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Abstract. We perform importance sampling for a randomized matrix multiplication algorithm
by Drineas, Kannan, and Mahoney and derive probabilities that minimize the expected value (with
regard to the distributions of the matrix elements) of the variance. We compare these optimized
probabilities with uniform probabilities and derive conditions under which the actual variance of the
optimized probabilities is lower. Numerical experiments with query matching in information retrieval
applications illustrate that the optimized probabilities produce more accurate matchings than the
uniform probabilities and that they can also be computed efficiently.
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1. Introduction. Randomized algorithms have shown potential for a variety
of matrix computations, including norms and inner products [6, 13, 26, 27], matrix
products [1, 6, 9], as well as matrix decompositions and low rank approximations
[4, 10, 12, 14, 19]. An excellent survey of and introduction to randomized algorithms
for matrix computations is given in [14]. The reason for the growing popularity of
randomized algorithms is the increasingly common occurrence of massive data sets
that are too large for traditional deterministic algorithms.

The randomized algorithm under consideration is a Monte Carlo algorithm for
matrix multiplication by Drineas and Kannan [8] and Drineas, Kannan, and Ma-
honey [9]. Monte Carlo algorithms approximate a desired value by means of repeated
sampling [17, section 10], [18, section 16]. In the theoretical computer science com-
munity, a Monte Carlo algorithm refers more specifically to a randomized algorithm
“that may fail or return an incorrect answer” [17, p. 57] but whose time complexity
often does not depend on the particular sampling. This is in contrast to a Las Vegas
algorithm, which always returns the correct answer but whose time complexity is not
deterministic.

Among randomized algorithms for inner products and matrix multiplication [1, 6,
8, 9, 13, 14, 19, 26, 27], the Monte Carlo algorithms [8, 9] are not necessarily the ones
with the best asymptotic accuracy. We chose them simply because they are straight-
forward to implement and adapt to the requirements of query matching problems
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and because they allowed us to incorporate information about the distribution of the
inputs and give a realistic analysis of the accuracy.

The Monte Carlo algorithms in [8, 9] approximate the inner products aT b between
two vectors a and b by sampling a few elements from a and the corresponding ele-
ments from b, according to a probability vector p supplied by the user. The resulting
approximation X is an unbiased estimator; that is, X is a random variable whose
expected value is equal to the desired inner product aT b, i.e., E[X ] = aT b.

However, just because an algorithm is an unbiased estimator does not imply it is
accurate, since the output X from a single run of the algorithm can be far from the
expected value E[X ]. The deviation of a random variable X from its expected value
is measured by the variance,

Var[X ] = E
[
(X −E[X ])

2
]
.

A simple way to get from the variance to an actual error bound is Chebyshev’s in-
equality:

The probability that |X −E[X ]| ≤ τ is at least 1−Var[X ]/τ2.

In other words,

|X −E[X ]| ≤
√
Var[X ]/δ with probability at least 1− δ,(1.1)

which means that the difference between a random variable and its expected value
can be estimated by the square root of the variance. The derivation of sampling
probabilities p for the purpose of reducing variance is called importance sampling [18,
22, 21]. The randomized matrix multiplication algorithm by Drineas and Kannan [8]
and Drineas, Kannan, and Mahoney [9] can be interpreted as a Monte Carlo algorithm
with importance sampling (section 2.2).

Our approach to importance sampling is motivated by an application in informa-
tion retrieval (section 4), where a query vector is “matched” against documents in a
collection. This matching process amounts to computing a sequence of inner prod-
ucts between the query vector and the documents in the collection. In our approach,
we approximate this sequence of inner products by a randomized matrix multipli-
cation algorithm. As soon as the query arrives, the sampling probabilities need to
be computed fast. To this end, we derive probabilities that minimize the expected
value—with regard to the distributions of the matrix elements—of the variance (sec-
tion 2.3). This works for continuous distributions (section 2.5) as well as discrete
distributions (section 4.1).

We establish theoretical conditions (section 2.4) under which our optimized proba-
bilities have a variance that is smaller than that of uniform probabilities. We illustrate
that the optimized probabilities can also be more efficient in practice. In document
matchings with Reuters and Wikipedia data sets (sections 4.2 and 4.3), where one
is interested only in ranking the matches, the optimized probabilities produce better
rankings. Furthermore, the optimized probabilities can be computed fast if the docu-
ment distributions are available offline. The online computation requires only a single
probability vector per query and does not depend on the number of documents in the
collection.

Overview. Importance sampling is discussed for inner products in section 2 and for
matrix multiplication in section 3. The information retrieval application is presented
in section 4. We end with conclusions in section 5.
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2. Inner products. We interpret a randomized algorithm for computing inner
products from [8, 9] in the context of Monte Carlo algorithms with importance sam-
pling. Then we introduce an approach to importance sampling that minimizes the
expected value of the variance (with regard to the distribution of the vector elements).

We present the randomized algorithm in section 2.1 and its interpretation in terms
of importance sampling in section 2.2. We derive the probabilities for minimizing the
expected variance in section 2.3 and compare the actual variance to that of uniform
probabilities in section 2.4. In section 2.5 we present numerical experiments on vectors
whose elements come from continuous distributions, to illustrate the higher accuracy
of our “optimized” probabilities.

2.1. The algorithm. The randomized algorithm for computing the inner prod-
uct is displayed as Algorithm 1. It is the BasicMatrixMultiplication algorithm [9,
Figure 2] and the algorithm in [8, section 5] specialized to computing inner products.

Given real n × 1 vectors a and b, Algorithm 1 approximates aT b by sampling c
elements from a and the corresponding elements of b according to given probabilities1

pi. The algorithm uses sampling with replacement, which means that an element can
be sampled repeatedly. An intuitive, but not necessarily efficient, way to do this is
presented as Algorithm 2. Sampling with replacement is easier to implement and to
analyze than sampling without replacement, and our experiments did not not show a
significant difference in accuracy.

Algorithm 1. Inner Product Algorithm [8, 9]

Input: real vectors a =
(
a1 . . . an

)T
, b =

(
b1 . . . bn

)T
probabilities p =

(
p1 . . . pn

)T
with pi > 0 and

∑n
i=1 pi = 1

integer c, where 1 ≤ c ≤ n
Output: Approximation X to aT b from c elements of a and b

sampled according to probabilities pi

X = 0
for t = 1 : c do
Sample it from {1, . . . , n} with probability pit

independently and with replacement

X = X +
aitbit
c pit

end for
return X

Drineas, Kannan, and Mahoney [9, Lemma 3] and Drineas and Kannan [8, sec-
tion 5] derive the following expressions for the expected value and variance of the
output of Algorithm 1:

E[X ] = aT b, Var[X ] =
1

c

(
n∑

i=1

a2i b
2
i

pi
− (aT b)2

)
.(2.1)

This shows that the expected value of X is equal to the desired inner product, so that
the output of Algorithm 1 is an unbiased estimator for aT b.

1We assume that the probabilities are positive, but we could modify Algorithm 1 to allow zero
probabilities for zero products aibi. This would simply amount to removing elements associated with
zero products from a and b and then applying Algorithm 1 with positive probabilities to the shorter
vectors.
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In their papers on Fourier transforms, Gilbert et al. [13] and Zou et al. [27]
present a randomized inner product algorithm that essentially computes the median
of several runs of Algorithm 1. However, in our experiments we could not discern a
definite increase in accuracy with this approach and thus did not pursue it.

Implementation of sampling. Sampling with replacement is easy if the probabil-
ities are uniform, i.e., pi = 1/n, 1 ≤ i ≤ n. In contrast, sampling with nonuniform
probabilities is not efficient for a single inner product computation, because it can be
too expensive. However, in the context of matrix multiplication, nonuniform sampling
can be efficient; see [8, 9] and section 4.

In order to illustrate how sampling with replacement can be implemented com-
putationally, we present the simple and intuitive but inefficient method of inversion
by sequential search [7, section III.2.1]; see Algorithm 2. From the given probabilities
pi, define the sums St ≡

∑
1≤i≤t pi. Pick a uniform [0, 1] random variable U , and let

m be the integer with Sm−1 < U ≤ Sm. Then the probability that m = k equals
Sk − Sk−1 = pk.

Algorithm 2. Sampling an Index with Replacement [7]

Input: Probabilities p =
(
p1 . . . pn

)T
with pi > 0 and

∑n
i=1 pi = 1

Output: Index k from {1, . . . , n} sampled independently
and with replacement according to probabilities pi

k = 1, S = p1
Pick uniform [0, 1] random variable U
while U > S do
k = k + 1, S = S + pk

end while
return k

It is important to note that Algorithm 2 is not the preferred way to sample with
replacement. There are faster methods based on binary search and table look up [7,
section III] and reservoir algorithms [24]. For our experiments, we used the MATLAB
function randsample.

2.2. Importance sampling. Monte Carlo algorithms may be best known for
their use in approximating continuous functions, such as integrals. Here we make a
brief connection from the familiar use of Monte Carlo algorithms in the continuous
context to the discrete computation in Algorithm 1. We also describe the purpose of
importance sampling, which amounts to the judicious use of nonuniform probabilities.

Define a continuous function f with f(i) = aibi, 1 ≤ i ≤ n, and f(x) ≈ 0
otherwise, and think of the discrete sum aT b as an integral,

aT b =

n∑
i=1

aibi =

n∑
i=1

f(i) ≈
∫ n

0

f(x) dx = f(ζ) n,

where the last equality follows from the mean value theorem of integration for some
ζ with 0 < ζ < n. Approximating f(ζ) by an average 1

c

∑c
t=1 f(it) gives the Monte

Carlo estimate ∫ n

0

f(x) dx ≈ n

c

c∑
t=1

f(it).
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For the inner product this implies aT b ≈ n
c

∑c
t=1 aitbit , which is the approximation

produced by Algorithm 1 with uniform probabilities pi = 1/n, 1 ≤ i ≤ n. This is why
Algorithm 1 is called a Monte Carlo method.

Running Algorithm 1 with nonuniform probabilities is an instance of importance
sampling, where the samples are weighted or biased with the goal of reducing the
variance [18, section 18], [22, section 1], [23]. To see this, choose a function p(x) that
is positive on [0, n] and satisfies

∫ n

0 p(x) dx = 1. Then∫ n

0

f(x) dx =

∫ n

0

g(x)p(x) dx, where g(x) ≡ f(x)

p(x)
.

Invoking the mean value theorem and approximating by an average gives∫ n

0

g(x)p(x) dx = g(ζ)

∫ n

0

p(x) dx = g(ζ) ≈ 1

c

c∑
t=1

g(it) =
1

c

c∑
t=1

f(ii)

p(it)
.

With pit ≡ p(it), the corresponding approximation for the inner product is

aT b ≈ 1

c

c∑
t=1

aitbit
pit

,

which is just the output of Algorithm 3 when run with general probabilities pi.
For the more general problem of matrix multiplication, Drineas, Kannan, and

Mahoney [9, Lemma 4] perform importance sampling by deriving probabilities that
minimize the expected value of the normwise absolute error. For the inner product
these probabilities reduce to pi = |aibi|/|a|T |b|. Unfortunately they are not useful
here, because they are as expensive to compute as the inner product itself.

2.3. Minimizing the expected value of the variance. Our aim is to choose
the probabilities in Algorithm 1 so that some measure of the variance is minimized, in
a situation where the vector elements are not known explicitly, and only information of
their distribution is known. The application that motivates this approach is described
in section 4.

We view the random variable X as a function of the probabilities p and write the
variance (2.1) of Algorithm 1 with respect to randomized sampling as

Var[X(p)] =
1

c

(
n∑

i=1

a2i b
2
i

pi
− (aT b)2

)
.

We choose probabilities that reduce the variance for all vectors with a particular
distribution. That is, we minimize the expected value of the variance,

(2.2) Ea,b[Var[X(p)]] = Ea,b

[
1

c

(
n∑

i=1

a2i b
2
i

pi
− (aT b)2

)]
,

where the expected value Ea,b is in regard to the distributions of the elements of a
and b.

Theorem 2.1. If the vector elements ai and bi are independent random variables,
1 ≤ i ≤ n, with finite and nonzero moments E[a2i b

2
i ], then the probability vector q with

elements

(2.3) qi ≡
√
Ea,b[a2i b

2
i ]∑n

j=1

√
Ea,b[a2jb

2
j ]
, 1 ≤ i ≤ n,
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minimizes the expected value of the variance in (2.2), that is,

Ea,b [Var[X(q)]] = min
p

Ea,b[Var[X(p)]],

where the minimum ranges over all vectors p with pj > 0 and
∑n

j=1 pj = 1.
Proof. Since the expected value is linear, we can write (2.2) as

Ea,b[Var[X(p)]] =
1

c

(
n∑

i=1

Ea,b

[
a2i b

2
i

]
pi

−Ea,b

[
(aT b)2

])
.

The value Ea,b

[
(aT b)2

]
is independent of the probability vector p. Hence the minimal

value of Ea,b[Var[X(p)]] can be obtained by minimizing the function

f(p) ≡
n∑

i=1

Ea,b

[
a2i b

2
i

]
pi

subject to the constraint g(p) ≡ ∑n
j=1 pj − 1 = 0. Define the Lagrangian function

L(p, λ) ≡ f(p)−λg(p), where λ is a scalar, and let q be as in (2.3). From Ea,b[a
2
i b

2
i ] > 0

it follows that q > 0. Thus ∇pL(q, 1) = 0 and g(q) = 0, so that q satisfies the KKT
conditions. Since

∇2
pL = ∇2

pf(p) = diag

(
Ea,b

[
a2i b

2
i

]
p3i

)

is symmetric positive definite for p > 0, q is a strictly local minimizer [11, Theo-
rem 9.3.2]. Furthermore, since {p| p > 0} is an open set, and ∇2

pf(p) is positive
definite on this set, the function f(p) is convex, so that q is also a global minimizer
[11, section 9.4].

In the special case when all vector elements have the same distribution, the prob-
abilities in Theorem 2.1 reduce to the uniform probabilities.

Corollary 2.2. If, in addition to the conditions of Theorem 2.1, all elements
ai and bi are identically distributed, then the expected value of the variance in (2.2)
is minimized by qi = 1/n, 1 ≤ i ≤ n.

2.4. Comparison with uniform probabilities. We determine conditions un-
der which the actual variance associated with q is smaller than the variance associated

with uniform probabilities pu = 1
n

(
1 . . . 1

)T
. To this end abbreviate

Vu ≡ Var[X(pu)], Vq ≡ Var[X(q)],

where the variance Vu is associated with uniform probabilities pu, and the variance
Vq is associated with the optimized probability vector q in (2.3). First we determine
the exact difference between the expected values of Vq and Vu.

Theorem 2.3. Let ai and bi be independent random variables, 1 ≤ i ≤ n, with
finite and nonzero moments E[a2i b

2
i ], and define

μ ≡ 1

n

n∑
i=1

√
E[a2i b

2
i ], v ≡

n∑
i=1

(√
E[a2i b

2
i ]− μ

)2

.

Then

E[Vu]−E[Vq] =
nv

c
.
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Proof. Subtracting the expected values of the variances from (2.2) gives

E [Vu − Vq ] =
1

c

⎛
⎝ n∑

i=1

E[a2i b
2
i ]

⎛
⎝n−

∑n
j=1

√
E[a2jb

2
j ]√

E[a2i b
2
i ]

⎞
⎠
⎞
⎠

=
n

c

(
n∑

i=1

(
E[a2i b

2
i ]− μ

√
E[a2i b

2
i ]

))
.

From
∑n

i=1

√
E[a2i b

2
i ] = nμ2 =

∑n
i=1 μ

2 it follows that

n∑
i=1

(
E[a2i b

2
i ]− μ

√
E[a2i b

2
i ]

)
=

n∑
i=1

(
E[a2i b

2
i ]− 2

√
E[a2i b

2
i ]μ+ μ2

)

=

n∑
i=1

(√
E[a2i b

2
i ]− μ

)2

= v.

Since v ≥ 0, Theorem 2.3 confirms again that the expected variance from the
optimized probabilities (2.3) is less than that of the uniform probabilities. The value
μ can be interpreted as the sample mean of the data

√
E [a2i b

2
i ], while v/(n−1) can be

viewed as the sample variance. Theorem 2.3 shows that one can expect the variance of
the uniform probabilities to be larger than the variance of the optimized probabilities
q if the sample variance of the moments Ea,b[a

2
i b

2
i ] is large. If all moments are the

same, then v = 0 and the optimal probabilities reduce to the uniform probabilities;
see Corollary 2.2.

Now we derive an estimate for the relative difference Vq/Vu, because this measure
is commonly used in the context of importance sampling [21], [22, section 1.4].

Theorem 2.4. Assume that the conditions of Theorem 2.3 hold, and for any δ

with 0 < δ < 1 define ε ≡
√

2Var[Vu]
δE[Vu]2

. If

1− E[Vu]−E[Vq]

(1 + ε )E[Vu]
+

√
2
δ Var[Vu − Vq]

(1 + ε)E[Vu]
< f < 1,

then with probability at least 1− δ we have Vq ≤ f Vu.
Proof. With ρ ≡ E[Vu − Vq] we can write the probability as

P

[
Vq

Vu
≤ f

]
= P [Vq ≤ fVu] = P [Vu − Vq ≥ (1 − f)Vu]

= P [Vu − Vq − ρ ≥ (1− f)Vu − ρ] .

We would like to apply Chebyshev’s inequality, but at this point it is not possible
because Vu on the right-hand side is not constant. To obtain a constant on the right
we replace Vu by a little bit more than its expected value and abbreviate the left-hand
side by L ≡ Vu − Vq − ρ,

P [L ≥ (1− f)Vu − ρ] ≥ P [L ≥ (1− f)(1 + ε)E[Vu]− ρ]−P [Vu ≥ (1 + ε)E[Vu]] .

Applying Chebyshev’s inequality to the second summand on the right gives

P [Vu ≥ (1 + ε)E[Vu]] ≤ P [|Vu −E[Vu]| ≥ εE[Vu]] ≤ Var[Vu]

ε2 E[Vu]2
=

δ

2
.
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Substituting this into the previous inequality gives

P [L ≥ (1− f)Vu − ρ] ≥ P [L ≥ (1− f)(1 + ε)E[Vu]− ρ]− δ

2
.

We still have to deal with the first summand on the right. The lower bound for f
implies −τ ≡ (1− f)(1 + ε)E[Vu]− ρ < 0, so that

P [L ≥ −τ ] = 1−P [L ≤ −τ ] ≥ 1−P [ |L| ≥ τ ] .

Since L = (Vu − Vq)−E[Vu − Vq] is the difference between a random variable and its
expected value, we can now apply Chebyshev’s inequality and the lower bound for f
to conclude that

P [ |L| ≥ τ ] ≤ Var[Vu − Vq]

τ2
≤ δ

2
.

The quantity f in Theorem 2.4 represents the relative benefit of the importance
sampling method (2.3) over uniform sampling. To be specific, since errors behave
as square roots of variances (see (1.1)),

√
f approximates the fraction of errors from

importance sampling as compared to uniform sampling. Moreover, for a given error,
the sample size for probabilities (2.3) is reduced by a factor f from that of uniform
probabilities. To sum up this comparison of importance sampling (2.3) versus uniform
sampling, we see that for a given success probability 1 − δ, the error is reduced by
about a factor of

√
f , while the sample size is reduced by about a factor of f .

Note that

1− E[Vu]−E[Vq]

E[Vu]
=

E[Vq]

E[Vu]
(2.4)

is the absolute lower bound for f in Theorem 2.4. This agrees with intuition, because
we are estimating Vq/Vu. Corollary 2.5 illustrates that there are distributions for
which f gets very close to (2.4) for large enough vector dimensions and that in this
case f ≈ .36.

2.5. Numerical experiments on vectors with continuous distributions.
We compare the accuracy of Algorithm 1 with the optimized probabilities qi in (2.3)
to that of Algorithm 1 with uniform probabilities for vectors whose elements come
from uniform distributions.

First experiment. We use Algorithm 1 to compute an approximation X of aTa,
where the elements ai are independent random uniform [i, i + i/3] variables. The

optimized probabilities (2.3) are qi =
i2∑

n
j=1 j2 .

Figure 2.1 shows the relative errors |X − aTa|/aTa versus sample size c for a
single vector a for two versions of Algorithm 1: with uniform probabilities, and with
our probabilities qi from (2.3). The probabilities qi give an approximation X whose
relative error is about a factor 10 smaller than that from uniform probabilities. Sam-
pling about 1% elements with the qi produces a consistent relative error below 10−2,
which means two accurate decimal digits in the output X .

Second experiment. We use Algorithm 1 to compute an approximation X of aT b,
where ai and bi are independent random uniform [0, i] variables. This is a linearly
graded distribution whose interval length increases with the vector dimension n, and
it produces values of f ≈ .36 for sufficiently large n. We first show this analytically.
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Fig. 2.1. Relative errors |X − aT a|/aT a when the vector elements ai are independent random
uniform [i, i + i/3] variables and n = 106. For each value of c, the relative errors from 100 trials
are shown in light grey and their average in black.

Corollary 2.5. Let a and b be n × 1 vectors whose elements ai and bi are
independently distributed uniform [0, i] random variables, 1 ≤ i ≤ n. The optimized
probabilities in (2.3) are

qi =
i2∑n
j=1 j

2
=

6i2

n(n+ 1)(2n+ 1)
, 1 ≤ i ≤ n.

Furthermore, for every f ≥ .36, δ > 0, and sufficiently large n, we have with proba-
bility at least 1− δ that Vq ≤ f Vu.

Proof. We can use the Efron–Stein inequality [5, Proposition 1] to estimate
Var[Vu] ≤

∑n
i=1 c

2
i , where

ci = max
ai,bi,a′

i,b
′
i

|Vu(a, b)− Vu(a
′, b′)| ≤ n− 1

c
i4 +

n(2n+ 1)(n+ 1)

3c
i2.

Properties of the Riemann integral imply, for the first summand,∑n
i=1 i

4

n5
=

∫ n

1 x4dx +
∑n

i=1 i
4 − ∫ n

1 x4dx

n5
≤ 1

5
+

1

n
.

Hence Var[Vu] = O(n11). Similar estimates imply

E[Vu]

n6
=

1

cn6

[
n

n∑
i=1

E[a2i b
2
i ]−E[(aT b)2]

]

=
1

cn6

⎡
⎣n n∑

i=1

E[a2i b
2
i ]−E

⎡
⎣ n∑

i=1

a2i b
2
i + 2

∑
1≤i<j≤n

aibiajbj

⎤
⎦
⎤
⎦

=
1

cn6

⎡
⎣(n− 1)

n∑
i=1

i4

9
− 2

∑
1≤i<j≤n

i2j2

16

⎤
⎦→ 1

c

(
1

5 · 9 − 1

16 · 9
)

as n → ∞.

This implies E[Vu] = O(n6). Similarly Var[Vu−Vq] = O(n11). Thus for a given δ

we can make ε and

√
2
δVar[Vu−Vq ]

(1+ε)E[Vu]
as small as possible by making n large enough and
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thus force f to be as close as possible to (2.4). Theorem 2.4 and similar asymptotic
estimates as above imply

E[Vu]−E[Vq]

n6
=

nv

cn6
→ 1

c

(
1

5 · 9 − 1

92

)

and

E[Vu]

n6
→ 1

c

(
1

5 · 9 − 1

16 · 9
)
.

Hence the limit of (2.4) as n → ∞ is
1
9− 1

16
1
5− 1

16

= .3535 . . . ≤ .36.
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Fig. 2.2. Relative errors |X − aT b|/|aT b| when the vector elements ai and bi are independent
random uniform [0, i] variables and n = 106. For each value of c, the relative errors from 100 trials
are shown in light grey and their average in black.

The value of f ≈ .36 from Corollary 2.5 is corroborated by the numerical results
displayed in Figure 2.2. There we plot the relative errors |X−aT b|/|aT b| versus sample
size c for a single pair of vectors a and b for two versions of Algorithm 1: with uniform
probabilities, and with the probabilities qi from Corollary 2.5. The improvement from
the probabilities qi is less dramatic than in the first experiment, which could be due
to the high variance of the ai and bi. On average, the relative errors associated with
the probabilities qi are approximately a factor of 1.7 smaller than the relative errors
associated with uniform probabilities. From Chebyshev’s inequality (1.1) it follows
that the ratio of variances is approximately the square of the ratio of relative errors,
which is about 0.34 and agrees quite well with the theoretical bound of f ≥ 0.36 from
Corollary 2.5.

3. Matrix multiplication. We present an approach for importance sampling
for a randomized matrix multiplication algorithm. The approach is motivated by the
information retrieval application in section 4 and constructs the probabilities from
a discrete distribution. Section 3.1 describes the randomized matrix multiplication
algorithm, and section 3.2 discusses the importance sampling for this algorithm.

3.1. The algorithm. The multiplication of an m × n matrix A with an n × k
matrix B can be viewed as a sequence of inner products involving the rows of A
and the columns of B. Running Algorithm 1 on each inner product gives an m × k
matrix C whose elements Cij ≈ A(i)B

(j) are created independently by sampling el-

ements from A(i) and B(j). The resulting algorithm is the matrix multiplication
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algorithm from [8, section 5] (see Algorithm 3); it is a generalization of the Basic-

MatrixMultiplication algorithm in [9, Figure 2]. In contrast to Algorithm 3, the
BasicMatrixMultiplication algorithm in [9, Figure 2] selects whole columns of A
and whole rows of B. This amounts to first sampling the indices {i1, . . . , ic} and then
using them for all mk inner products.

Algorithm 3. Matrix Multiplication Algorithm [8]

Input: real m× n matrix A, real n× k matrix B

probabilities p =
(
p1 . . . pn

)T
with pi > 0 and

∑n
i=1 pi = 1

integer c, where 1 ≤ c ≤ n
Output: m× k matrix C that approximates AB

Cij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k
for i = 1 : m, j = 1 : k do
for t = 1 : c do
Sample it from {1, . . . , n} with probability pit

independently and with replacement

Cij = Cij +
Ai,itBit,j

c pit

end for
end for
return C

3.2. Importance sampling. Algorithm 3 samples each inner product according
to the same probability vector, which consists of n probabilities. Our approach for
defining these probabilities is motivated by the information retrieval application in
section 4. There the m × n matrix A is a term-by-document matrix whose m rows
represent documents, and each column represents a term. The k columns of the matrix
B represent query vectors. Following the notation of [9, section 2], we distinguish the
rows A(i) of A and the columns B(j) of B,

A =

⎛
⎜⎜⎜⎝

− A(1) −
− A(2) −

...
− A(m) −

⎞
⎟⎟⎟⎠ , B =

⎛
⎝ | | |
B(1) B(2) . . . B(k)

| | |

⎞
⎠ .

We define discrete probability distributions by assuming that each of the m rows
of A (documents) is equally likely to be chosen and so is, independently, each of the
k columns of B (query vectors). The expected values for the squared elements of A
and B with regard to this distribution are therefore

EA

[
A2

ij

]
=

1

m

m∑
t=1

A2
tj =

‖A(j)‖22
m

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,(3.1)

EB

[
B2

jl

]
=

1

k

k∑
t=1

B2
jt =

‖B(j)‖22
k

, 1 ≤ j ≤ n, 1 ≤ l ≤ k.(3.2)

Putting these expressions into the optimized probabilities (2.3) gives

qj =
||A(j)||2||B(j)||2∑n
t=1 ||A(t)||2||B(t)||2

, 1 ≤ j ≤ n.(3.3)
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The probabilities q can be computed in O(n(k+m)) arithmetic operations. Algo-
rithm 3 needs an additional O(ckm) operations to approximate the matrix product.
This can be cheaper than a deterministic matrix multiplication algorithm when n is
large. Note that the probabilities (3.3) happen to be identical to the probabilities
that minimize the expected value of the absolute normwise error of the BasicMa-

trixMultiplication [9, Lemma 4].

4. Application to information retrieval. We show how to apply Algorithm 3
to an information retrieval problem with Reuters documents and Wikipedia web pages
and how to efficiently compute the probabilities (3.3) for a discrete data set. Sec-
tion 4.1 describes our assumptions. Numerical experiments are presented for the
Reuters documents in section 4.2 and for the Wikipedia web pages in section 4.3.

4.1. Assumptions. The application is a nearest neighbor problem of the fol-
lowing type [3, section 1]:

Given a collection of data points and a query point in an m-dimensional
metric space, find the data point that is closest to the query point.

The data points are documents, and the goal is find those documents that best match
a query submitted by a user. More generally, we want to determine the k documents
that best match the query.

Cosines. In the so-called vector-space model [2, section 2.1], the document col-
lection is represented by a term-by-document matrix2 A, where each column of A is
associated with a term, each row A(i) is associated with a document, and an element
Aij corresponds to the relative frequency of term j in document i. The amount of
“matching” between a document vector A(i) and a query vector b is determined by

the cosine of the angle between the two vectors,
A(i)b

‖A(i)‖2‖b‖2
.

Ordinal rank. What matters in this application is not the actual values of the
cosines but only the induced ordinal rank [25, Definition 2.1]. We apply three criteria
to evaluate the accuracy of the ranking. In a top-k list ranking, we want to determine
the k documents that best match b and rank them according to their nearness to b,
while in a top-k bucket ranking, we also want the k best documents but do not care
about their ordering; see [25, section 3]. Finally, in a top-k-out-of-l bucket ranking,
one wants to know whether the top k documents are contained in a top bucket of
size l.

Online/offline computations. We assume that certain computations can be per-
formed “offline,” while others need to take place “online.” Online algorithms receive
a sequence of requests and immediately perform an action in response to each re-
quest, while offline algorithms receive the entire sequence of requests in advance [15,
section 1]. In this application, the information associated with the document matrix
A, such as distributions of terms and probabilities, has been computed offline, while
the process of matching documents with a query vector is performed online.

Query matching. The process of determining documents A(i) that match a query
vector b consists of a matrix vector multiplication Ab performed by Algorithm 3.

The idea is to exploit the offline availability of the term-by-document matrix A
and to compute a probability vector that covers all m documents. Since column j
of A represents the frequencies of term j in the m different documents, we can view
element j in any document A(i) of A as coming from the discrete distribution defined

2For simplicity, we define the term-by-document matrix as the transpose of the one in [2, sec-
tion 2.1].
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by column j, that is,

EA[A
2
ij ] =

m∑
t=1

pt A
2
tj , 1 ≤ j ≤ n.

If a term is equally likely to occur in any of the m documents, we can set pt = 1/m
so that EA[A

2
ij ] = ‖A(j)‖22/m, which is just (3.1). Treating the query b as a constant

gives
√
Eb[b2j ] = |bj | in (3.2). Independence of the documents and the query implies

EA,b[A
2
ijb

2
j ] = EA[A

2
ij ] |bj|2 = ‖A(j)‖22 |bj |2, 1 ≤ j ≤ n.

Hence the probabilities for the inner product A(i)b are

(4.1) qj =
‖A(j)‖2 |bj|∑n
t=1 ‖A(t)‖2 |bt| , 1 ≤ j ≤ n,

which is (3.3) for the special case of matrix vector multiplication.
The probabilities qj in (4.1) are used for all m documents, which means that

one needs to compute only a single probability vector for each query vector b. Since
the column norms ||A(t)||2 have been computed offline, computing the probabilities
for a particular query vector b requires only O(n) online operations, and the online
computation of q does not depend on the number of documents. As a consequence,
Algorithm 3 approximates the matrix vector product Ab with only O(n+ cm) online
operations, where c � n is the number of elements sampled. Compared to a deter-
ministic computation with O(mn) arithmetic operations, this reduction in operation
count is especially important when the collection contains many more terms than
documents, i.e., n � m.

4.2. Numerical experiments with the Reuters data set. The term-by-
document matrix A for the Reuters Transcribed Subset data set3 is a subset of the
well-known Reuters-21578 collection.4 The subset contains 201 documents and 5601
terms, so the matrix A is 201 × 5601. We use two different query vectors: (1) a
normalized version of the sum of three rows of A, and (2) a single row of A.

For the first query vector we determine a top-25 bucket ranking to illustrate
that probabilities (4.1) can be substantially more accurate than uniform probabilities.
Figure 4.1 compares the ranking computed by the deterministic inner product to that
computed by two versions of Algorithm 3: one that samples with uniform probabilities,
and a second version that samples with probabilities (4.1). Algorithm 3 uses c = 56,
where c/n amounts to 1% of the elements. Since the vectors are sparse, this is not
a perfect measure of the reduction in work, but we believe that it is still meaningful.
We chose the uniform probabilities pi = 1/nz for bi = 0, where nz is the number
of nonzero elements in b, because the probabilities pi = 1/n gave very poor results.
Figure 4.1 shows that Algorithm 3 with uniform probabilities finds only 11 documents
in the top-25 bucket and one correct ranking, while Algorithm 3 with probabilities
(4.1) finds 22 documents and six correct rankings.

Tables 4.1 and 4.2 present detailed comparisons between uniform probabilities
and probabilities (4.1). We ran 100 trials with each of the two query vectors and

3http://archive.ics.uci.edu/ml/datasets/Reuters+Transcribed+Subset.
4http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection.
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Fig. 4.1. Top-25 bucket ranking. Left columns of the two graphs: Ranking computed by the
deterministic inner product. Right columns: Rankings computed by Algorithm 3 with c = 56. Left
graph: Algorithm 3 with uniform probabilities. Right graph: Algorithm 3 with probability vector q
from (4.1). Corresponding documents are connected by lines. A horizontal line means that Algo-
rithm 3 has ranked the associated document correctly. Light grey dots represent documents that are
not present in the opposite list.

Table 4.1

Table entries give the number of correct rankings in 100 runs with the first query vector when
Algorithm 3 samples c = 56 elements.

k Top-k list Top-k bucket Top-k-out-of-25 bucket
(4.1) Uniform (4.1) Uniform (4.1) Uniform

1 69 9 69 9 100 54
2 50 1 65 1 100 20
3 30 0 56 0 100 0
5 3 0 15 0 100 0
10 0 0 6 0 99 0

Table 4.2

Table entries give the number of correct rankings in 100 runs with the second query vector when
Algorithm 3 samples c = 56 elements.

k Top-k list Top-k bucket Top-k-out-of-25 bucket
(4.1) Uniform (4.1) Uniform (4.1) Uniform

1 81 10 81 10 100 56
2 63 1 77 2 100 28
3 52 0 80 0 100 8
5 4 0 25 0 100 2
10 0 0 20 0 99 0

listed the number of correct rankings of each type. In both cases, Algorithm 3 sam-
pled c = 56 elements, where c/n corresponds to 1% of the elements. Table 4.1
illustrates that both types of probabilities tend to produce less accurate rankings the
more documents they are asked to rank. However, probabilities (4.1) can result in
substantially more accurate rankings than uniform probabilities. In particular, the
25 documents determined by probabilities (4.1) contain the top-10 documents 99%
of the time. The uniform probabilities perform much worse for the first query vector
(see Table 4.1) than for the second (see Table 4.2). This may be due to the sparsity
of the second query vector. Furthermore, the dimensions of this Reuters data set are
rather small.



IMPORTANCE SAMPLING FOR MONTE CARLO ALGORITHM 1703

Deterministic Uniform Deterministic q
 25

23
21
19
17
15
13
11
 9
 7
 5
 3
 1 

R
an

ki
ng

Fig. 4.2. Top-25 list ranking. Left columns of the two graphs: Ranking computed by the
deterministic inner product. Right columns: Rankings computed by Algorithm 3 with c = 2000.
Left graph: Algorithm 3 with uniform probabilities. Right graph: Algorithm 3 with probabilities q
from (4.1). Corresponding feature vectors are connected by lines. A horizontal line means that
Algorithm 3 has ranked the associated feature vector correctly. Light grey dots represent feature
vectors that are not present in the opposite list.

4.3. Experiments with Wikipedia data set. We extracted a term-by-
document matrix B from Wikipedia web pages5 and performed a nonnegative matrix
factorization [16] to obtain an approximate factorization B ≈ HA, where A is an
m× n nonnegative matrix.

The m rows of A can be interpreted as “feature vectors” [20] that represent the
data set B. The rows of B are the query vectors. The matrix B has n = 198853
columns and 203688 rows, while A has n = 198853 columns and m = 200 rows. This
gives m = 200 feature vectors, each of dimension n = 198853.

As in the previous experiments, we determine a top-25 list ranking for a single
query vector. Figure 4.2 compares the ranking computed by the deterministic inner
product to that computed by two versions of Algorithm 3. Algorithm 3 uses c = 2000,
where c/n amounts to 1% of the elements. Figure 4.2 shows that uniform probabili-
ties produce only two correct rankings, while probabilities (4.1) produce nine correct
rankings.

Tables 4.3 and 4.4 present more detailed comparisons between uniform probabili-
ties and probabilities (4.1). We ran 100 trials with the same query vector and list the
number of correct rankings of each type. In Table 4.3, Algorithm 3 samples c = 2000
elements, where c/n amounts to 1% of the elements. As before, probabilities (4.1) can
result in substantially more accurate rankings than uniform probabilities. In partic-
ular, the 25 documents selected by probabilities (4.1) contain the top-10 documents.

Table 4.4 illustrates what happens when Algorithm 3 samples only half as many
elements, i.e., c = 1000, where c/n corresponds to only 0.5% of the elements. Both
probabilities produce fewer accurate rankings than for c = 2000. However, probabili-
ties (4.1) still manage to find the top-10 documents in a bucket of 25.

Figure 4.3 illustrates how the accuracy of rankings produced by Algorithm 3 with
probabilities (4.1) depends on the amount of sampling c. For c = 2000, a top-10
bucket contains on average the top-9 documents. Sampling more does not seem to
help a lot. However, sampling less definitely reduces the number of correctly ranked
documents.

5http://en.wikipedia.org/wiki/Wikipedia:Database download.
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Table 4.3

Table entries give the number of correct rankings in 100 runs with the same query vector when
Algorithm 3 samples c = 2000 elements.

k Top-k list Top-k bucket Top-k-out-of-25 bucket
(4.1) Uniform (4.1) Uniform (4.1) Uniform

1 97 64 97 64 100 99
2 97 33 100 53 100 99
3 74 15 75 29 100 99
5 29 1 49 9 100 92
10 0 0 28 1 100 79

Table 4.4

Table entries give the number of correct rankings in 100 runs with the same query vector when
Algorithm 3 samples c = 1000 elements.

k Top-k list Top-k bucket Top-k-out-of-top-25 bucket
(4.1) Uniform (4.1) Uniform (4.1) Uniform

1 91 54 91 54 100 98
2 85 23 93 37 100 91
3 54 3 60 9 100 91
5 12 0 33 4 100 79
10 0 0 13 0 100 43
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Fig. 4.3. Average percentage of correct rankings in a top-10 bucket ranking over 10 tri-
als produced by Algorithm 3 with probabilities (4.1) as a function of sample size c, where c =
100, 200, . . . , 10000.

Overall, the greater accuracy with probabilities (4.1) compared to uniform prob-
abilities is more striking in the Reuters data set. This could be due to the difference
in the dimension or sparsity of the vector size or to the distribution of elements.

5. Conclusions. We performed importance sampling for the randomized matrix
multiplication algorithm from [8, 9] by exploiting the distributions of the matrix
elements. As a result, we were able to derive probabilities that minimize the expected
value of the variance for inner products. Information retrieval problems on Reuters
and Wikipedia data sets illustrate how to compute these probabilities for discrete
distributions and show that the computation is efficient in an online/offline setting.

Our experiments indicate that the Monte Carlo algorithms for matrix multipli-
cation have low relative accuracy: They tend to produce only 1–2 accurate decimal
digits, regardless of the amount of sampling. More specifically, the minimal amount of
sampling to achieve this accuracy is about 1% of the elements, but any more sampling
does not seem to improve the accuracy. In spite of their low relative accuracy, though,
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the algorithms can be useful in applications where exact values are not required, such
as ordinal ranking in information retrieval applications.

We believe that the idea of minimizing expected variance merits further study
for other randomized matrix algorithms. Many of these algorithms are Monte Carlo
algorithms that rely on sampling and thus could benefit from efficient sampling prob-
abilities.

Acknowledgments. We thank Dianne O’Leary and Petros Drineas for helpful
discussions.
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