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THE EFFECT OF COHERENCE ON SAMPLING FROM MATRICES
WITH ORTHONORMAL COLUMNS, AND PRECONDITIONED
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Abstract. Motivated by the least squares solver Blendenpik, we investigate three strategies for
uniform sampling of rows from m xn matrices ) with orthonormal columns. The goal is to determine,
with high probability, how many rows are required so that the sampled matrices have full rank and
are well-conditioned with respect to inversion. Extensive numerical experiments illustrate that the
three sampling strategies (without replacement, with replacement, and Bernoulli sampling) behave
almost identically, for small to moderate amounts of sampling. In particular, sampled matrices of full
rank tend to have two-norm condition numbers of at most 10. We derive a bound on the condition
number of the sampled matrices in terms of the coherence p of Q. This bound applies to all three
different sampling strategies; it implies a, not necessarily tight, lower bound of O(mulnn) for the
number of sampled rows; and it is realistic and informative even for matrices of small dimension and
the stringent requirement of a 99 percent success probability. For uniform sampling with replacement
we derive a potentially tighter condition number bound in terms of the leverage scores of (). To obtain
a more easily computable version of this bound, in terms of just the largest leverage scores, we first
derive a general bound on the two-norm of diagonally scaled matrices. To facilitate the numerical
experiments and test the tightness of the bounds, we present algorithms to generate matrices with
user-specified coherence and leverage scores. These algorithms, the three sampling strategies, and a
large variety of condition number bounds are implemented in the MATLAB toolbox kappa_SQ.
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1. Introduction. Our paper was inspired by Avron, Maymounkov, and Toledo’s
Blendenpik algorithm and analysis [1].

Blendenpik is an iterative method for solving overdetermined least squares/regres-
sion problems min, || Az — b||2 with the Krylov space method LSQR [21]. In order to
accelerate convergence, Blendenpik constructs a preconditioner Rs and solves instead
the preconditioned least squares problem min, |AR; 1z — b||2. The solution to the
original problem is recovered by solving a linear system with coefficient matrix Rj.
The innovative feature is the construction of the preconditioner Rg by a random
sampling method.

1.1. Motivation. The purpose of our paper is a thorough experimental and
analytical investigation of random sampling strategies for producing efficient precon-
ditioners. The challenge is to ensure not only that R, is nonsingular, but also that
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AR is well-conditioned with respect to inversion, which is required for fast conver-
gence and numerical stability.

Here is a conceptual point of view of how Blendenpik constructs the precondi-
tioner: First it “smoothes out” the rows of A by applying a randomized unitary
transform F', and then it uniformly samples (i.e., selects) a small number of rows
My from F'A. At last it computes a QR factorization of the smaller sampled matrix,
My = Qs R, where the triangular factor R, serves as the preconditioner.

The neat and crucial observation in [1] is to realize that sampling rows from FA
amounts, conceptually, to sampling rows from an orthonormal basis of FFA. That
is, if the columns of ) represent an orthonormal basis for the column space of F'A,
and if S is a sampling matrix then S has the same two-norm condition number as
AR, This means, it suffices to consider sampling from matrices ) with orthonormal
columns.

The analysis in [1] suggests that SQ is well-conditioned, if @ has low “coherence.”
Intuitively, coherence gives information about the localization or “uniformity” of the
elements of Q. Mathematically, coherence is the largest (squared) norm of any row
of Q. For instance, if () consists of canonical vectors, then the nonzero elements are
concentrated in only a few rows, so that @) has high coherence. However, if @ is a
submatrix of a Hadamard matrix, then all elements have the same magnitude, so that
Q@ has low coherence.

If @ has low coherence then, in the context of sampling, all rows are equally
important. Hence any sampled matrix S@Q with sufficiently many rows is likely to
have full rank. The purpose of the randomized transform F' is to produce a matrix
F'A whose orthonormal basis ) has low coherence.

We were intrigued by the analysis of Blendenpik because it appears to be the first
to exploit the concept of coherence for numerical purposes. We also wanted to get a
better understanding of the condition number bound for SQ in [1, Theorem 3.2], which
contains an unspecified constant, and of the effect of uniform sampling strategies.

1.2. Overview and main results. We survey the contents of the paper, with
a focus on the main results.

From preconditioned matrices to sampled matrices with orthonormal
columns (section 2). We start with a brief sketch of the Blendenpik least squares
solver (section 2.1), and make the important transition from preconditioned matrices
AR;! to sampled matrices SQ with orthonormal columns, made possible by the
observation ([1, 23] and Lemma 2.1) that both have the same two-norm condition
number,!

k(AR ') = k(SQ).

Then we discuss the notion of coherence and its properties (section 2.2). For an m xn
matrix @ with orthonormal columns, QTQ = I,,, the coherence

p= max lle; Qllz

is the largest squared row norm.?

IHere x(X) = || X||2 || XT||2 denotes the Euclidean two-norm condition number with respect to
inversion of a full-rank matrix X. The matrix XT is the Moore-Penrose inverse of X.
2The superscript T denotes transpose, and I, is the n x n identity matrix with columns €.



1492 ILSE C. F. IPSEN AND THOMAS WENTWORTH

Sampling methods (section 3). We discuss three randomized methods for
producing sampling matrices S: sampling without replacement (section 3.1), sam-
pling with replacement (section 3.2), and Bernoulli sampling (section 3.3). We show
that Bernoulli sampling can be viewed as a form of sampling without replacement
(section 3.4).

The sampling matrices S from all three methods are constructed so that STS is
an unbiased estimator of the identity matrix. The action of applying S to a matrix
@ with orthonormal columns, S, amounts to randomly sampling rows from Q.

The numerical experiments (section 3.5) illustrate two points: First, the three
sampling methods behave almost identically, in terms of the percentage of sampled
matrices SQ that have full rank and their condition numbers, in particular, for small
to moderate sampling amounts. Second, those sampled matrices SQ that have full
rank tend to be very well-conditioned, with condition numbers x(SQ) < 10.

As a consequence (section 3.6), we recommend sampling with replacement for
Blendenpik, because it is fast, and it is easy to implement.

Numerical experiments. Since random sampling methods can be expected to
work well in the asymptotic regime of very large matrix dimensions, we restrict all
numerical experiments to matrices of small dimension.

Furthermore, we consider only matrices that have many more rows than columns,
m > n. This is the situation where random sampling methods can be most efficient.
In contrast, random sampling methods are not efficient for matrices that are almost
square, because the number of rows in SQ has to be at least equal to n, otherwise
rank(SQ) = n is not possible.

Condition number bounds based on coherence (section 4). We derive a
probabilistic bound, in terms of coherence, for the condition numbers of the sampled
matrices (Theorem 4.1 in section 4.1). The bound applies to all three sampling meth-
ods. From this we derive the following lower bound, not necessarily tight, on the
required number of sampled rows.

PREVIEW OF COROLLARY 4.2. Given a failure probability 0 < § < 1, and a
tolerance 0 < € < 1, to achieve the condition number bound k(SQ) < \/E, the
number of rows from Q, sampled by any of three methods, should be at least

(1.1) c>3mu 7111(262/5).
This suggests that one has to sample more rows for SQ if @ has high coherence
(u close to 1), if one wants a low condition number bound (small €), or if one wants
a high success probability (small 0).
Numerical experiments (section 4.2) illustrate that the bounds are informative
for matrices with sufficiently low coherence 1 and sufficiently high aspect ratio m/n.
Our bounds have the following advantages (section 4.3):
1. They are tighter than those in [1, Theorem 3.2] because they are nonasymp-
totic, with all constants explicitly specified.
2. They apply to three different sampling methods.
3. They imply a lower bound, of Q (mulnn); on the required number of sampled
TOWS.
4. They are realistic and informative—even for matrices of small dimension and
the stringent requirement of a 99 percent success probability.
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Condition number bounds based on leverage scores, for uniform sam-
pling with replacement (section 5). The goal is to tighten the coherence-based
bounds from section 4 by making use of all the row norms of @, instead of just the
largest one. To this end we introduce leverage scores (section 5.1), which are the
squared row norms of @,

T .
li=lejQl3,  1<j<m.

We use them to derive a bound for uniform sampling with replacement (Theorem 5.2
in section 5.2). Then we present a more easily computable bound, in terms of just a
few of the largest leverage scores (section 5.3). It implies the following lower bound,
not necessarily tight, on the number of samples.

PREVIEW OF COROLLARY 5.6. Given a failure probability 0 < § < 1, a tolerance
0 <e <1, and a labeling of leverage scores in nonincreasing order,

To achieve the condition number bound k(SQ) < V£,

sampled uniformly with replacement, should be at least

the number of rows from @,

(1.2) c>2m (37 +ep)

where t = |1/u| and 7= Z;‘:l O+ (1=t p) lyppq.

We show (section 5.4) that (1.2) is indeed tighter than (1.1). This is confirmed by
numerical experiments (section 5.5). The difference becomes more drastic for matrices
@ with widely varying nonzero leverage scores, and can be as high as ten percent.
Hence (section 5.6), when it comes to lower bounds for the number of rows sampled
uniformly with replacement, we recommend (1.2) over (1.1).

Algorithms for generating matrices with prescribed coherence and leve-
rage scores (section 6). The purpose is to make it easy to investigate the efficiency
of the sampling methods in section 3, and test the tightness of the bounds in sections
4 and 5.

To this end we present algorithms for generating matrices with prescribed leverage
scores and coherence (section 6.1), and for generating particular leverage score distri-
butions with prescribed coherence (section 6.2). Furthermore we present two classes
of structured matrices with prescribed coherence that are easy and fast to generate
(section 6.3). The basis for the algorithms is the following majorization result.

PrREVIEW OF THEOREM C.2. Given integers m > n and a vector { with m
elements that satisfy 0 < £; <1 and Z;n:l l; = n, there exists an m X n matriz Q
with orthonormal columns that has leverage scores ||efQH% =/;, 1 <j<m, and
coherence j1 = maxi<j<m ;.

Bound for two-norms of diagonally scaled matrices (section B). The
bound (1.2) is based on a special case of the following general bound for the two-
norm of diagonally scaled matrices.

PREVIEW OF THEOREM B.4. Let Z be an m X n matriz with rank(Z) = n and
largest squared row norm i, = Mmaxi<;j<m ||efZH% Let D be an m x m nonnegative
diagonal matriz, and a labeling of diagonal elements in nonincreasing order,

|Dll2 =dpy >+ > djy) > 0.
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Ift=(|1Z"|3 p2) "], then either

t
IDZI3 < e > )+ (1213~ i) BBy 1213 tps < e
j=1
or
t+1
IDZI3 < e D" By + (1213~ tie) diy f 1203 = ts > e
j=2

MATLAB toolbox. In order to perform the experiments in this paper, we de-
veloped a MATLAB toolbox kappaSQ with a user-friendly interface [29]. The toolbox
contains implementations of the three random sampling methods in section 3, the
matrix generation algorithms in section 6, the bounds in sections 4 and 5, and a va-
riety of other condition number bounds. It also allows the user to input her/his own
matrices.

Proofs (sections A, B, and C). All proofs, except those for sections 2 and 3,
have been relegated to these three sections, which form the appendix.

Section A contains the proofs for sections 4 and 5, which are based on two matrix
concentration inequalities: A Chernoff bound (section A.1) and a Bernstein bound
(section A.4).

Section B contains the proofs for the easily computable bounds in sections 5.3
and 5.4, together with the majorization results (section B.1) required for the proofs.

The majorization results in section C represent the foundation for the algorithms
in section 6.

Future work (section 7). We list a few issues that suggest themselves imme-
diately as a follow up to this paper.

1.3. Literature. Existing randomized least squares methods are based on ran-
domized projections. This means, conceptually they multiply A by a random ma-
trix F', and then sample a few rows from F A.

The algorithms in [4, 10, 11] solve a smaller sampled problem by a direct method.
Like Blendenpik [1], the algorithm in [23] computes a preconditioner from the QR
factorization of a sampled submatrix, but then solves the preconditioned problem by
applying the conjugate gradient method to the normal equations. The parallel solver
LSRN [19] computes a preconditioner from the SVD of a sampled submatrix, and
then solves the preconditioned problem with an iterative method. This solver applies
to general matrices rather than just those of full column rank.

As for randomized algorithms in general, the excellent surveys [14, 18] provide
clear analyses and good intuition.

1.4. Notation. The norm | - ||z denotes the Euclidean two-norm, and the two-
norm condition number with respect to inversion of a real m X n matrix Z with
rank(Z) = n is denoted by x(Z) = | Z||2||Z||2, where Z! is the Moore Penrose
inverse. The k X k identity matriz is I, = (61 ek), and its columns are the
canonical vectors ej, 1 < j < k.

The probability of an event X is denoted by Pr[X], and the ezpected value of a
random variable X is denoted by E[X].

2. The Blendenpik algorithm, and coherence. We describe the Blendenpik
algorithm for solving least squares problems (section 2.1), and present the notion of
coherence (section 2.2).
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2.1. Algorithm. The Blendenpik algorithm [1, Algorithm 1] solves full column
rank least squares problems with the Krylov space method LSQR [21] and a random-
ized preconditioner. Algorithm 2.1 presents a conceptual sketch of Blendenpik. The
subscript “s” denotes quantities associated with the sampled matrix.

ALGORITHM 2.1. SKETCH OF Blendenpik [1].

Input: m x n matrix A with m > n and rank(A) = n, m x 1 vector b
m x m random unitary matrix F'
k x n sampling matrix S with k > n

Output: Solution of min, ||Az — b||2

M=FA {Improve coherence}

Ms=SM {Sample for preconditioner}

Thin QR factorization My = QsR; {Generate preconditioner}

Determine solution y to min, [[AR; 1z — b|2 {Solve preconditioned problem}
Solve Ry =y {Recover solution to original problem}

The matrix F' is the product of a random diagonal matrix with +1 entries, and
a unitary transform, such as a Walsh—-Hadamard transform, or a discrete Fourier,
Hartley, or cosine transform [1, section 3.2]. The transformed matrix M = FA is
m x n with m > n and rank(M) = n.

The sampling matrix S selects k > n rows from the transformed matrix M. We
discuss different types of sampling matrices in section 3. The k x n sampled matrix
My has a thin QR decomposition M; = QsRs, where Qg is k X n with orthonormal
columns and Ry is n X n upper triangular.

The basis for the analysis is the thin QR decomposition M = QR, where @ is mxn
with orthonormal columns and R is n X n upper triangular. This QR decomposition
is not computed. The next result links the condition number of the preconditioned
matrix to that of the matrix SQ; see, also, [1, section 3.1] and [23, Theorem 1].

LEMMA 2.1. With the notation in Algorithm 2.1, if rank(M,) = n, then

K(ARTY) = K(SQ).

Proof. From FFA = M = QR and the fact that the two-norm is invariant under
premultiplication by matrices with orthonormal columns, it follows that

K(AR;Y) = k(MR;Y) = k(RR;') = k(RsR™) = k(M,R™") = k(SMR™1)
= k(5Q). O

In sections 4 and 5 we derive bounds for the condition number of the precon-
ditioned matrix, k(AR;!). Our bounds are tighter than those in [1, Theorem 3.2],
because they have all constants explicitly specified, and apply to three different sam-
pling strategies. Since Lemma 2.1 implies k(AR;!) = k(SQ), we state the bounds
for k(SQ) only. An important ingredient in these bounds is the coherence of Q.

2.2. Coherence. Coherence gives information about the localization or “unifor-
mity” of the elements in an orthonormal basis. The more general concept of mutual
coherence between two orthonormal bases was introduced in [8, section VII], in the
context of signal processing and computational harmonic analysis, to describe a con-
dition for the existence of sparse representations of signals. What we use here is a
special case, and can be viewed as a measure for how close an orthonormal basis is to
sharing a vector with a canonical basis.
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DEFINITION 2.2 (Definition 3.1 in [1], Definition 1.2 in [5]). Let Q be a real m xn

matriz with orthonormal columns, QT Q = I,,, then the coherence of Q is
_ T )2
p= max lej Qll2-

If the columns of Q are an orthonormal basis for the column space of a matriz M,
then the coherence of M is .

The second part of Definition 2.2 emphasizes that coherence is really a property
of the column space, hence basis independent. In other words, if Q = QV, where V
is a real n X n orthogonal matrix, then Q and @ have the same coherence.

The range for coherence is 7> < u < 1. If ) is an m x n submatrix of the m x m
Hadamard matrix, then g = n/m. If a column of @ is a canonical vector, then p = 1.
Hence an orthonormal basis has high coherence if it shares a vector with a canonical
basis.

There are other definitions of coherence that differ from the above by factors
depending on the matrix dimensions [22, Definition 1], [25, Definition 1]. However,
the notion of statistical coherence in Bayesian analysis [17] appears to be unrelated.

3. Sampling methods. We present three different types of sampling methods:
sampling without replacement (section 3.1), sampling with replacement (section 3.2),
and Bernoulli sampling (section 3.3). We show that Bernoulli sampling can be viewed
as a form of sampling without replacement (section 3.4). The numerical experiments
illustrate that there is little difference among the three methods for small to moderate
amounts of sampling (section 3.5). Hence we recommend sampling with replacement
for Algorithm 2.1 (section 3.6).

The sampling matrices S in all three methods are scaled so that S7'S is an unbi-
ased estimator of the identity matrix.

3.1. Sampling without replacement. The obvious sampling strategy, in Al-
gorithm 3.1, picks the requested number of rows, so that the sampling matrix S is
just a scaled submatrix of a permutation matrix.

Uniform sampling without replacement can be implemented via random permu-
tations.® A permutation 7, ..., T, of the integers 1,...,m is a random permutation,
if it is equally likely to be one of m! possible permutations [20, pages 41 and 48].

ALGORITHM 3.1. UNIFORM SAMPLING WITHOUT REPLACEMENT [12, 13].
Input: Integers m>1and 1 <c<m
Output: ¢ x m sampling matrix S with E[STS] = I,,,

Let k1, ...,k be a random permutation of 1,...,m
T
S = \/% (ekl ekc)

The following lemma presents the probability that sampling without replacement
picks a particular row.

LEMMA 3.1. If Algorithm 3.1 samples ¢ out of m indices, then the probability
that a particular index is picked equals ¢/m.

Proof. The probability that some index, say r, is not sampled in the first trial is
1-— % = mT’l Now there are only m — 1 indices left. So the probability that index r

is not sampled in the second trial is 1 — ﬁ = z—:f Repeating this argument shows
that with probability [[;_, ;%57 = ™=¢, index r is not sampled in c trials.

3We thank an anonymous reviewer for this advice.
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The complementary event, the probability that index r is sampled, equals 1 —
m—c C D

3.2. Sampling with replacement. This is the sampling strategy that appears
to be analyzed in [1]. It samples exactly the requested number of rows, but with
replacement, which means a row may be sampled more than once. Algorithm 3.2 is
the same as the EXACTLY (c) algorithm [11, Algorithm 3] with uniform probabilities,
which is also used in the BasicMatrixMultiplication Algorithm [9, Fig. 2].

ALGORITHM 3.2. UNIFORM SAMPLING WITH REPLACEMENT [9, 11].
Input: Integers m > 1land 1 <c<m
Output: ¢ x m sampling matrix S with E[STS] = I,

fort=1:cdo
Sample k¢ from {1,..., m} with probability 1/m,
independently and with replacement

end for

S=E (ery, - er)

Sampling with replacement (Algorithm 3.2) is often easier to analyze and imple-
ment than sampling without replacement (Algorithm 3.1), and it can also be more
robust to errors [20, section 1.2].

3.3. Bernoulli sampling. The sampling strategy in Algorithm 3.3 is imple-
mented in Blendenpik [1, Algorithm 1]. Following [13, section A], we use the term
Bernoulli sampling, because the strategy treats each row as an independent, identi-
cally distributed Bernoulli random variable. Each row is either sampled or not, with
the same probability for each row. Algorithm 3.3 produces an m x m square matrix
S—in contrast to Algorithms 3.1 and 3.2, which produce ¢ x m matrices.

ALGORITHM 3.3. BERNOULLI SAMPLING [1, 12, 13].

Input: Integers m>1and 1 <c<m
Output: m x m sampling matrix S with E[STS] = I,

Szomxm
fort=1:m do

Sy =/ 1 with probability >
TV )0 with probability 1 — £

end for

The number of sampled rows, which is equal to the number of nonzero diagonal
elements in S, is not known a priori, but the expected number of sampled rows is c.
The lemma below shows that the actual number of rows picked by Bernoulli sampling
is characterized by a binomial distribution [24, section 2.2.2].

LEMMA 3.2. If Algorithm 3.3 samples from m indices with probability v = ¢/m.,
then the probability that it picks ezactly k indices equals () % (1 —~)™".

Proof. Determining the diagonal elements of the m x m sampling matrix S
in Algorithm 3.3 can be viewed as performing m independent trials, where trial ¢
is a success (Sy # 0) with probability 7, and a failure (S; = 0) with probab-
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ility 1 — . The probability of k successes is given by the binomial distribution
(m) k (1 _ )m—k. 0
k) Y

3.4. Relating Bernoulli sampling and sampling without replacement.
We show that Bernoulli sampling (Algorithm 3.3) is the same as first determining the
number of samples with a binomial distribution (motivated by Lemma 3.2), and then
sampling without replacement (Algorithm 3.1). This is described in Algorithm 3.4
below.

ALGORITHM 3.4. SIMULATING ALGORITHM 3.3 WITH ALGORITHM 3.1.
Input: Integers m>1and 1 <c<m

Output: ¢ x m samplinﬁ matrix S with E[STS] = I,, )
that “behaves like” a sampling matrix generated by Algorithm 3.3

y=c/m
Sample ¢ from {1,...,m} where Prjéc = k] = () 7% (1 — )™ "
Use Algorithm 3.1 to sample ¢ indices ki, . .., kz uniformly and without replacement

S=Z (ery, - en)

Below we describe the sense in which Algorithm 3.4 “behaves like” Bernoulli
sampling in Algorithm 3.3.

LEMMA 3.3. The probability that Algorithm 3.4 picks a particular index equals
v =c/m.

Proof. Motivated by Lemma 3.2, the actual number of samples k in Algorithm 3.4
is given by a binomial distribution. Omnce a specific £ has emerged, one applies
Lemma 3.1 to conclude that the probability that Algorithm 3.1 picks some index
ris k/m.

Now the probability that Algorithm 3.4 picks some index r is obtained by condi-
tioning [24, section 3.5] on the number of samples, k, and equals

Z Pr [k indices sampled] Pr [index r sampled| k indices sampled]

k=0
= 1 - —
> (1) a-arr
k=1
m—1 m 1
- m—1—k m—
= ( k >7k(1—7) =+ =) =,
k=0
where the first equality follows from the zero summand for £ = 0. O

Finally, we can conclude that sampling with Algorithm 3.4 is the same as sampling
with Algorithm 3.3.

THEOREM 3.4. Both, Algorithms 3.4 and 3.3 pick a particular set of indices
i1, ..., ic with probability v¢(1 — ~v)™~¢.

Proof. The probability that Algorithm 3.3 samples indices i1, ...,i. is equal to
,.yc(l _ ,Y)m.—c.

We show that the same is true for Algorithm 3.4. The choice of the sampling
distribution in Algorithm 3.4 implies that it samples ¢ = ¢ indices with probability

("™M)v¢(1—v)™~¢. Since there are (") ways to sample c out of m indices, the probability
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that the particular index set i1, .. ., i, is picked, given that ¢ indices are being sampled,
is 1/("). Thus, the probability that Algorithm 3.4 picks indices i1, ..., i, equals

% <T:) Y=y = 1=y O
(&

3.5. Numerical experiments. We present two representative comparisons of
the three sampling strategies, with two plots for each strategy: the condition numbers
of full-rank sampled matrices S@Q, and the failure percentage, that is the percentage
of sampled matrices S@Q that are numerically rank deficient (as determined by the
MATLAB command rank).

The experiments are limited to very tall and skinny matrices (with many more
rows than columns, m > n), because that’s when the sampling strategies are most
efficient. In particular, since ¢ > n is required for S@ to have full column rank,
sampling methods are inefficient when n is not much smaller than m, in which case a
deterministic algorithm would be preferable.

Experimental setup. The m x n matrices ) with orthonormal columns have
m = 10 rows and n = 5 columns. The condition numbers and failure percentages are
plotted against various sampling amounts ¢, with 30 runs for each ¢. For the failure
percentages we display only those sampling amounts ¢ that give rise to rank deficient
matrices, in these particular 30 runs. For Algorithm 3.3 the horizontal axis represents
the numerator ¢ in the probability, that is, the expected number of sampled rows. All
three strategies sample from the same matrix.

We consider two different types of matrices: matrices with low coherence p =
1.5n/m in Figure 1, and matrices with higher coherence y = 150n/m and many zero
rows in Figure 2. Our numerical experiments indicate that these coherence values are
representative, in the sense that different values of coherence would not produce any
other interesting effects.

Figure 1. Shown are condition numbers and percentage of rank deficient matri-
ces for a matrix @ with low coherence p = 1.5n/m generated by Algorithm 6.2. At
most 10 percent of the rows are sampled. The three strategies exhibit almost identi-
cal behavior: The sampled matrices SQ of full rank are very well-conditioned, with
k(SQ) < 5. Numerically rank deficient matrices S@Q occur only for sampling amounts
c < 47.

Figure 2. Shown are condition numbers and percentage of rank deficient matri-
ces for a matrix @, generated by Algorithm 6.3, with coherence 150n/m and many
zero rows. The number of sampled rows ranges from ¢ = 4,000 to m. The sam-
pled matrices SQ of full rank are very well-conditioned, with x(SQ) < 10. Even for
¢ = 4,000, as many as 10 percent of the sampled matrices can still be rank deficient.
All three algorithms have to sample more than half of the rows of @ in order to always
produce matrices SQ with full column rank. Specifically in these particular runs, Al-
gorithms 3.1 and 3.3 need to sample ¢ > 5,222 and ¢ > 5,301 rows, respectively, while
Algorithm 3.1 needs ¢ > 7,732.

Note that the condition numbers of matrices from Algorithms 3.1 and 3.3 ap-
proach 1 as more and more rows are sampled. This is because no row is sampled
more than once, and for ¢ = m all rows are sampled.

Again, the three strategies exhibit almost identical behavior: The sampled ma-
trices SQ of full rank are very well-conditioned with x(SQ) < 10. However, due to
the higher coherence, numerically rank deficient matrices occur more frequently.
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(a) Algorithm 3.1: Sampling without replacement
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(b) Algorithm 3.2: Sampling with replacement
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(c¢) Algorithm 3.3: Bernoulli sampling

Fiac. 1. Condition numbers and percentage of rank deficiency for matrices with low coherence
and small amounts of sampling. Here Q) is m X n with orthonormal columns, m = 10,000, n = 5,
coherence = 1.5n/m, and is generated with Algorithm 6.2. Left panels: Horizontal coordinate
axes represent amounts of sampling n < ¢ < 1,000. Vertical coordinate axes represent condition
numbers k(SQ); the mazimum is 10. Right panels: Horizontal coordinate axes represent amounts of
sampling that give rise to numerically rank deficient matrices SQ. Vertical coordinate axes represent
percentage of numerically rank deficient matrices.

3.6. Conclusions for section 3. The numerical experiments illustrate that
the three sampling strategies behave almost identically, in particular, for small to
moderate sampling amounts, and that sampled matrices of full rank tend to be very
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(a) Algorithm 3.1: Sampling without replacement
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(b) Algorithm 3.2: Sampling with replacement
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(c¢) Algorithm 3.3: Bernoulli sampling

Fic. 2. Condition numbers and percentage of rank deficiency for matrices with higher coherence
and large amounts of sampling. Here Q is m X n with orthonormal columns, m = 10,000, n = 5,
coherence p = 150n/m, and is generated with Algorithm 6.3. Left panels: Horizontal coordinate
azes represent amounts of sampling 4,000 < ¢ < m. Vertical coordinate azes represent condition
numbers k(SQ); the mazimum is 10. Right panels: Horizontal coordinate axes represent amounts of
sampling that give rise to numerically rank deficient matrices SQ. Vertical coordinate axes represent
percentage of numerically rank deficient matrices SQ; the mazximum is 10 percent.

well-conditioned.* Furthermore, section 3.4 shows that Bernoulli sampling can be
viewed as a form of sampling without replacement, and the numerical experiments
confirm the similarity in behavior.

4We have not been able to show rigorously why the condition numbers tend to be less than 10.
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Among the three strategies, we recommend sampling with replacement (Algo-
rithm 3.2) for small to moderate amounts of sampling in Algorithm 2.1. Tt is fast and
easy to implement in both.

4. Condition number bounds based on coherence. We derive bounds for
the condition numbers of matrices produced by the sampling strategies in section 3,
in terms of coherence. These bounds are based on a specific concentration inequal-
ity and imply a, not necessarily tight, lower bound for the number of sampled rows
(section 4.1). Numerical experiments illustrate that the bounds are informative (sec-
tion 4.2). We end this section by summarizing the main features of the bounds
(section 4.3).

4.1. Bounds. We show that the three sampling strategies in section 3 all have
the same condition number bound, in terms of coherence.

Theorem 4.1 below is based on a matrix Chernoff concentration inequality (sec-
tion A.1). We chose this particular inequality because extensive numerical experi-
ments with our MATLAB toolbox kappaSQ [29] suggest that it tends to produce the
tightest bound.

THEOREM 4.1. Let Q be a real m x n matriz with QTQ = I,, and coherence fu.
Let S be a sampling matriz produced by Algorithm 3.1, 3.2, or 3.3 with n < ¢ < m.
For 0 <e<1 and f(z) = e*(1 + z)~ ) define

S=n (f(_e)C/(mu) 4 f(e)C/(mu)) .

If § < 1, then with probability at least 1 — ¢ we have rank(SQ) = n and

K(SQ) < |/ 1.

Proof. The proof is based on results from [12, 26, 27] and is relegated to sec-
tion A.2. O

Since 0 < f(£e) < 1 for 0 < € < 1, Theorem 4.1 implies that the sampling
strategies in section 3 are more likely to produce full-rank matrices as the number ¢
of sampled rows increases. Furthermore, for a given total number of rows m, matrices
Q@ with fewer columns n and lower coherence i are more likely to give rise to sampled
matrices S@Q that have full rank.

Theorem 4.1 implies the following lower bound on the number of samples, but we
make no claims about the tightness of this bound.

COROLLARY 4.2. Under the assumptions of Theorem 4.1,

o2 s 22210

1+€
1—e¢

samples are sufficient to achieve k(SQ) < with probability at least 1 — 4.

Proof. See section A.3. d

Corollary 4.2 implies that the sampling strategies in section 3 should sample
at least ¢ = Q (mplnn) rows to produce a full-rank, well-conditioned matrix. In
particular, if @ has minimal coherence u = n/m, then Corollary 4.2 implies that the
number of sampled rows should be at least
In(2n/0)

2 9

(4.1) c>3n
€

that is, c = Q (nlnn).
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To achieve k(SQ) < 10 with probability at least .99 requires that the number of
sampled rows be at least

(4.2) c¢>32mp (In(2n) +4.7).

Here we chose €9 = 99/101, so that the condition number bound equals ,/}J_r—ig = 10.

Remark 4.3. Theorem 4.1 is informative only for sufficiently low coherence values.

For instance, consider the higher coherence matrices from Figure 2 in section 3.5
with m = 10,000, n = 5, and coherence pu = 150n/m. Choose ¢ = 99/101 so that
k(SQ) < 10, and a failure probability 6 = .01. Then Corollary 4.2 implies the lower
bound ¢ > 12,408, which means that the number of sampled rows would have to be
larger than the total number of rows.

4.2. Numerical experiments. We compare the bound for the condition num-
bers of the sampled matrices (Theorem 4.1) with the true condition numbers of ma-
trices produced by sampling with replacement (Algorithm 3.2).

There are several reasons why it suffices to consider only a single sampling strat-
egy: The three sampling methods all have the same bound (Theorem 4.1); Bernoulli
sampling is a form of sampling without replacement (section 3.4); and all three sam-
pling methods exhibit very similar behavior for matrices of low coherence (sections 3.5
and 3.6). Furthermore, this allows a clean comparison with the bounds in section 5
which apply only to Algorithm 3.2.

Experimental setup. The m x n matrices ) with orthonormal columns have
m = 10* rows and n = 5 columns. The left panels in Figure 3 show the condition
numbers of the full-rank sampled matrices SQ produced by Algorithm 3.2 against dif-
ferent sampling amounts ¢, with 30 runs for each c¢. The right panels in Figure 3 show
the percentage of rank deficient matrices SQ against different sampling amounts c.
We display only those sampling amounts ¢ that give rise to rank deficient matrices in
these particular 30 runs.

The left panels in Figure 3 also show the condition number bound k. = ifz
from Theorem 4.1. For each value of ¢, we obtain € as the solution of the nonlinear
equation F.(z)? = 0 associated with Theorem 4.1 and defined as

Fulw) =8 —n (f(—a) 00 4 () 0m0).

We impose the stringent requirement of § = .01, corresponding to a 99 percent success
probability. Since an explicit expression seems out of reach, we use unconstrained
nonlinear optimization (a Nelder-Mead simplex direct search) to solve F.(z)? = 0.
This is done in MATLAB with a code equivalent to

)

€= ‘fminsearch(Fc(ac)27 0,1073%)

where fminsearch starts at the point 0, and terminates when |F.(¢)[*> < 1073°. If
0 < e < 1 then k. is plotted, otherwise nothing is plotted.

As explained in Remark 4.3, Theorem 4.1 is not informative for higher coher-
ence values, so we consider matrices with the following properties: Minimal coherence
1 =mn/m in Figure 3(a); low coherence p = 1.5n/m in Figure 3(b); slightly higher co-
herence . = 15n/m with many zero rows in Figure 3(c). The matrices for Figures 3(a)
and 3(b) were generated with Algorithm 6.2, while the matrix for Figure 3(c) was gen-
erated with Algorithm 6.3.
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(a) @ has minimal coherence p = n/m. Sampling amounts are n < ¢ < 1,000.
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(b) @ has low coherence p = 1.5n/m. Sampling amounts are n < ¢ < 1,000.

-
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(c) @ has slightly higher coherence p = 15n/m and many zero rows. Sampling amounts are
n < ¢ < 3,000.

Fic. 3. Condition numbers and bound from Theorem 4.1, and percentage of rank deficiency.
Here @ is m X n with orthonormal columns, m = 10,000, and n = 5. Left panels: The horizontal
coordinate axes represent amounts of sampling c. The vertical coordinate axes represent condition
numbers k(SQ); the mazimum is 10. The dots at the bottom represent the condition numbers of
matrices sampled with Algorithm 3.2, while the upper line represents the bound from Theorem 4.1.
Right panels: The horizontal coordinate axes represent amounts of sampling that produce numerically

rank deficient matrices SQ. The vertical coordinate axes represent the percentage of numerically
rank deficient matrices SQ.

Figure 3. The left panels illustrate that Theorem 4.1, constrained to a 99 percent
success probability, correctly predicts the magnitude of the condition numbers, i.e.,
k(SQ) < 10. Hence Theorem 4.1 provides informative qualitative bounds for matrices

with very low coherence, as well as for matrices with slightly higher coherence and
many zero rows.
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TABLE 1
Comparison of information from Figure 3, with Theorem 4.1 and Corollary 4.2.

Figure || Coherence p | Last rank deficiency | Theorem 4.1 | (4.2)
occurs at ¢ = starts at ¢ =

3(a) n/m 31 81 83

3(b) 1.5n/m 31 121 125

3(c) 15n/m 740 1,207 1,241

Table 1. This is a comparison of the numerical experiments in Figure 3 with the
bounds from Theorem 4.1 and Corollary 4.2, both restricted to a 99 percent success
probability.

The third column depicts the highest values of ¢ for which a rank deficient matrix
occurs, during these particular 30 runs. It should be kept in mind that these values
are highly dependent on the particular sampling runs. This column is to be compared
to the fourth column which contains the lowest values of ¢ where Theorem 4.1 starts to
apply. Although there is a gap between the occurrence of the last rank deficiency and
the onset of Theorem 4.1, the values have qualitatively the same order of magnitude.

The rightmost column in Table 1 contains the values of the lower bound (4.2),
and is to be compared to the column with the starting values for Theorem 4.1. Al-
though (4.2) is weaker than Theorem 4.1, its values are close to the starting values of
Theorem 4.1, especially for lower coherence. Hence, the lower bound (4.2) captures
the correct magnitude of the sampling amounts where Theorem 4.1 starts to become
informative.

Table 1 illustrates that, although Theorem 4.1 and Corollary 4.2 tend to become
more pessimistic with increasing coherence, they still provide qualitative informa-
tion for matrices with low coherence—even when restricted to a 99 percent success
probability.

4.3. Conclusions for section 4. The bounds in Theorem 4.1 and Corollary 4.2
have the following advantages:

1. They are nonasymptotic bounds, where all constants have explicit numerical
values, hence they are tighter than the bounds in [1, Theorem 3.2].

2. They apply to three different sampling methods.

3. They imply a lower bound, of © (mpulnn), on the required number of sampled
rows. Although we did not give a formal proof of tightness, numerical ex-
periments illustrate that sampling only the required number of rows implied
by the bound is realistic. Numerical experiments illustrate that the bound is
realistic.

4. Even under the stringent requirement of a 99 percent success probability,
they are informative for matrices of small dimension because they correctly
predict the magnitude of the condition numbers for the sampled matrices.

Note that the bounds in Theorem 4.1 and Corollary 4.2 are informative only for
matrices that are tall and skinny (m > n) and have low coherence. The restriction to
tall and skinny matrices is not an imposition, because it is required for the effectiveness
of the sampling strategies; see section 3.5.

In the next section we try to relax the restriction to low coherence matrices by
more thoroughly exploiting the information available from the row norms of Q.

5. Condition number bounds based on leverage scores, for uniform
sampling with replacement. The goal is to tighten Theorem 4.1 by making use
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of all the row norms of @, instead of just the largest one. To this end we introduce
leverage scores (section 5.1), which are the squared row norms of ). We use them
to derive a bound for uniform sampling with replacement (section 5.2), and for more
easily computable versions of the bound (section 5.3). Analytical (section 5.4) and
experimental (section 5.5) comparisons demonstrate that the implied lower bound on
the number of sampled rows is better than the coherence-based bounds in section 4.
A review with some reflection ends this section (section 5.6).

5.1. Leverage scores. So-called statistical leverage scores were first introduced
in 1978 by Hoaglin and Welsch [15] to detect outliers when computing regression
diagnostics; see also [6, 28]. Mahoney and Drineas pioneered the use of leverage
scores for importance sampling strategies in randomized matrix computations [18].

Specifically, if M is a real m x n matrix with rank(M) = n, then the m x m hat
matriz

H=MM"M)"'MT

is the orthogonal projector onto the column space of M, and its diagonal elements are
called leverage scores [15, section 2]. Hence, leverage scores are basis independent. For
our purposes, though, it suffices to define them in terms of a thin QR decomposition
M = QR, so that the hat matrix can be expressed as H = QQ”.

DEFINITION 5.1. If Q is an m xn matriz with QT Q = I,,, then its leverage scores
are

ti=llejQI3,  1<j<m.
The m x m diagonal matriz of leverage scores is
L = diag(ly,...,0m).
Note that the coherence is the largest leverage score,
= i = || L]z
p= max {;=||L]-

5.2. Bounds. The bound in Theorem 5.2 below involves leverage scores and is
based on a matrix Bernstein concentration inequality (section A.4), rather than on the
matrix Chernoff concentration inequality (section A.1) for Theorem 4.1. Although the
Bernstein inequality may not always be as tight, we did not see how to insert leverage
scores into the Chernoff inequality.

THEOREM 5.2. Let Q be an m x n real matriz with QT Q = I,,, leverage scores 45,
1 < j <m, and coherence . Let S be a sampling matriz produced by Algorithm 3.2
withn <c<m. For0<e<1 set

2
=2 _3 ce .
’ "eXp< 2 m(3IIQTLQII2+eu))

If 6 < 1, then with probability at least 1 — 0 we have rank(SQ) = n and

K(SQ) < /€,
1—¢

Proof. The proof uses results from [2, 22] and is relegated to section A.5. O
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Like Theorem 4.1, Theorem 5.2 implies that sampling with replacement is more
likely to produce full-rank matrices as the number ¢ of sampled rows increases. Fur-
thermore, for a given total number of rows m, matrices @ with fewer columns n and
lower coherence p are more likely to yield sampled matrices S that have full rank.
The dependence of [|QTLQ||2 on p is discussed below.

Remark 5.3. The norm ||QTLQ||2 has simple and tight bounds in terms of the
coherence,

(5.1) 1 <(IQTLQ2 < p.
The lower bound follows from ||QTLQ||s = ||L'/?Q||3 and

IL2Ql2 > 1ef L' 2Qll2 = 2 ef Q2= ¢, 1<j<m,

which implies ||L'/2Q||2 > .
The bounds (5.1) are attained for extreme values of the coherence:
e In the case of minimal coherence u = ¢; for all 1 < j < m, we have L = pl,,.
Thus |QTLQ||2 = u||QT Q|2 = p, and the upper bound is attained.
e In the case of maximal coherence = 1, we have p? = u. Thus [|QTLQ|2 =
u? = p, and both lower and upper bounds are attained.

5.3. Computable bounds. We present easily computable bounds for [|QT LQ)||2,
based on coherence and several of the largest leverage scores.
To this end, we use a labeling of the leverage scores in nonincreasing order,

p=Lpy > > Ay

COROLLARY 5.4. Under the assumptions of Theorem 5.2, if t = [1/u], then
t
IQTLQl2 < i D> g+ (1=t 1) £iea) < .
j=1

If, in addition, t is an integer, then ||QTLQ|2 < u 22:1 e
Proof. See section B.2. d
The number of large leverage scores appearing in Corollary 5.4 depends on the
coherence: few leverage scores for high coherence, but more for low coherence. Hence-
forth we will use the approximation from Corollary 5.4 instead of the true value
|QTLQ)||2, for two reasons: First, numerical experiments show that the approxima-
tion tends to be very accurate. Second, the approximation is convenient, because it
requires only a leverage score distribution rather than a full-fledged matrix Q.
Remark 5.5. Corollary 5.4 is tight for the extreme cases of minimal and maximal
coherence.
e In the case of minimal coherence p = ¢; for all 1 < j < m, Remark 5.3 implies
|QTLQ||2 = p1. The bound in Corollary 5.4 is [|QTLQ||2 < u, thus tight.
e In the case of maximal coherence p = 1, Remark 5.3 implies ||QTLQ|2 =
u? = p. Corollary 5.4 holds with ¢ = 1 and gives the bound ||QTLQ|2 < u,
which is tight as well.
Inserting this approximation for ||QTLQ)|s into the expression for § in Theo-
rem 5.2 yields a, not necessarily tight, lower bound on the number of samples.
COROLLARY 5.6. Under the assumptions of Theorem 5.2,

In(2n /8
c>2m (37 + ep) 11(7”2/),
€
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where T = 1 23:1 Ui+ (1=t p) Lq), samples are sufficient to achieve k(SQ) < %
with probability at least 1 — 4.

In particular, if @ has minimal coherence y = n/m, then Corollary 5.6 implies
that the number of sampled rows should be at least

In(2n/0)

c>3n 5 .

€

This is the same as the coherence-based lower bound (4.1).
To achieve k(SQ) < 10 with probability at least .99 requires that the number of
sampled rows be at least

(5.2) c>m (217 +.7Tu) (In(2n) +4.7).

5.4. Analytical comparison of the bounds in sections 4.1 and 5.2. An
analytical comparison between Theorems 4.1 and 5.2 is not obvious because they are
based on different concentration inequalities. Instead we compare the implied lower
bounds for the number of sampled rows, and show that the leverage-score-based bound
in Corollary 5.6 is at least as tight as the coherence-based bound in Corollary 4.2.

COROLLARY 5.7. Under the assumptions of Theorem 5.2 and Corollary 5.4,

In(2n/6 In(2n/6

2m (37 + ep) % < 3mpu %

Hence Corollary 5.6 is at least as tight as Corollary 4.2.
Proof. See section B.3. d

5.5. Experimental comparison of the bounds in sections 4.1 and 5.2.
We present numerical experiments to compare the lower bounds for the number of
sampled rows in Corollaries 4.2 and 5.6 for different values of coherence. This gives
quantitative insight into the comparison in Corollary 5.7, and illustrates the reduction
in the number of sampled rows from Corollary 5.6, as compared to Corollary 4.2.

Experimental setup. As in previous sections, we use m X m matrices with
m = 10* rows and n = 5 columns. The success probability is .99, and ¢ = 99/101 so
that the bound for k(SQ) is equal to 10. Hence the bounds in Corollaries 4.2 and 5.6
amount to (4.2) and (5.2), respectively.

We consider two different leverage score distributions: A distribution generated
by Algorithm 6.2 with one large leverage score in Table 2, and a distribution generated
by Algorithm 6.3 with as many zeros as possible in Table 3.

Table 2. This table shows the lower bounds on the number of sampled rows, for
a leverage score distribution generated with Algorithm 6.2 that consists of one large
leverage score, equal to the coherence, and all remaining leverage scores being nonzero
and identical. The bounds, as well as the approximation 7 to |Q7 LQ||2, are displayed
for eight different values of coherence, ranging from minimal coherence p = n/m to
= 100n/m.

Table 2 illustrates that with increasing coherence, the number of sampled rows
implied by Corollary 5.6 is only about 20 percent of that from Corollary 4.2. This
is because 7 increases much more slowly than u. For instance, 7 &~ /10 when
= 100n/m.
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TABLE 2
Lower bounds for number of sampled rows in Corollaries 4.2 and 5.6, and approzimation T,
for different values of coherence . The first value represents minimal coherence p = n/m. Here
m = 10,000, n =5, § = .01, e = 99/101, with leverage scores generated by Algorithm 6.2.

[w/(r/m) [ 1T [ 5 [ 10 [ 15 [ 20 | 25 | 50 [ 100 |
Cor. 4.2 ]| 108 [ 540 [ 1,079 [ 1,618 | 2,157 [ 2,697 [ 5,393 [ 10,786
Cor. 5.6 || 96 | 191 | 310 | 432 | 556 | 682 | 1,3343 | 2,777
7/(n/m) ]| 100 [ 1.01 | 1.04 | 1.10 [ 1.19 [ 1.30 | 2.22 9.95

TABLE 3
Lower bounds for number of sampled rows in Corollaries 4.2 and 5.6, for different values of
coherence . The first value represents minimal coherence p = n/m. Here m = 10,000, n = 5,
6 = .01, e =99/101, with leverage scores generated by Algorithm 6.3.

[pw/(n/m) | 1 [ 5 ] 10 | 15 [ 20 | 25 [ 50 | 100 |
Cor. 42 [ 108 | 540 | 1,079 [ 1,618 | 2,157 | 2,697 | 5,393 [ 10,787
Cor. 56 || 96 | 477 | 954 | 1,431 | 1,908 | 2,385 | 4,770 | 9,539

Table 3. This table shows the lower bounds on the number of sampled rows. The
corresponding leverage score distribution is generated with Algorithm 6.3 and consists
of as many zeros as possible. All nonzero leverage scores, except possibly one, are
equal to the coherence p, so that 7 =~ u. The bounds are displayed for eight different
values of coherence, ranging from minimal coherence p = n/m to p = 100n/m.

The bounds for Corollary 4.2 are the same as in Table 2, because the coherence
values are the same. Since 7 = p, the difference between Corollaries 4.2 and 5.6 is not
as drastic as in Table 2, yet it increases with increasing coherence. For p = 100n/m,
Corollary 5.6 remains informative, while Corollary 4.2 does not.

5.6. Conclusions for section 5. The goal of this section was to derive condition
number bounds that are based on leverage scores rather than just coherence, when
rows are sampled uniformly with replacement (Algorithm 3.2). Corollary 5.7 and the
numerical experiments illustrate that the lower bound on the number of sampled rows
implied by Corollary 5.6 is smaller than that from Corollary 4.2.

Although the coherence-based bound in Theorem 4.1 is derived from a stronger
concentration inequality than the one for Theorem 5.2, this difference disappears in
the weakening necessary to obtain lower bounds for the amount of sampling. Even in
cases when the leverage score measure 7 is the same as the coherence, Corollary 5.6
still retains a small advantage, which can increase with increasing coherence. Hence
Corollary 5.6 tends to remain informative for larger values of coherence, even when
Corollary 4.2 fails.

The difference in implied sampling amounts becomes more drastic in the presence
of widely varying nonzero leverage scores, and can be as high as ten percent. This
is because the coherence-based bound in Corollary 4.2 cannot take advantage of the
distribution of the leverage scores.

Hence, when it comes to lower bounds for the number of rows sampled uniformly
with replacement, we recommend Corollary 5.6.

We have yet to derive leverage-score-based bounds for the other two sampling
strategies, uniform sampling without replacement (Algorithm 3.1) and Bernoulli sam-
pling (Algorithm 3.3).

6. Algorithms for generating matrices with prescribed coherence and
leverage scores. In order to investigate the efficiency of the sampling methods in
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section 3, and test the tightness of the bounds in sections 4 and 5, we need to gen-
erate matrices with orthonormal columns that have prescribed leverage scores and
coherence. The algorithms are implemented in the MATLAB package kappa_SQ [29].

We present algorithms for generating matrices with prescribed leverage scores
and coherence (section 6.1), and for generating particular leverage score distributions
with prescribed coherence (section 6.2). Such distributions can then, in turn, serve
as inputs for the algorithm in section 6.1. Furthermore we present two classes of
structured matrices with prescribed coherence that are easy and fast to generate
(section 6.3).

6.1. Matrices with prescribed leverage scores. We present an algorithm
that generates matrices with orthonormal columns that have prescribed leverage
scores. In section C we prove an existence result to show that this is always pos-
sible.

Algorithm 6.1 is a transposed version of [7, Algorithm 3]. It repeatedly applies
m x m Givens rotations Gj; that rotate two rows ¢ and j, and are computed from
numerically stable expressions [7, section 3.1]. At most m — 1 such rotations are
necessary. Since each rotation affects only two rows, Algorithm 6.1 requires O(mn)
arithmetic operations.

ALGORITHM 6.1. GENERATING A MATRIX WITH PRESCRIBED LEVERACE SCORES [7].

Input: Integers m and n with m >n > 1
Vector ¢ with elements 0 < £ < --- < ¢,, < 1 and Z;”:l lj=n
Output: mxn matrix Q with Q7 Q = I,, and leverage scores ||efQH§ =/;,1<j<m

Q=(In Opximm)" {Initialization}
repeat
Determine indices i < k < 7 with
lef QI3 < &, [lef QI3 = Lx, lle] QI3 > ¢
if £ — llef QI3 < llef Q|3 — ¢; then
Apply rotation G;; to rows i and j so that |el Gi; Q|3 = ¢;
else
Apply rotation Gy; to rows i and j so that [le] Gi; Q|3 = ¢;
end if
Q=G Q {Update}

until no more such indices exist

6.2. Leverage score distributions with prescribed coherence. We present
algorithms that generate leverage score distributions for prescribed coherence. The
resulting distributions then serve as inputs for Algorithm 6.1. These particular lever-
age score distributions help to distinguish the effect of coherence, which is the largest
leverage score, from that of the remaining leverage scores.

One large leverage score. Given a prescribed coherence i, Algorithm 6.2 gen-
erates a distribution consisting of one large leverage score equal to p and the remaining
leverage scores being identical and nonzero.

In the special case of minimal coherence p = n/m, Algorithm 6.2 generates m
identical leverages equal to u, which is the only possible leverage score distribution in
this case.
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ALGORITHM 6.2. GENERATING A LEVERAGE SCORE DISTRIBUTION WITH PRESCRIBED
COHERENCE: ONE LARGE LEVERAGE SCORE.
Input: Integers m and n with m >n > 1
Real number g with n/m < p <1
Output: Vector £ with elements ¢ = p, 0 < £; <l and Y7L, ¢; =n

A€1:/L

for j =2:m do
b= 5
end for

Many zero leverage scores. Given a prescribed coherence, Algorithm 6.3 gen-
erates a distribution with as many zero leverage scores as possible. This serves as an
“adversarial” distribution for the sampling algorithms in section 3.

Given a prescribed coherence p, Algorithm 6.3 first determines the smallest num-
ber of rows mg that can realize this coherence, sets mgs — 1 leverage scores equal to
1, assigns another leverage score to take up the possibly nonzero slack, and sets the
remaining leverage scores to zero.

ALGORITHM 6.3. GENERATING A LEVERAGE SCORE DISTRIBUTION WITH PRESCRIBED
COHERENCE: MANY ZERO LEVERAGE SCORES.
Input: Integers m and n with m >n > 1
Real number g with n/m < p <1
Output: Vector ¢ with elements ¢; =y, 0 < ¢; <1 and Z;”:l lj=n

ms = [n/u] {Number of nonzero rows}
for j=1:m;—1do

éj =K
end for

by, =n—(msg—1)p

for j=ms+1:m do
;=0

end for

6.3. Structured matrices with prescribed coherence. We present two clas-
ses of structured matrices with orthonormal columns that have prescribed coherence.
Although the structure puts constraints on the matrix dimensions, the generation of
these matrices is faster than running Algorithm 6.1. Note that the matrices produced
by Algorithm 6.1 also have structure, but it is not easily characterized.

Stacks of diagonal matrices. Given matrix dimensions m and n, where s = m/n
is an integer, and prescribed coherence p. The m x n matrix @) below has orthonormal
columns and coherence pu, and consists of s stacks of n x n diagonal matrices:

Vil
¢In 1—
) , where ¢ = m—_ﬁ

d)I’IL

Matrices with Hadamard structure. Given matrix dimensions m and n, where
m = 2% and n < m is also a power of two, and prescribed coherence p. The m x n
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on ()

has orthonormal columns and coherence pu, and is defined recursively as follows. For

matrix

define square matrices B; of dimension 2/ and square matrices D; of dimension 27+
as follows:

BO:Ba Bj+1: <_B€J gj>7 OSJSk_L

_ D. —B.
Dy = <g aﬁ> ) Djiq = <Bj Djj) .

Note that only the final matrix ) has orthonormal columns and coherence p while, in
general, the intermediate matrices B; and D; do not. We omit the messy induction
proof, because it does not provide much insight.

7. Future work. We have investigated three strategies for uniform sampling of
rows from matrices with orthonormal columns: without replacement, with replace-
ment, and Bernoulli sampling. We derived bounds on the condition numbers of the
sampled matrices, in terms of coherence and leverage scores. Numerical experiments
confirm that the bounds are realistic, even for high success probabilities and matrices
with small dimensions.

The following work still needs to be done.

e Conversion of the kappa_SQ MATLAB toolbox from a research code to a
robust, flexible, and user-friendly GUI that facilitates reproducible research
in the randomized algorithms community.

e Tightening of Corollary 4.2 so that it retains the strength of the Chernoff
concentration inequality inherent in Theorem 5.2.

e Extension of the condition number bounds in section 5 to uniform sampling
without replacement (Algorithm 3.1) and Bernoulli sampling (Algorithm 3.3).

e Determination of a statistically significant number of runs for each sampling
amount ¢, for two purposes:

1. To assert, within a specific confidence interval, bounds on the condition
numbers of the actually sampled matrices.

2. To assert with a specific confidence that the probabilistic expressions in
sections 4 and 5 do indeed represent bounds.

Appendix A. Proofs for sections 4 and 5.2. For the coherence-based bounds
in section 4 we first present a matrix concentration inequality (section A.1), and then
the proofs of Theorem 4.1 (section A.2) and Corollary 4.2 (section A.3).

For the bound based on leverage scores in section 5.2, we first present a matrix con-
centration inequality (section A.4), and then the proof of Theorem 5.2 (section A.5).

A.1. Matrix Chernoff concentration inequality. The matrix concentration
inequality below is the basis for Theorem 4.1 and Corollary 4.2.
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Denote the eigenvalues of a Hermitian matrix Z by \;(Z), and the smallest and
largest eigenvalues by Amin(Z) = min; A\;(Z) and Amax(Z) = max; A;j(Z), respectively.
THEOREM A.1 (Corollary 5.2 in [27]) Let X; be a finite number of independent
random n x n Hermitian positive semidefinite matrices with max; || X;||2 < 7. Define

Wmin = )\min Z E[X]] ) Wmax = )\max Z E[X]] )
] J

and f(z) = e*(1 4 2)~ 42 Then for any 0 < e <1
Amin Z X; (1—€) wmin| <n f(_e)wmm/q-’
and for any e > 0

Ao ZX 1 + 6) Wimax | < nf(e)wl))aX/T.

A.2. Proof of Theorem 4.1. We present a separate proof for each sampling
method.

Algorithm 3.1: Sampling without replacement. The proof follows directly from
[26, Lemma 3.4].

Algorithm 3.2: Sampling with replacement. The proof is based on Theorem A.1,
and turns out to be somewhat similar to that of [26, Lemma 3.4].

Set Xy =2 Tektek Q, 1 <t<c Then X; is n x n Hermitian positive semidef-
inite and [ X[z < 2Z|lef Q|3 < =£. Hence we set 7 = myu/c. Furthermore,

=> % (BQggQ) =1 3 " on-
Jj=1 Jj=1
Hence the eigenvalues of the sum are A\; (3_;_, E[X;]) = \;([,) =1, 1 < j <n, and
we set Wmin = Wmax = 1. Applying Theorem A.1 to Y7, X; = QT STSQ gives
Pr [Anin (QTS75Q) <1—¢] < nf(—e)”/m),

Pr [ max (QTSTSQ) >1+ e] < nf(e )c/ mp)

The result follows from Boole’s inequality [24, p. 16].

Algorithm 3.3: Bernoulli sampling. The proof is similar to the one above, and a
special case of [12, Theorem 6.1].

Set

T, T . - <
X,=m Q7 eje; Q W?th probab%l?ty pro 1<j<m.
¢ | Opnxn with probability 1 — %,
Then X; is n x n Hermitian positive semidefinite, || X2 < %||efQ||§ < ZEDAs
above, we set 7 = mu/c. Furthermore,
E[X;] = £ mQTeJ TQ +(1- E) “Onxn = QTeje?Qa

which implies 377" E[X;] = 377", QTejel @ = I,. Now proceed as in the above
proof for Algorithm 3.2, and apply Theorem Al to ijl X; =QTSTSq.



1514 ILSE C. F. IPSEN AND THOMAS WENTWORTH

A.3. Proof of Corollary 4.2. First we simplify the bound in Theorem 4.1
based on the inequality f(—xz) < f(z) for 0 < x < 1. This implies for Theorem 4.1
that

S=n (f(_e)c/@nm 4 f(e)c/unm) § < 2n f(e)e/ ).
Solving for ¢ gives
In(2n/0)
" (o)

If we can show that —In f(e) > €2/3, then the above lower bound for ¢ definitely holds
if

c > mi

In(2n/6)

c>3mu 3
€

To show — In f(€) > €2/3 for 0 < € < 1, apply the definition f(z) = e*(1+4z)~ 1+
so that h(z) = —Inf(z) = (1 + 2)In(1 + ) — 2. Expand into the power series
In(1+x) =372, (—1)j+”]—,]. For 0 < x < 1 this yields h(z) = 2% — £2% + E(z),
where

Ny NS (21D
E($)—Z( 1) (j_l)j_z<(2j—l)2j(2j+1)> -0

=2
since each summand is positive for 0 < z < 1. Thus for 0 < z < 1 we obtain

1, 14 3—z ,_ 2?
h(x)>2x 2 =% ng.

A.4. Matrix Bernstein concentration inequality. The matrix concentra-
tion inequality below is the basis for Theorem 5.2. It is a version specialized to square
matrices of [22, Theorem 4]. In numerical experiments we found it to be tighter than
[11, Theorem 4] and the Frobenius norm bound [9, Theorem 2].

THEOREM A.2 (Theorem 4 in [22]). Let X; be m independent random n X n
matrices with B[X;] = Opxn, 1 < j <m. Let pj = max{||E[X; X]]||2, [|E[X] X;]|l2}
and maxi<j<m || Xjll2 < 7. Then for any e >0

Pr ZXJ > € SZTL eXp( 2m .

J=1 9

A.5. Proof of Theorem 5.2. The proof is similar to that of [2, Lemma 3].
Represent the outcome of uniform sampling with replacement in Algorithm 3.2 by
QTSTSQ =37, Y, where Y; = o QTekte;j;Q are n X n matrices, 1 < t < ¢, with
expected value

E[Y}]:Z%%Q eje J ZQTeJ €;Q=-

Jj=1

Thus, the zero mean versions are X; = Y; — EI"' To apply Theorem A.2 to the X,

we need to verify that they fulfill the required conditions. First, by construction,
E[X;] =0, 1 <t <c. Second, since Y; and I,, are symmetric positive semidefinite,

1

[ Xell2 < max < [[¥i]]2, ||~

1
Ll}z—mwww%m%u<
2

u
c
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where the last inequality follows from the definition of u, and p > n/m. Hence we
set 7 = myu/c. Third, since X; is symmetric,

2 1
XX, =X, X =X} =Y?- Vit Sl

From E[Y;] = 11, it follows

1

(A1) B[X}] = BIY] - 2 B[¥] + 51, = BY?| - .

: 2 _ m’ T, T :
Since Yy® = 7 ly, Q7 eg, €}, @, we obtain

m 2 m
; - eij——QT ;ejejef Q:%QTLQ.

Substituting this into (A.1) yields
EX/]=2% (m QTLQ-1,).

Positive semidefiniteness gives
1 m
B> < = max{m 1QTLQl2, 1} = = 1QTLQ|2-

We set p; = 2 |QTLQ|2. Applying [22, Theorem 4] to

ZXt Z (Ye = 1) = (SQ)T(SQ) —
t=1

shows that || Y ;_; Xi||2 < € with probability at least 1 — 4.

Appendix B. Two-norm bound for scaled matrices, and proofs for sec-
tions 5.3 and 5.4. We derive a bound for the two-norm of diagonally scaled matrices
(section B.1), which leads immediately to the proofs of Corollary 5.4 (section B.2),
and Corollary 5.7 (section B.3).

B.1. Bound. We present two majorization bounds for Hadamard products of
vectors (Lemmas B.3 and B.2), and use them to derive a bound for the two-norm of
diagonally scaled matrices (Theorem B.4).

DEFINITION B.1 (Definition 4.3.41 in [16]). Let a and b be vectors with m real
elements. The elements, labeled in algebraically decreasing order, are ajy) >« 2 apy)
and by = -+ 2 by The vector a weakly majorizes the vector b, if

k k
doag =D by, 1<k<m.
j=1 j=1

The vector a majorizes the vector b, if a weakly majorizes b and also ZT:l ay) =
Z?:l byjy-

The first lemma follows from a stronger majorization inequality for functions that
are monotone and lattice superadditive.

LEMMA B.2 (Theorem 11.4.2 in [3]). If b and x are vectors with m nonnegative
elements, then
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The second lemma is a variant of a well-known majorization result for Hadamard
products of vectors [16, Lemma 4.3.51]. Since the version below is slightly different,
we include a proof from first principles.

LEMMA B.3. Let x, a, and b be vectors with m nonnegative elements. If a weakly
magorizes b, then

k

ZCLJ] :E
j=1

Proof. The following arguments hold for 1 < k£ < m—1. Start out with the upper
bound, and separate the last summand,

x4, 1<k<m.

uMw

k+1 k

(B.1) D agiy = Y ay) ) + A Tt
: i

Rewriting the right sum and applying @[ > x4 > 0, 1 < j <k, gives

k k
> ag) w) = Zb 7170 +Z agg) — b)) 2
j=1
k

>Zb 31 %[) +Z (aj) = byy)) @peta)

I
. Q
Mw

I

k k
bj] T[] + Za Zb Tlk41]-
7j=1

1 7j=1

J

Insert this into (B.1) and gather common terms,

k+1 k k+1 k
Z agagy > byrag + | Y ap — Y b | Ty
=1 j=1 j=1
k k+1
>N by )+ bk Tppa = Y b A0,
j=1 j=1

where the second inequality follows from the majorization Efill ag = Zfill by 0O
Now we are ready to bound the two-norm of a row scaled matrix DZ, where Z

is m x n of full column rank, and D = diag (d1 .. dm) is a nonnegative m X m
diagonal matrix. The obvious bound is
(B.2) [DZ|2 < [|Dll2 | Z]l2 = dpy 1 Z]]2-

However, the bound in Theorem B.4 below, which incorporates the largest row norm
of Z and several of the largest (in magnitude) diagonal elements of D, turns out to
be tighter.

THEOREM B.4. Let Z be a real m x n matriz with rank(Z) = n, smallest singular
value 0. = 1/||Z%||a, and largest squared row norm p, = maxi<j<m |le] Z|3. If

t=l0%/pu.], then
Y+ (1213 — ) By i IZ13—tae < e,

IpzIF<d |
[z D d2 + (12113 — t =) d[ 0 otherwise.
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Proof. Let z be an nx 1 vector with ||z]]2 = 1 and ||DZ||2 = ||DZz||2. Furthermore

let z; = e] Zz,1 < j < m, be the elements of Zz, so that || Zz[|5 = 7", 27.

Apply Lemma B.2. Since cl2 > 0 and 2]2 > 0,1 <j <m, we can apply Lemma B.2
with z; = d and b; = z , to obtaln

m

IDZ|3 = |DZ3 =3 d?22 = bja; < by ap.
j=1 j=1

j=1
Verify assumptions of Lemma B.3. In order to apply Lemma B.3 with
aj=p., 1<j<t, ap=2z3—tp., a;=0, t+2<j<m,

we need to show that the assumptions are satisfied, meaning all vector elements are
nonnegative and the majorization condition holds. Clearly a; > 0 for 1 < j < ¢ and
t+2 < j < m. This leaves a;+1. From rank(Z) = n it follows that o, > 0. The
definition of ¢ implies 0 < ¢ < 02/, so that

0<o?—tpu. = min 1Zyll3 = tpz <1 Z2]13 — t po = @z

Thus, all vector elements are nonnegative.
To show the majorization condition, start with the Cauchy—Schwarz inequality,

bj=22= (7222 < T2 Nl = T ZI3 < poy 1<j<m
This yields, regardless of whether a;41 = || Z2]|3 — t u, < p. or not,
k

k k k
Z%’]ZZ Z 20y :Zb[j]7 1<Ek<t.
= =

Moreover, for 1 < k <m —t,

bk t+k t+k
> a JJ—ZNZ (12213 — ) = 122032 3" 28 = Dby
= j=1 Jj=1

This gives the weak majorization condition Zle ag) = Zle by, 1<k <m.

Apply Lemma B.3. Since the assumptions of Lemma B.3 are satisfied, we can
conclude that Z;”:l bz < Zznzl ag;) ;- At last, substitute into this majorization
relation the expressions for a and b. If | Z||3 — ¢ . < ., then

m t
Za[j]x[j] :Mzzd[zj]"’(HZZH%_tﬂz [t+1] <Mzzd |ZH2 tﬂz)d[QHl]a
Jj=1 j=1
otherwise
t+1 41
Zag]x[g = ||ZZ||2 tﬂz)d[u"'ﬂzzdj] = HZ||2 tyz) d[1]+ﬂzzdb a
j=1 j=2

Theorem B.4 is tighter than (B.2) because d[2j] < ||D||% implies

Mz Zt: d2' + (”ZH% _tNZ) d[2t+1] if | Z]|5 —tp < ps,
i EHl d2 + (12113 — t ) d[zl} otherwise
< tp:||DIJ3 ~ (Hlez —tuz) D3 = IDI3]Z]13-

IDZ]|J5 <
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COROLLARY B.5. Let Z be a real m x n matriz with Z*Z = I,,, and coherence
M = MaXi<j<m He;fZH% Ift=(1/p], then

t
IDZ|5 < p2 Y diyy + (1= tpz) diy -

j=1

Proof. Applying Theorem B.4 and assuming 1 — ¢ pu, < i, gives

¢
IDZ]|5 < Mzzd[zj] +(1—tp) diy .
=1

The assumption 1 —t pu, < p, is justified because

—tpy=1—[1/pe] po <1 = (/pz = Dz = pr. a

B.2. Proof of Corollary 5.4. Apply Corollary B.5 with D = L'/2, Z = Q,
py =, and t = |1/p] to prove the first inequality,

t
IQTLQI2 = ILY?QI3 < i > g+ (1 — ) sy,

j=1

As for the second inequality, £[;; < p implies

¢
H Zé[j] + (1 =tp) by <t + (1—tp)p=p.
j=1

If, in addition, ¢ is an integer, then t = 1/p and 1 — ¢t u = 0.

B.3. Proof of Corollary 5.7. Define the common term ¢ = m In(2n/d)/€* in
both bounds, and write Corollary 4.2 as ¢ > 3u¢, and Corollary 5.6 as ¢ > (27—}—%6 w)o.
From ¢ < 1 and 7 < p it follows that

21+ 2ep < 3p.

Appendix C. Existence of matrices with prescribed coherence and
leverage scores. This section is the basis for Algorithm 6.1. We review a well-
known majorization result (Theorem C.1). We use it to show (Theorem C.2) that,
given prescribed matrix dimensions and leverage scores, there always exists a ma-
trix  with orthonormal columns that has the required dimensions and (squared) row
norms equal to the leverage scores.

Our approach is again based on majorization, see Definition B.1, and in particular
on the fact that the eigenvalues of a real symmetric matrix majorize its diagonal
elements.

THEOREM C.1 (Theorem 4.3.48 in [16]). Let a and X be vectors with real elements
a; and \;, respectively, 1 < j < m. If X\ majorizes a, then there exists an m x m real
symmetric matriz with eigenvalues \; and diagonal elements aj, 1 < j < m.

With the help of Theorem C.1 we show that there exists a matrix with orthonor-
mal columns that has prescribed leverage scores and coherence.

THEOREM C.2. Given integers m and n with m > n > 1, and a vector £ with
m elements {; that satisfy 0 < ¢; <1 and Z;nzl t; =n. Then there exists an m x n
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matriz Q with orthonormal columns that has leverage scores ||efQ||§ =/(;,1<j<m,
and coherence |1 = maxi<;j<m ;.

Proof. Let A be a vector with m elements that satisfy A\; = 1 for 1 < j < n,
and A\; = 0 for n +1 < j7 < m. We are going to construct a matrix ¢ by applying
Theorem C.1 to A and ¢. To this end, we first need to show that A\ majorizes ¢.

Majorization. We distinguish the cases 1 <k <nandn+1<k <m.

Case 1 <k <n: From ¢; <1 it follows that

k
DN =k

Jj=1 Jj=1

Casen+1 <k <m: From ¢; > 0 and Z;n:l l; = n it follows that

k k m
DNi=n= l+ Y =D by
Jj=1 Jj=1 j=k+1 7j=1

Hence

k k
SN=D by, 1<k<m,

Jj=1 Jj=1

which means that A\ weakly majorizes ¢. Since also Z;”:l Aj=n= Z;”:l 1, we can
conclude that A\ majorizes /.

Construction of Q. Theorem C.1 implies that there exists a real symmetric matrix
W with eigenvalues \; and diagonal elements W;; = £;, 1 < j < m. Since W has n
eigenvalues equal to one, and all other eigenvalues equal to zero, it has an eigenvalue
decomposition

W:Q@ 8>QT:QQT,

where Q is an m x m real orthogonal matrix, and Q) = Q (In O)T has n orthonormal
columns. Therefore () has leverage scores ||efQH§ = e;‘rQQTej = Wj; = {; and
coherence [ = maxi<j<m {;. O
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