Supplementary Material

1 APPENDIX: RESTRICTED MAXIMUM LIKELIHOOD (REML) EM ALGORITHM FOR ESTIMATING VARIANCE COMPONENTS

Under the null hypothesis $H_{0}: \nu=0$ and the assumptions that $\tau>0$ and $\sigma>0$, model (1) becomes

$$
\begin{equation*}
\mathbf{y}=\widetilde{\mathbf{X}} \boldsymbol{\beta}+\mathbf{G b}+\boldsymbol{\epsilon}, \tag{S1}
\end{equation*}
$$

where $\mathbf{b} \sim \mathrm{N}\left(\mathbf{0}, \tau \mathbf{I}_{L}\right)$ and $\boldsymbol{\epsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma \mathbf{I}_{n}\right)$ are uncorrelated. Assume that $\widetilde{\mathbf{X}}$ has full column rank so that $\operatorname{rank}(\widetilde{\mathbf{X}})=P$. Let $\mathbf{u}=\mathbf{A}^{T} \mathbf{y}$ such that $\mathbf{A} \mathbf{A}^{T}=\mathbf{I}-\widetilde{\mathbf{X}}\left(\widetilde{\mathbf{X}}{ }^{T} \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^{T}$ and $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}_{n-P}$. Then

$$
\begin{aligned}
\mathbf{u} & =\mathbf{A}^{T} \mathbf{y} \\
& =\mathbf{A}^{T} \mathbf{G} \mathbf{b}+\mathbf{A}^{T} \boldsymbol{\epsilon}
\end{aligned}
$$

so that $\mathbf{u} \mid \mathbf{b}$ does not depend on the unobserved fixed effects parameter β.
Following the work in (Tzeng et al., 2011), we consider an expectation-maximization (EM) algorithm based on the restricted maximum likelihood for the observed data \mathbf{u} and missing data \mathbf{b} with the following complete data log likelihood

$$
\begin{equation*}
\log f(\mathbf{u}, \mathbf{b} ; \tau, \sigma)=\log f(\mathbf{u} \mid \mathbf{b} ; \tau, \sigma)+\log f(\mathbf{b} ; \tau, \sigma) \tag{S2}
\end{equation*}
$$

For the first term on the right-hand side of (S2), we use the fact that the conditional distribution of u given b is

$$
\mathbf{u} \mid \mathbf{b} \sim \mathrm{N}\left(\mathbf{A}^{T} \mathbf{G} \mathbf{b}, \sigma \mathbf{I}_{n-P}\right)
$$

so that

$$
f(\mathbf{u} \mid \mathbf{b} ; \tau, \sigma)=(2 \pi)^{-\frac{n-P}{2}}\left|\sigma \mathbf{I}_{n-P}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \sigma}\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2}\right\}
$$

and

$$
\begin{equation*}
\log f(\mathbf{u} \mid \mathbf{b} ; \tau, \sigma) \quad \propto \quad-\frac{n-P}{2} \log \sigma-\frac{1}{2 \sigma}\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2} . \tag{S3}
\end{equation*}
$$

For the second term on the right-hand side of (S2), we have

$$
f(\mathbf{b} ; \tau, \sigma)=(2 \pi)^{-\frac{L}{2}}\left|\tau \mathbf{I}_{L}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \tau}\|\mathbf{b}\|_{2}^{2}\right\}
$$

so that

$$
\begin{equation*}
\log f(\mathbf{b} ; \tau, \sigma) \quad \propto \quad-\frac{L}{2} \log \tau-\frac{1}{2 \tau}\|\mathbf{b}\|_{2}^{2} . \tag{S4}
\end{equation*}
$$

Inserting (S3) and (S4) into (S2) gives

$$
\log f(\mathbf{u}, \mathbf{b} ; \tau, \sigma) \quad \propto-\frac{n-P}{2} \log \sigma-\frac{1}{2 \sigma}\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2}-\frac{L}{2} \log \tau-\frac{1}{2 \tau}\|\mathbf{b}\|_{2}^{2}
$$

Therefore, $Q\left(\tau, \sigma ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right)$ in the expectation step (E-step) is

$$
\begin{aligned}
Q\left(\tau, \sigma ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right) \equiv & \mathbb{E}\left[\log f(\mathbf{u}, \mathbf{b} ; \tau, \sigma) \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right] \\
\propto & -\frac{n-P}{2} \log \sigma-\frac{1}{2 \sigma} \mathbb{E}\left[\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right] \\
& -\frac{L}{2} \log \tau-\frac{1}{2 \tau} \mathbb{E}\left[\|\mathbf{b}\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right] .
\end{aligned}
$$

To obtain the distribution of $\mathbf{b} \mid \mathbf{u}$, we recall the fact that for any $\mathbf{g}_{1} \in \mathbb{R}^{q}$ and $\mathbf{g}_{2} \in \mathbb{R}^{N-q}$ such that

$$
\left[\begin{array}{l}
\mathbf{g}_{1} \\
\mathbf{g}_{2}
\end{array}\right] \sim \mathrm{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right],\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\right),
$$

the distribution of $\mathbf{g}_{1} \mid \mathbf{g}_{2}$ is

$$
\mathbf{g}_{1} \mid \mathbf{g}_{2} \sim \mathbf{N}\left(\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{g}_{2}-\boldsymbol{\mu}_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

Since the covariance between \mathbf{b} and \mathbf{u} is

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{b}, \mathbf{u}) & =\mathbb{E}\left[\mathbf{b}(\mathbf{u}-\mathbb{E}[\mathbf{u}])^{T}\right] \\
& =\mathbb{E}\left[\mathbf{b}\left\{\mathbf{A}^{T}(\widetilde{\mathbf{X}} \boldsymbol{\beta}+\mathbf{G} \mathbf{b}+\mathbf{\epsilon})-\mathbf{0}\right\}^{T}\right] \\
& =\mathbb{E}\left[\mathbf{b} \mathbf{b}^{T} \mathbf{G}^{T} \mathbf{A}\right] \\
& =\mathbb{V} \operatorname{ar}(\mathbf{b}) \mathbf{G}^{T} \mathbf{A}=\tau \mathbf{G}^{T} \mathbf{A}=\Sigma_{12},
\end{aligned}
$$

the joint distribution of \mathbf{b} and \mathbf{u} is

$$
\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{u}
\end{array}\right] \sim \mathbf{N}\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\tau \mathbf{I}_{L} & \tau \mathbf{G}^{T} \mathbf{A} \\
\tau \mathbf{A}^{T} \mathbf{G} & \tau \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}+\sigma \mathbf{I}_{n-P}
\end{array}\right]\right)
$$

and we have

$$
\mathbf{b} \mid \mathbf{u} \sim \mathbf{N}\left(\tau \mathbf{G}^{T} \mathbf{A} \mathbf{R}^{-1} \mathbf{u}, \tau \mathbf{I}_{L}-\tau^{2} \mathbf{G}^{T} \mathbf{A} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{G}\right),
$$

where $\mathbf{R}=\tau \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}+\sigma \mathbf{I}_{n-P}$. Therefore, in the maximization step (M-step), we have

$$
\frac{\partial Q}{\partial \sigma}=-\frac{n-P}{2 \sigma}+\frac{1}{2 \sigma^{2}} \mathbb{E}\left[\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right]
$$

so that

$$
\begin{aligned}
\hat{\sigma}_{t+1} & =\frac{1}{n-P} \mathbb{E}\left[\left\|\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b}\right\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right] \\
& =\frac{1}{n-P}\left[\left\|\mathbf{u}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{u}\right\|_{2}^{2}+\hat{\tau}_{t} \operatorname{trace}\left(\mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right)\right]
\end{aligned}
$$

since $\mathbb{E}\left[\mathbf{u}-\mathbf{A}^{T} \mathbf{G} \mathbf{b} \mid \mathbf{u}\right]=\mathbf{u}-\tau \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{u}$ and $\operatorname{Var}\left(\mathbf{u}-\mathbf{A}^{T} \mathbf{G b} \mid \mathbf{u}\right)=\tau \mathbf{A}^{T} \mathbf{K}_{G}^{T} \mathbf{A}-$ $\tau^{2} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}$. For the first term on the right, we have

$$
\begin{aligned}
\mathbf{u}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{u} & =\left(\mathbf{R R}^{-1}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1}\right) \mathbf{u} \\
& =\left(\mathbf{R}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right) \mathbf{R}^{-1} \mathbf{u} \\
& =\hat{\sigma}_{t} \mathbf{R}^{-1} \mathbf{u}
\end{aligned}
$$

For the second term on the right, we have

$$
\begin{aligned}
\hat{\tau}_{t} \operatorname{trace}\left(\mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right) & =\operatorname{trace}\left(\left[\mathbf{R}-\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right] \hat{\tau}_{t} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right) \\
& =\hat{\sigma}_{t} \hat{\tau}_{t} \operatorname{trace}\left(\mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}\right) \\
& =\hat{\sigma}_{t} \hat{\tau}_{t} \operatorname{trace}\left(\mathbf{G}^{T} \mathbf{A} \mathbf{R}^{-1} \mathbf{A}^{T} \mathbf{G}\right) .
\end{aligned}
$$

Inserting these simplifications into the update for $\hat{\sigma}_{t}$ gives us

$$
\begin{equation*}
\hat{\sigma}_{t+1}=\frac{1}{n-P}\left[\left\|\hat{\sigma}_{t} \widehat{\mathbf{R}}^{-1} \mathbf{u}\right\|_{2}^{2}+\hat{\sigma}_{t} \hat{\tau}_{t} \operatorname{trace}\left(\mathbf{G}^{T} \mathbf{A} \widehat{\mathbf{R}}^{-1} \mathbf{A}^{T} \mathbf{G}\right)\right] \tag{S5}
\end{equation*}
$$

where $\widehat{\mathbf{R}}=\hat{\tau}_{t} \mathbf{A}^{T} \mathbf{K}_{G} \mathbf{A}+\hat{\sigma}_{t} \mathbf{I}_{n-P}$.
Additionally, we have

$$
\frac{\partial Q}{\partial \tau}=-\frac{L}{2 \tau}+\frac{1}{2 \tau^{2}} \mathbb{E}\left[\|\mathbf{b}\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right]
$$

so that

$$
\begin{align*}
\hat{\tau}_{t+1} & =\frac{1}{L} \mathbb{E}\left[\|\mathbf{b}\|_{2}^{2} \mid \mathbf{u} ; \hat{\tau}_{t}, \hat{\sigma}_{t}\right] \\
& =\frac{1}{L}\left[\hat{\tau}_{t}^{2}\left\|\mathbf{G}^{T} \mathbf{A} \widehat{\mathbf{R}}^{-1} \mathbf{u}\right\|_{2}^{2}+\operatorname{tr}\left(\hat{\tau}_{t} \mathbf{I}_{L}-\hat{\tau}_{t}^{2} \mathbf{G}^{T} \mathbf{A} \widehat{\mathbf{R}}^{-1} \mathbf{A}^{T} \mathbf{G}\right)\right] \tag{S6}
\end{align*}
$$

2 SUPPLEMENTARY TABLES AND FIGURES

Figure S1. Quantile-Quantile plot depicting p-values over $N=1,000$ replicates for $n=5,000$ observations and $L=100$ loci under the null hypothesis in the random effects simulations.

Figure S2. Absolute relative error of the p-values obtained from different GxE VC tests, compared to the "Truth" p-values. Results are obtained with $\tau=\sigma=1$ under $H_{0}: \nu=0$ over $N=1,000$ replicates with $n=5,000$ observations and $L=100$ loci.

Figure S3. Quantile-quantile plots for p-values obtained over $N=1,000$ replicates for $n=20,000$ and $n=100,000$ observations and $L=100$ loci in the fixed effects simulations.

Figure S4. Estimated values for τ and σ over $N=1,000$ replicates with $n=20,000$ observations and $L=100$ loci.

Table S1. P-values of the $G \times P A$ effects (i.e., interactions between genes and physical activity (PA)) on body mass index (BMI), identified by SEAGLE and MAGEE in the Taiwan Biobank study at the 5×10^{-4} nominal level. Relevance scores are obtained from GeneCards human gene database (www.genecards.org) using multiword search with string "'body mass index' OR obesity OR 'physical activity'".

Gene	SEAGLE	MAGEE	Relevance Score with BMI, obesity or PA
ALOX5AP	$4.33 \mathrm{E}-04$	-	6.16
BCLAF1	$1.83 \mathrm{E}-04$	-	0.26
CBLN2	$3.05 \mathrm{E}-05$	$3.71 \mathrm{E}-05$	-
FCN2	$4.08 \mathrm{E}-04$	$2.70 \mathrm{E}-04$	0.56
FOXR1	$3.22 \mathrm{E}-04$	$1.53 \mathrm{E}-04$	-
LOC338694	$1.34 \mathrm{E}-04$	$1.83 \mathrm{E}-04$	-
OCM	$4.18 \mathrm{E}-04$	$8.58 \mathrm{E}-05$	0.91
PCDH17	$3.64 \mathrm{E}-04$	-	1.54
TBPL1	-	$2.24 \mathrm{E}-04$	-

REFERENCES

Tzeng JY, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM, et al. Studying gene and geneenvironment effects of uncommon and common variants on continuous traits: a marker-set approach using gene-trait similarity regression. The American Journal of Human Genetics 89 (2011) 277-288.

