
dimensions, eigenvector continuation can be used to extend
the reach of techniques that remove basis truncation errors
[16]. The method is expected to be particularly useful for
bound state calculations. For continuum states one should
consider all low-lying continuum states in a finite volume
together rather than picking out one continuum eigenvector
at a time. This can be done using a framework such as the
adiabatic projection method [17,18], which constructs
continuum states for all possible relative displacements
between clusters.
If the inner products Ni0;i and matrix elements Hi0;i can

be computed with sufficient accuracy, then any eigen-
vector problem can be solved in this manner. However,
there are practical limits to the accuracy one can achieve
for any computational method, and this sets limits on how
far eigenvector continuation can be pushed. In future
work we will discuss machine learning techniques for
optimizing the eigenvector continuation process [19–21].
While we have emphasized the use of eigenvector
continuation to perform extrapolations in the control
parameter c, there are also fascinating quantum systems
where interpolation is the most interesting question. One
example is the phenomenon known as “BCS-BEC cross-
over” in degenerate fermionic systems at large scattering
length [22]. There are variational wave functions that
work very well for the weak-coupling BCS side, and
other variational wave functions that accurately describe
the strong-coupling BEC side. Our results here suggest
that the crossover transition can be well represented using
linear combinations of the different variational wave
functions. In the same manner, eigenvector continuation
could also be used to study shape phase transitions in
atomic nuclei [23]. (We are grateful for discussions on
this topic with Mark Caprio.)
We look forward to seeing future applications of eigen-

vector continuation when paired with computational meth-
ods such as quantum Monte Carlo simulations, many-body
perturbation theory, and variational methods. We anticipate
that eigenvector continuation can serve as a new theoretical
tool to study quantum correlations, BCS-BEC crossover,
shape transitions, entanglement, geometric phases, and
quantum phase transitions at finite volume.

We acknowledge partial financial support from the U.S.
Department of Energy (Award No. DE-FG02-03ER41260),
National Science Foundation, Army Research Laboratory,
Office of Naval Research, Air Force Office of Scientific
Research, Department of Transportation, XDATA Program
of the Defense Advanced Research Projects Agency
administered through the Air Force Research Laboratory
(Grant No. FA8750-12-C-0323), Natural Sciences and
Engineering Research Council of Canada, Canada
Foundation for Innovation, and Early Researcher Award
program of the Ontario Ministry of Research, Innovation,
and Science. The computational resources were provided by
Michigan State University, North Carolina State University,
SHARCNET, NERSC, the Jülich Supercomputing Centre at
Forschungszentrum Jülich, and the Oak Ridge Leadership
Computing Facility.

[1] D. Bindel, J. Demmel, and M. Friedman, SIAM J. Sci.
Comput. 30, 637 (2008).

[2] D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and
Y. A. Kuznetsov, J. Comput. Appl. Math. 261, 232
(2014).

[3] H. A. Dijkstra, F. W. Wubs, A. K. Cliffe et al., Commun.
Comput. Phys. 15, 1 (2014).

[4] Y. Saad, SIAM J. Matrix Anal. Appl. 37, 103 (2016).
[5] P. Sirkovic and D. Kressner, SIAM J. Matrix Anal. Appl. 37,

695 (2016).
[6] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
[7] Y. Saad, Numerical Methods for Large Eigenvalue

Problems, Classics in Applied Mathematics (Society for
Industrial and Applied Mathematics (SIAM), Philadelphia,
2011), Vol. 66, revised edition of the 1992 original.

[8] H. A. Gersch and G. C. Knollman, Phys. Rev. 129, 959
(1963).

[9] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.032501 for further
information about branch point singularities, the Bose-
Hubbard model, applications of eigenvector continuation
to more than one eigenvector, and the neutron matter
calculations presented in the main text.

[10] S. Elhatisari et al., Phys. Rev. Lett. 117, 132501 (2016).
[11] S. Elhatisari, E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee,

N. Li, B.-N. Lu, U.-G. Meißner, and G. Rupak, Phys. Rev.
Lett. 119, 222505 (2017).

[12] D. Lee, Lect. Notes Phys. 936, 237 (2017).
[13] Y. Alhassid, D. J. Dean, S. E. Koonin, G. Lang, and W. E.

Ormand, Phys. Rev. Lett. 72, 613 (1994).
[14] T. A. Lähde, T. Luu, D. Lee, U.-G. Meißner, E.

Epelbaum, H. Krebs, and G. Rupak, Eur. Phys. J. A
51, 92 (2015).

[15] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).
[16] D. Lee, N. Salwen, and M. Windoloski, Phys. Lett. B 502,

329 (2001).
[17] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs,

T. A. Lähde, T. Luu, and U.-G. Meißner, Nature (London)
528, 111 (2015).

PHYSICAL REVIEW LETTERS 121, 032501 (2018)

032501-4

https://doi.org/10.1137/060654219
https://doi.org/10.1137/060654219
https://doi.org/10.1016/j.cam.2013.10.034
https://doi.org/10.1016/j.cam.2013.10.034
https://doi.org/10.4208/cicp.240912.180613a
https://doi.org/10.4208/cicp.240912.180613a
https://doi.org/10.1137/141002037
https://doi.org/10.1137/15M1017181
https://doi.org/10.1137/15M1017181
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRev.129.959
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.032501
https://doi.org/10.1103/PhysRevLett.117.132501
https://doi.org/10.1103/PhysRevLett.119.222505
https://doi.org/10.1103/PhysRevLett.119.222505
https://doi.org/10.1007/978-3-319-53336-0
https://doi.org/10.1103/PhysRevLett.72.613
https://doi.org/10.1140/epja/i2015-15092-1
https://doi.org/10.1140/epja/i2015-15092-1
https://doi.org/10.1016/j.ppnp.2008.12.001
https://doi.org/10.1016/S0370-2693(01)00198-8
https://doi.org/10.1016/S0370-2693(01)00198-8
https://doi.org/10.1038/nature16067
https://doi.org/10.1038/nature16067


[18] S. Elhatisari, D. Lee, U.-G. Meißner, and G. Rupak, Eur.
Phys. J. A 52, 174 (2016).

[19] I. T. Jolliffe, in Principal Component Analysis (Springer,
New York, 1986), pp. 115–128.

[20] H. S. Seung and D. D. Lee, Science 290, 2268
(2000).

[21] L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D.
Lee, Semisupervised Learning (The MIT Press, Cambridge,
Massachusetts, 2006), pp. 293–308.

[22] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.
Phys. 80, 1215 (2008).

[23] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

PHYSICAL REVIEW LETTERS 121, 032501 (2018)

032501-5

https://doi.org/10.1140/epja/i2016-16174-2
https://doi.org/10.1140/epja/i2016-16174-2
https://doi.org/10.1126/science.290.5500.2268
https://doi.org/10.1126/science.290.5500.2268
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/PhysRevLett.87.052502

