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Abstract We analyze the forward error in the floating point summation of real
numbers, for computations in low precision or extreme-scale problem dimensions
that push the limits of the precision. We present a systematic recurrence for a
martingale on a computational tree, which leads to explicit and interpretable
bounds without asymptotic big-O terms. Two probability parameters strengthen
the precision-awareness of our bounds: one parameter controls the first order terms
in the summation error, while the second one is designed for controlling higher or-
der terms in low precision or extreme-scale problem dimensions. Our systematic
approach yields new deterministic and probabilistic error bounds for three classes
of mono-precision algorithms: general summation, shifted general summation, and
compensated (sequential) summation. Extension of our systematic error analy-
sis to mixed-precision summation algorithms that allow any number of precisions
yields the first probabilistic bounds for the mixed-precision FABsum algorithm. Nu-
merical experiments illustrate that the probabilistic bounds are accurate, and that
among the three classes of mono-precision algorithms, compensated summation is
generally the most accurate. As for mixed precision algorithms, our recommen-
dation is to minimize the magnitude of intermediate partial sums relative to the
precision in which they are computed.
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1 Introduction

We analyze algorithms for the summation sn = x1 + · · · + xn in floating point
arithmetic of n real numbers x1, . . . , xn, and bound the forward error en = ŝn− sn
in the computed sum ŝn in terms of the unit roundoff u.

Our bounds are designed for low precision computations, or extreme-scale prob-
lem dimensions n that push the limits of the arithmetic precision with n > u−1.
The idea is to set up a systematic recurrence for a martingale on a computa-
tional tree (Section 2.2), and strengthen its precision-awareness with the help of
two probability parameters: one to control the first order terms in the summation
error; and a second one to control higher order terms which become more influ-
ential with increasing problem dimension or decreasing precision. This precision-
aware martingale makes possible a unified and clean derivation of explicit bounds,
without asymptotic big-O terms, for a wide variety of mono- and mixed-precison
summation algorithms.

As an illustration, we derive new deterministic and probabilistic bounds for
three classes of mono-precision algorithms: general summation on a computational
tree (Section 2), shifted general summation (Section 3), and compensated summa-
tion (Section 4). For compensated summation, our bounds imply that third and
higher order terms do not matter, unless the problem dimension n is so extreme
as to have already exceeded the limitations of the precision with n� u−2.

We extend our bounds to mixed-precision summation, allowing any number of
precisions, on a computational tree (Section 5). The special case of two precisions
leads to the first probabilistic bounds for the mixed-precision FABsum algorithm [2].
Numerical experiments (Section 6) illustrate that the bounds are informative, and
that, among the three classes of mono-precision algorithms, compensated summa-
tion is the most accurate method.

1.1 Contributions

We present systematic derivations for interpretable precision-aware forward error
bounds for summation in mono- and mixed-precision on a computational tree.

Martingales on a computational tree We present a systematic recurrence for martin-
gales on a computational tree (Theorem 2.9, Corollary 2.10), which makes possible
a unified and clean derivation of explicit bounds, without asymptotic big-O terms,
for a wide variety of summation algorithms.

Our analysis of summation serves as a model problem for systematic error
analyses of higher level matrix computations in mixed precision [2], or on hardware
with wider accumulators [7].

Precision-aware bounds Our bounds are exact and hold to all orders. This is im-
portant when the problem dimension exceeds the precision n > u−1; or in low
precision, where asymptotic terms O(u2) in first-order bounds are too large to be
ignored. Precision-awareness is strengthened with two probability parameters: one
for controlling the first order terms in the summation error, and a second one for
controlling the O(u2) terms.
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All Orders Partial Sums Martingale Tree
Higham/Mary [11] X
Ipsen/Zhou [15] X
Higham/Mary [12] X X
Connolly/Higham/Mary [4] X X
This paper X X X X

Table 1 A summary of important features in probabilistic error bounds for summation.
Check marks in the four columns highlight the presence of the following features: the bounds
hold indeed to all orders (‘All Orders’); the bounds are expressed in terms of partial sums
sk, thus are tighter than if they had been expressed in terms of inputs xk (‘Partial Sums’);
the bounds assume mean-independence of roundoffs rather than the stricter notion of total
independence (’Martingale’); the bounds apply to algorithms on any computational tree rather
than just sequential summation (‘Tree’).

General summation on a computational tree We extend the error bounds in [11,15]
by customizing them to specific summation algorithms. Rather than depending
on the number of inputs n, our bounds depend primarily on the height h of the
computational tree, which can be much smaller than n, particularly in parallel
computations.

We derive a deterministic bound for the summation error en that is propor-
tional to hu (Theorem 2.4) and a probabilistic bound that is proportional to

√
hu.

The probabilistic bound treats the roundoffs as zero-mean random variables that
are mean-independent (Theorem 2.12, Corollary 2.14) and employs a novel stag-
gered martingale approach in the proof.

Shifted summation algorithms We extend the shifted sequential summation in [2]
to shifted general summation (Algorithm 3.1). We derive probabilistic bounds for
mean-independent roundoffs (Theorem 3.1).

Compensated summation We derive a recursive expression for the exact error (The-
orem 4.1), an explicit expression for the second-order error (Corollary 4.2), and a
probabilistic bound (Theorem 4.7) based on our martingale approach. In particu-
lar (Remark 4.3) we note the discrepancy by a unit roundoff u of existing bounds
with ours,

ŝn =
n∑
k=1

(1 + ρk)xk, |ρk| ≤ 3u+O(nu2).

Mixed precision summation We present bounds for mixed-precision summation, in
any number of precisions, on a computational tree (Theorem 5.2). The special
case of two precisions yields the first probabilistic bounds (Corollary 5.3) for the
mixed-precision FABsum algorithm [2].

Recommendation For mono- and mixed precision algorithms, pairwise summation
based on a balanced binary tree is the most accurate. Furthermore (Remark 5.4),
mixed-precision summation should try to minimize the magnitude of the interme-
diate partial sums sk relative to the precision uk in which they are computed, that
is, try to minimize |uksk| for all k.

Table 1 summarizes our contributions compared to recent related papers.
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1.2 Modeling roundoff

We assume the inputs xk are floating point numbers, that is, they can be stored
exactly without error; and that the summation produces no overflow or underflow.
Let 0 < u < 1 denote the unit roundoff to nearest.

Individual roundoffs Apply an operation op ∈ {+,−, ∗, /} to floating point numbers
x and y. In the absence of underflow or overflow, IEEE floating-point arithmetic
can be interpreted as computing [10]

fl(x op y) = (x op y)(1 + δxy), |δxy| ≤ u. (1.1)

Our probabilistic bounds treat roundoffs as zero-mean mean-independent ran-
dom variables.

Probabilistic model for sequences of roundoffs Assume the summation generates
rounding errors δ1, δ2, . . ., labeled in a linear order consistent with the partial
order of the underlying algorithm. We treat the δk as zero-mean random variables
that are mean independent1

E(δk|δ1, . . . , δk−1) = E(δk) = 0. (1.2)

Mean-independence (1.2) is a weaker assumption than mutual independence of
errors but stronger than uncorrelated errors [12]. At least one mode of stochastic
rounding [4] produces the mean-independent errors in (1.2), but the stochastic
rounding error bound |δxy| ≤ 2u is weaker than (1.1).

1.3 Probability theory

For the derivation of the probabilistic bounds, we need a martingale, and a con-
centration inequality.

Definition 1.1 (Martingale [23]) A sequence of random variables Z1, . . . , Zn is a

martingale with respect to the sequence X1, . . . , Xn if, for all k ≥ 1,

– Zk is a function of X1, . . . , Xk,

– E[|Zk|] <∞, and

– E [Zk+1|X1, . . . , Xk] = Zk.

Lemma 1.2 (Azuma-Hoeffding inequality [24]) Let Z1, . . . , Zn be a martingale

with respect to a sequence X1, . . . , Xn, and let ck be constants with

|Zk − Zk−1| ≤ ck, 2 ≤ k ≤ n.

Then for any 0 < δ < 1, with probability at least 1− δ,

|Zn − Z1| ≤

(
n∑
k=2

c2k

)1/2√
2 ln(2/δ). (1.3)

1 For simplicity, the conditioning also includes also those δ`, 1 ≤ ` ≤ k − 1, that are not
descendants in the partial order. With stochastic rounding such δ` would be fully independent
from δk.



Error bounds for Floating Point Summation 5

If one or more of bounds |Zk−Zk−1| ≤ ck are permitted to fail with probability
at most η, then a similar but weaker version of the Azuma-Hoeffding inequality
still holds.

Lemma 1.3 (Relaxed Azuma-Hoeffding inequality [3]) Let 0 < η < 1; 0 < δ <

1; and Z1, . . . , Zn be a martingale with respect to a sequence X1, . . . , Xn. Let ck be

constants so that all bounds

|Zk − Zk−1| ≤ ck, 2 ≤ k ≤ n.

hold simultaneously with probability at least 1 − η. Then with probability at least 1 −
(δ + η),

|Zn − Z1| ≤

(
n∑
k=2

c2k

)1/2√
2 ln(2/δ). (1.4)

2 General summation on a computational tree

We present the algorithm for general summation (Algorithm 2.1); define its com-
putational tree (Definition 2.1); and derive error expressions and a deterministic
error bound (Section 2.1); and finally set up a martingale on a computational tree
(Section 2.2).

Algorithm 2.1 General summation [10, Algorithm 4.1]

Input: A set of floating point numbers S = {x1, . . . , xn}
Output: sn =

∑n
k=1 xk

1: for k = 2 : n do
2: Remove two elements x and y from S
3: sk = x+ y
4: Add sk to S
5: end for

Denote by sk =
∑k
j=1 xj the exact partial sum, by ŝk the sum computed in

floating point arithmetic, and by ek = ŝk−sk the absolute forward error, 2 ≤ k ≤ n.

Definition 2.1 (Computational tree for Algorithm 2.1) The partial order of pair-

wise summations in Algorithm 2.1 is represented by a binary tree with 2n− 1 vertices:

n− 1 pairwise sums s2, . . . , sn to sum n inputs x1, . . . , xn. Specifically,

– Each vertex represents a pairwise sum sk or an input xk.

– The root is the final sum sn, and the leaves are the inputs x1, . . . , xn.

– Each pairwise sum sk = x+ y is a vertex with downward edges (sk, x) and (sk, y).

Vertices x and y are the children of sk.

The tree defines a partial ordering. We say j ≺ k if sj is a descendant of sk, and j � k
if sj = sk is possible.

– The height of a node is the length of the longest downward path from that node to

a leaf.

– Leaves have height zero.
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x1 x2

x3

x4

s2

s3

s4

x1 x2 x3 x4

s2 s3

s4

Fig. 1 Computational trees for two different summation orderings in Algorithm 2.1 for n = 4.
Left: sequential (a.k.a. recursive) summation. Right: pairwise summation.

– The height of the tree is the height of its root. Sequential summation yields a tree

of height n− 1.

Algorithm 2.1 imposes a topological ordering on the graph: j ≺ k implies that j < k.
Thus if the nodes are visited in the order s2, . . . , sn, no node is visited before its
children. Figure 1 shows two computational trees, one of height n−1 for sequential
summation; and another of height dlog2 ne for pairwise summation.

To make our bounds as tight as possible, we express them in terms of par-
tial sums. However, the dependence on the height of the computational tree is
more explicit when the bounds are expressed in terms of the inputs. Below is the
translation from partial sums to inputs.

Lemma 2.2 (Relation between partial sums and inputs) If h is the height of

the computational tree in Algorithm 2.1, then

n∑
k=2

|sk| ≤ h
n∑
j=1

|xj |,

√√√√ n∑
k=2

s2k ≤
√
h

n∑
j=1

|xj |.

Proof The first bound follows from the triangle inequality:

n∑
k=2

|sk| ≤
n∑
k=2

∑
j≺k
|xj | ≤

n∑
j=1

∑
j≺k�n

|xj | ≤ h
n∑
j=1

|xj |,

where in this context j ≺ k denotes the set of all leaves xj that are descendants of
node k. The second bound follows from the first:

n∑
k=2

s2k ≤ max
2≤j≤n

|sj |
n∑
k=2

|sk| ≤

 n∑
j=1

|xj |

h n∑
j=1

|xj |

 = h

 n∑
j=1

|xj |

2

.

2.1 Explicit expressions and deterministic bounds for errors on computational
trees

We present two expressions for the error in Algorithm 2.1 (Lemmas 2.3 and 2.6),
and a deterministic bound (Theorem 2.4).

We generalize the error for sequential summation in [9, Lemma 3.1] to errors
on computational trees.
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Lemma 2.3 (First explicit expression) The error in Algorithm 2.1 equals

en = ŝn − sn =
n∑
k=2

skδk
∏

k≺j�n
(1 + δj). (2.1)

Lemma 2.3 represents the forward error as a sum of local errors at a node, each
perturbed by subsequent rounding errors. Truncating (2.1) yields the first order
bound

en =
n∑
k=2

skδk +O(u2), (2.2)

which extends the result for sequential summation [12, Lemma 2.1]. Lemma 2.3
also allows us to conveniently obtain a deterministic error bound.

Theorem 2.4 If h is the height of the computational tree for Algorithm 2.1 and λh ≡
(1 + u)h, then the error in Algorithm 2.1 is bounded by

|en| ≤
n∑
k=2

|sk||δk|
∏

k≺j�n
|1 + δj | ≤ λh u

n∑
k=2

|sk|

≤ λh hu
n∑
j=1

|xj |.

Proof The first bound is a direct consequence of Lemma 2.3, while the last bound
follows from Lemma 2.2.

Remark 2.5 A bound [10, (4.3)] similar to the first one in Theorem 2.4,

|en| ≤ u
n∑
k=2

|ŝk|,

is accompanied by the following observation:

In designing or choosing a summation method to achieve high accuracy, the aim

should be to minimize the absolute values of the intermediate sums sk.

Reducing the height of the computational tree often helps in this regard. The dependence

on the height h is explicitly visible in the second bound of Theorem 2.4.

Since the sum in Lemma 2.3 is not a martingale with respect to the errors
δ2, . . . , δn, we present an alternative geared towards the error model (1.2): The
sum in Lemma 2.6 is a martingale if summed in the original order, as shown in
Section 2.2. Lemma 2.6 also expresses the error in terms of exact partial sums,
thereby making it more amenable to a probabilistic analysis than the computed
partial sums in en =

∑n
k=2 ŝk δ̃k [10, (4.2)].

Lemma 2.6 (Second explicit expression) The error in Algorithm 2.1 equals

en = ŝn − sn =
n∑
j=2

(sj + fj)δj , (2.3)

where fj = 0 for all nodes whose children are leaves, that is, represent a sum of two

inputs xi and xj . For all other nodes, the child-errors satisfy the recurrence

fk ≡
∑
j≺k

(sj + fj)δj . (2.4)
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Proof Express the computed parent sum in line 3 of Algorithm 2.1 as the sum of
the computed children x̂ = x+ ex and ŷ = y + ey,

ŝk = (x̂+ ŷ)(1 + δk), 2 ≤ k ≤ n,

where ex = ey = 0 if x and y are inputs xi and xj . Highlight the error in the
computed children,

sk + ek = ŝk = ((x+ ex) + (y + ey))(1 + δk) = (sk + ex + ey)(1 + δk)

= (ex + ey)︸ ︷︷ ︸
fk

(1 + δk) + skδk + sk

to obtain the error in the computed parent

ek = fk + (sk + fk)δk, 2 ≤ k ≤ n.

Now unravel the recurrence for fk, where fj = 0 for all nodes j with two leaf
children.

We refer to the terms fk as child-errors, since at any given node, fk is equal to
the sum of the errors in the computed children.

Example 2.7 A pairwise tree summation for n = 8 illustrates the recurrences for the

child-errors in Lemma 2.6.

1. Sums of leaf nodes: The exact sums are

s2 = x1 + x2, s3 = x3 + x4, s4 = x5 + x6, s5 = x7 + x8,

while the computed sums are ŝj = sj + sjδj with child-errors fj = 0 for 2 ≤ j ≤ 5.

2. Second level: The exact sums are s6 = s2 +s3 and s7 = s4 +s5 while the computed

sums are

ŝ6 = (ŝ2 + ŝ3)(1 + δ6) = (s2δ2 + s3δ3)︸ ︷︷ ︸
f6

(1 + δ6) + s6δ6 + s6

= f6 + (s6 + f6)δ6 + s6

ŝ7 = (ŝ4 + ŝ5)(1 + δ7) = (s4δ4 + s5δ5)︸ ︷︷ ︸
f7

(1 + δ7) + s7δ7 + s7

= f7 + (s7 + f7)δ7 + s7.

With fj = 0, 2 ≤ j ≤ 5, the child-errors are

f6 = s2δ2 + s3δ3 = (s2 + f2)δ2 + (s3 + f3)δ3 =
∑
j≺6

(sj + fj)δj

f7 = s4δ4 + s5δ5 = (s4 + f4)δ4 + (s5 + f5)δ5 =
∑
j≺7

(sj + fj)δj .
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3. Final level: The exact sum is s8 = s6 + s7 while the computed sum is

ŝ8 = (ŝ6 + ŝ7)(1 + δ8)

= (f6 + (s6 + f6)δ6 + f7 + (s7 + f7)δ7)︸ ︷︷ ︸
f8

(1 + δ8) + s8δ8 + s8

= f8 + (s8 + f8)δ8 + s8,

with child-error

f8 = f6 + f7 + (s6 + f6)δ6 + (s7 + f7)δ7

=
5∑
j=2

(sj + fj)δj + (s6 + f6)δ6 + (s7 + f7)δ7 =
7∑
j=2

(sj + fj)δj .

The total error is

e8 = f8 + (s8 + f8)δ8 =
7∑
j=2

(sj + fj)δj + (s8 + f8)δ8 =
8∑
j=2

(sj + fj)δj .

2.2 Setting up martingales on computational trees

We derive a probabilistic bound (Lemma 2.8) for the child-errors in Lemma 2.6,
followed by two types of probabilistic bounds for the error in Algorithm 2.1: one
in terms of a recurrence relation (Theorem 2.9 and Corollary 2.10) and a second
in closed form (Theorem 2.12 and Corollary 2.14).

We introduce our first probability parameter η which controls terms of order
two and higher in en, and guarantees, with probability at least 1−η, that all child
errors |fk| are simultaneously bounded.

Lemma 2.8 Let L be the number of nodes in the computational tree whose children

are both leaves, and let ñ ≡ n−L−1 be the number of nodes with at least one non-leaf

child. Without loss of generality let nodes 2, . . . , L+1 be the ones with two leaf children.

Let 0 < η < 1 and λñ,η ≡
√

2 ln(2ñ/η). Then under (1.2), with probability at least

1− η, the child errors in (2.4) are bounded by

|fk| ≤ Fk,ñ,η, 2 ≤ k ≤ n,

where

Fk,ñ,η =

0 2 ≤ k ≤ L+ 1,

λñ,ηu
(∑

j≺k(|sj |+ Fj,ñ,η)2
)1/2

L+ 2 ≤ k ≤ n,
(2.5)

Proof This is an induction proof over k and the failure probability η.

Induction basis 2 ≤ k ≤ L + 1 Since the inputs (leaves) are assumed to be exact,
fk ≡ 0 in (2.4). Thus |fk| ≤ Fk,ñ,η clearly holds.

Induction hypothesis Assume that the k − 2 bounds

|fj | ≤ Fj,ñ,η, 2 ≤ j ≤ k − 1

hold simultaneously with probability at least 1− k−L−2
ñ η.
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Induction step Move the precedence relation j ≺ k inside the sum, in order to write
the child-error recurrence (2.4) as a contiguous sum,

fk =
k−1∑
j=2

(sj + fj)δj1j≺k.

With δ1 = 0, the sequence Z1 ≡ 0, Zi ≡
∑i
j=2(sj + fj)δj1j≺k, 2 ≤ i ≤ k − 1, is

a martingale with respect to δ1, . . . , δk−1. According to the induction hypothesis,
the k − 2 bounds

|Zi − Zi−1| ≤

{
u(|si|+ Fi,ñ,η) i ≺ k,
0 i ⊀ k,

2 ≤ i ≤ k − 1,

hold simultaneously with probability at least 1− k−L−2
ñ η. Since fk = Zk−1 − Z1,

setting δ = η/ñ, Lemma 1.2 implies that with probability at least 1− δ

|fk| ≤ λñ,ηu

∑
j≺k

(|sj |+ Fj,ñ,η)2

1/2

= Fk,ñ,η.

So |fj | ≤ Fj,ñ,η hold simultaneously for 2 ≤ j ≤ k with probability at least 1 −
k−L−1

ñ η. By induction, |fk| ≤ Fk,ñ,η holds for 2 ≤ k ≤ n with probability at least
1− η.

Sequential summation has L = 1 nodes both of whose children are leaves, while
pairwise summation has L = bn/2c.

Finally we are ready for setting up a martingale on a computational tree, where
a second probability parameter δ controls the first-order terms in en.

Theorem 2.9 Let 0 < η < 1; 0 < δ < 1 − η; and Fj,ñ,η defined as in (2.5). Then

under the model (1.2), with probability at least 1− (δ + η), the error in Algorithm 2.1

is bounded by

|en| ≤ u
√

2 ln(2/δ)

 n∑
j=2

(|sj |+ Fj,ñ,η)2

1/2

. (2.6)

Proof Write the error as in (2.3),

en =
n∑
j=2

(sj + fj)δj .

With δ1 = 0, the sequence Z1 ≡ 0, Zi ≡
∑i
j=2(sj+fj)δj , 2 ≤ i ≤ n, is a martingale

with respect to δ1, . . . , δn. Lemma 2.8 implies that with probability at least 1− η,
the bounds |fj | ≤ Fj,ñ,η hold simultaneously for 2 ≤ j ≤ n. Thus with probability
at least 1− η, the martingale differences are bounded by

|Zi − Zi−1| = |(si + fi)δi| ≤ u(|si|+ Fi,ñ,η), 2 ≤ i ≤ n.

At last, Lemma 1.3 implies that (2.6) holds with probability at least 1− (δ + η).
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Below is a simpler bound that holds for every summation algorithm and does
not require knowledge of the number L of nodes with two leaf children. Its first-
order version illustrates the absence of η from the first-order error term.

Corollary 2.10 Let 0 < η < 1 and 0 < δ < 1− η. Then under (1.2), with probability

at least 1− (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤ u
√

2 ln(2/δ)

 n∑
j=2

(|sj |+ Fj,n,η)2

1/2

= u
√

2 ln(2/δ)

√√√√ n∑
k=2

s2k +O(u2),

where F2,n,η ≡ 0 and Fk,n,η ≡ λn,ηu
(∑

j≺k(|sj |+ Fj,n,η)2
)1/2

, 3 ≤ k ≤ n.

Remark 2.11 We present the following novel approach for proving Theorem 2.12.

1. Write the forward errors ek in terms of child-errors fk (see Lemma 2.6).

2. Express each fk as a martingale in terms of the preceding child-errors, and re-

peatedly use the Azuma-Hoeffding inequality in Lemma 1.2 to bound all of them

simultaneously with probability at least 1− η (see Lemma 2.8).

3. Express the error en as a martingale whose bounds depend on the fk bounds, and

then derive a bound for |en| that holds with probability at least 1 − (η + δ) (see

Theorem 2.9).

4. Simplify the bound through repeated applications of the triangle inequality.

Theorem 2.12 Let 0 < η < 1; 0 < δ < 1 − η, and ñ the number of nodes with two

non-leaf children. Then under the model (1.2), with probability at least 1− (δ+ η), the

error in Algorithm 2.1 is bounded by

|en| ≤ u
√

2 ln(2/δ)
(
1 + φñ,h,η

)√√√√ n∑
k=2

s2k

≤ u
√
h
√

2 ln(2/δ)
(
1 + φñ,h,η

) n∑
k=1

|xk|,

where h is the height of the computational tree and

φñ,h,η ≡ λñ,η
√

2hu exp
(
λ2ñ,ηhu

2
)

with λñ,η ≡
√

2 ln(2ñ/η). (2.7)

Proof Apply the 2-norm triangle inequality to the sum in Theorem 2.9,

 n∑
j1=2

(|sj1 |+ Fj1,ñ,η)2

1/2

≤

√√√√ n∑
k=2

s2k +

∑
j1�n

F 2
j1,ñ,η

1/2

.



12 Eric Hallman, Ilse C.F. Ipsen

Apply the recurrence for Fj,ñ,η from (2.5), followed by the triangle inequality,∑
j1�n

F 2
j1,ñ,η

1/2

=

∑
j1�n

∑
j2≺j1

λ2ñ,ηu
2(|sj2 |+ Fj2,ñ,η)2

1/2

≤ λñ,ηu
√ ∑
j2≺j1�n

s2j2 + λñ,ηu

 ∑
j2≺j1�n

F 2
j2,ñ,η

1/2

≤ λñ,ηu

√√√√(h
1

)√√√√ n∑
k=2

s2k + λñ,ηu

 ∑
j2≺j1�n

F 2
j2,ñ,η

1/2

,

where the final inequality follows from the fact that for each index j2, there are at
most h possibilities for the index j1, thus each partial sum sk appears at most h
times. Repeating this and combining the result with Theorem 2.9 shows that with
probability at least 1− (δ + η) the error is bounded by

|en| ≤ u
√

2 ln(2/δ)

 h∑
j=0

λjñ,ηu
j

√√√√(h
j

)√√√√ n∑
k=2

s2k. (2.8)

Next, we bound the sum by a simpler expression. Set γj ≡ 2j for 1 ≤ j ≤ h. The
Cauchy-Schwarz inequality implies that h∑

j=1

xj

2

=

 h∑
j=1

1
√
γj
· √γjxj

2

≤

 h∑
j=1

1

γj

 h∑
j=1

γjx
2
j

 ≤ h∑
j=1

γjx
2
j . (2.9)

Thus,

h∑
j=1

λjñ,ηu
j

√√√√(h
j

)
≤

 h∑
j=1

2jλ2jñ,ηu
2j

(
h

j

)1/2

=
√

(1 + 2λ2ñ,ηu
2)h − 1

≤
√

exp
(

2λ2ñ,ηhu
2
)
− 1

≤
√

2λ2ñ,ηhu
2 exp

(
2λ2ñ,ηhu

2
)

= φñ,h,η.

Substituting this bound into (2.8) gives the desired result.

Theorem 2.12 implies that with high probability the summation error to first
order is proportional to

√
h, where h is the height of the computational tree. This

confirms that even under the probabilistic model, summation algorithms based on
shallow computational trees are likely to be more accurate.

Remark 2.13 The quantity φñ,h,η appears only in second and higher order terms of

the error, and might possibly become significant only if the computational tree is deep

enough so that λñ,η
√

2hu ≈ 1. However, the effect of η on the overall bound, even

under adverse circumstances, is negligible.



Error bounds for Floating Point Summation 13

Consider single precision computation where u = 2−24 ≈ 5.96 · 10−8. Assume an

extreme problem size n = 1010 with a computational tree of maximal height h = n, and

a tremendously strict probability η = 10−32. Then λñ,η ≈ 14.0, and exp
(
λ2ñ,ηhu

2
)

= 1
to three digits, so that the total contribution of the higher order terms is merely a factor

of 1 + φñ,h,η < 1.12.

In the special case of sequential summation, the first bound in Theorem 2.12
is stronger than [12, Theorem 2.4], while the second bound shows agreement to
first order.

For completeness, we present a simpler bound that holds for all summation
algorithms and does not require knowledge of the number of nodes L with two leaf
children.

Corollary 2.14 Let 0 < η < 1; 0 < δ < 1 − η. Then under the model (1.2), with

probability at least 1− (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)√√√√ n∑
k=2

s2k

≤ u
√
h
√

2 ln(2/δ)
(
1 + φn,h,η

) n∑
k=1

|xk|,

where h is the height of the computational tree and

φn,h,η ≡ λn,η
√

2hu exp
(
λ2n,ηhu

2
)

with λn,η ≡
√

2 ln(2n/η). (2.10)

3 Shifted summation

We present an algorithm for shifted summation (Algorithm 3.1) which centers the
inputs xj , and derive a probabilistic error bound (Theorem 3.1).

Shifted summation is motivated by work in computer architecture [5,6] and
formal methods for program verification [22] where not only the roundoffs but also
the inputs are interpreted as random variables sampled from some distribution.
Then one can compute statistics for the total roundoff error and estimate the
probability that it is bounded by tu for a given t.

Probabilistic bounds for random inputs are derived in [12], with improvements
in [9], to show that sequential summation is accurate for inputs xj that are tightly
clustered around zero. As a consequence, accuracy can be improved by shifting
the inputs to have zero mean, which is affordable in the context of matrix multi-
plication [12, Section 4].

Our Algorithm 3.1 extends the shifted algorithm for sequential summation [12,
Algorithm 4.1] to general summation. Figure 2 shows the computational tree for
n = 2.

The pseudo-code in Algorithm 3.1 is geared towards exposition. In practice, one
shifts the xk immediately prior to the summation, to avoid allocating additional
storage for yk = xk − c. The ideal choice for centering is the empirical mean
c = sn/n. A simpler approximation is c = (mink xk + maxk xk)/2.

Error bounds for Algorithm 3.1 follow almost directly from the ones for Al-
gorithm 2.1. Figure 2 shows the associated computational tree for n = 2. It has
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Algorithm 3.1 Shifted General Summation
Input: Floating point numbers x1, . . . , xn; shift c
Output: sn =

∑n
k=1 xk

1: for k = 1 : n do
2: yk = xk − c
3: end for
4: yn+1 = nc
5: tn = output of Algorithm 2.1 applied to y1, . . . , yn
6: return sn = tn + yn+1

x1 −c x2 −c

n c

y1 y2

t2 y3

s2

Fig. 2 Computational tree for shifted summation, n = 2. The dotted boundary delineates the
inputs of and summations computed by the call to Algorithm 2.1 in line 5 of Algorithm 3.1.

4n+ 3 vertices, and its height is equal to two plus the height of the tree in the call
to Algorithm 2.1. The one twist is the additional multiplication y = nc, but if n
and c can be stored exactly then the error analysis remains the same.2

Theorem 3.1 Let 0 < η < 1; 0 < δ < 1 − η. Then under the model (1.2), with

probability at least 1− (δ + η), the error in Algorithm 3.1 is bounded by

|en| ≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)√√√√s2n +
n∑
k=2

t2k +
n+1∑
k=1

y2k

≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)(
n|c|+

√
h

n∑
k=1

(|xk − c|+ |xk|)

)
,

where h is the height of the computational tree and φn,h,η is defined in (2.10).

With regard to the factor λn,η ≡
√

2 ln(2n/η) in φn,h,η, the tree for Algorithm
3.1 has L = n nodes both of whose children are leaves.

4 Compensated sequential summation

Our approach is not restricted to algorithms whose computational graphs are trees,
and we demonstrate its versatility by analyzing the forward error for compensated
sequential summation (Algorithm 4.1). After deriving exact error expressions (Sec-
tion 4.1) and bounds that hold to second order (Section 4.2), we derive an exact
probabilistic bound (Section 4.3).

Algorithm 4.1 is the formulation [8, Theorem 8] of the ‘Kahan Summation
Formula’ [18]. A version with opposite signs is presented in [10, Algorithm 4.2].

2 If n does not admit an exact floating point representation, then we could append an
additional node for the artificial ‘addition’ n+ 0, which simulates the rounding of n.
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Algorithm 4.1 Compensated Summation [8, Theorem 8] [19, page 9-4]

Input: Floating point numbers x1, . . . , xn
Output: sn =

∑n
k=1 xk

1: s1 = x1, c1 = 0
2: for k = 2 : n do
3: yk = xk − ck−1

4: sk = sk−1 + yk
5: ck = (sk − sk−1)− yk
6: end for
7: return sn

Following [19, page 9-5] and additionally defining the computed terms ẑk, our
finite precision model of Algorithm 4.1 is

ŝ1 = s1 = x1, ĉ1 = 0, η2 = 0

ŷk = (xk − ĉk−1)(1 + ηk), 2 ≤ k ≤ n
ŝk = (ŝk−1 + ŷk)(1 + σk)

ẑk = (ŝk − ŝk−1)(1 + δk)

ĉk = (ẑk − ŷk) (1 + βk),

(4.1)

4.1 Error expressions

Mimicking the strategy for general summation, we derive an analogue of Lemma
2.6 for compensated summation. We use single dots to represent individual forward
errors3,

ẏk ≡ ŷk − xk, ṡk ≡ ŝk − sk, żk ≡ ẑk − xk, ċk ≡ ĉk, (4.2)

and double dots to represent child-errors,

ÿk ≡ −ċk−1, s̈k ≡ ṡk−1 + ẏk, z̈k ≡ ṡk − ṡk−1, c̈k ≡ żk − ẏk. (4.3)

The relations (4.1) imply the forward error recursions

ẏk = (xk + ÿk)ηk + ÿk, (4.4a)

ṡk = (sk + s̈k)σk + s̈k, (4.4b)

żk = (xk + z̈k)δk + z̈k, (4.4c)

ċk = c̈kβk + c̈k. (4.4d)

Now we derive recurrence relations for the child-errors. Fortunately, the recurrences
for ÿk, z̈k, and c̈k are mercifully short, with a length independent of k.

Theorem 4.1 The child-errors in Algorithm 4.1 equal

ÿ2 = 0, s̈2 = 0, z̈2 = s2σ2, c̈2 = (x2 + z̈2)δ2 + s2σ2, (4.5)

3 The dots do not refer to differentiation!
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and for 3 ≤ k ≤ n,

ÿk = −c̈k−1(1 + βk−1), (4.6a)

s̈k =
k∑
j=3

(xj + ÿj)ηj − c̈j−1βj−1 − (xj−1 + z̈j−1)δj−1, (4.6b)

z̈k = (sk + s̈k)σk + (xk + ÿk)ηk + ÿk, (4.6c)

c̈k = (xk + z̈k)δk + (sk + s̈k)σk. (4.6d)

Proof First, (4.6a) follows directly from (4.3) and (4.4d). Second,

c̈k = żk − ẏk by (4.3)

= (xk + z̈k)δk + z̈k − ẏk by (4.4c)

= (xk + z̈k)δk + ṡk − ṡk−1 − ẏk by (4.3)

= (xk + z̈k)δk + (sk + s̈k)σk + s̈k − (ṡk−1 + ẏk) by (4.4b)

= (xk + z̈k)δk + (sk + s̈k)σk, by (4.3)

which establishes (4.6d). Third,

s̈k = ṡk−1 + ẏk by (4.3)

= s̈k−1 + (sk−1 + s̈k−1)σk−1 + (xk + ÿk)ηk + ÿk by (4.4a), (4.4b)

= s̈k−1 + (sk−1 + s̈k−1)σk−1 + (xk + ÿk)ηk − c̈k−1(1 + βk−1) by (4.6a)

= s̈k−1 + (xk + ÿk)ηk − c̈k−1βk−1 − (xk−1 + z̈k−1)δk−1, by (4.6d)

and unraveling the recurrence yields (4.6b). Finally,

z̈k = ṡk − ṡk−1 by (4.3)

= (sk + s̈k)σk + s̈k − ṡk−1 by (4.4b)

= (sk + s̈k)σk + ẏk by (4.3)

= (sk + s̈k)σk + (xk + ÿk)ηk + ÿk. by (4.4a)

Recalling that η2 = 0, it is straightforward to check (4.5) separately.

4.2 Second order deterministic bound

We present a second-order expression (Corollary 4.2) for the error in Algorithm 4.1,
and discuss the discrepancy with several existing bounds (Remark 4.3).

The expressions below suggest that the errors in the ‘correction’ steps 3 and 5
of Algorithm 4.1 dominate the first order terms of the summation error.

Corollary 4.2 With assumptions (4.1), let µk ≡ ηk−δk, 2 ≤ k ≤ n−1, and µn ≡ ηn.

Then the error in Algorithm 4.1 up to second order equals

en = ŝn − sn = ṡn = snσn + (1 + σn)
n∑
k=2

xkµk −
n−1∑
k=2

skσk(µk+1 + βk + δk)

−
n−1∑
k=2

xkδk(µk+1 + βk + ηk) +O(u3),
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and the computed sum equals

ŝn =
n∑
k=1

(1 + ρk)xk, |ρk| ≤ 3u+ [4(n− k) + 6]u2 +O(u3). (4.7)

Proof Truncate the expressions for ÿk, z̈k, and c̈k to first order, and substitute
them into (4.6b).

Remark 4.3 The error bounds for compensated summation have sometimes been mis-

stated in the literature. In contrast to (4.7), the expressions in [8, Theorem 8], [10,

(4.8)] and [20, Exercise 19 in Section 4.2.2] are equal to

ŝn =
n∑
k=1

(1 + ρk)xk where |ρk| ≤ 2u+O(nu2).

It appears that this expression does not properly account for the final error σn. In

comparison, [19, page 9-5] correctly states that

ŝn + ĉn =
n∑
k=1

(1 + ρk)xk where |ρk| ≤ 2u+O((n− k)u2).

4.3 Probabilistic bounds

We derive probabilistic bounds for the child-errors in compensated summation
(Lemma 4.4) and derive a bound on the summation error in terms of the child-
error bounds (Theorem 4.5), which is, however, difficult to interpret. Thus, we
express the child-error bounds mostly in terms of the partial sums (Lemma 4.6),
which leads to an alternative probabilistic bound (Theorem 4.7).

We start with a probabilistic analogue of Lemma 2.8. The generic strategy
would be to write each child-error in terms of a martingale involving the previ-
ous child-errors, and to bound them probabilistically with the Azuma-Hoeffding
inequality (Lemma 1.2). Instead, we found it easier here to bound s̈k Lemma 1.2,
and then apply the triangle inequality to ÿk, z̈k, and c̈k.

Lemma 4.4 Let σ2, δ2, β2, η3, σ3, δ3, . . . , ηn in (4.1), (4.2) and (4.3) be mean-independent

zero-mean random variables, 0 < η < 1, and λn,η ≡
√

2 ln(2n/η). With probability at

least 1− η, the following bounds hold simultaneously:

|ÿk| ≤ Yk, |s̈k| ≤ Sk, |z̈k| ≤ Zk, |c̈k| ≤ Ck, 2 ≤ k ≤ n, (4.8)

where the quantities Yk, Sk, Zk, Ck are defined by

Y2 ≡ 0, S2 ≡ 0, Z2 ≡ u|s2|, C2 ≡ u(|x2|+ Z2) + u|s2|, (4.9)
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and4 for 3 ≤ k ≤ n,

Yk ≡ Ck−1(1 + u), (4.10a)

Sk ≡ λn,ηu

(
k∑
j=3

(
(|xj |+ Yj)

2 + C2
j−1 + (|xj−1|+ Zj−1)2

))1/2

, (4.10b)

Zk ≡ u(|sk|+ Sk) + u(|xk|+ Yk) + Yk, (4.10c)

Ck ≡ u(|xk|+ Zk) + u(|sk|+ Sk). (4.10d)

Proof This is an induction proof over k and the failure probability η.

Induction basis k = 2 From (4.5) in Theorem 4.1 follows that (4.9) holds determin-
istically.

Induction hypothesis Assume that the bounds (4.8) hold simultaneously for 2 ≤
j ≤ k − 1 with probability at least 1− (k − 1)η/n.

Induction step The induction hypothesis implies that |c̈k−1| ≤ Ck−1 holds with
probability at least 1− (k − 1)η. From (4.6a), it follows that

|ÿk| = |c̈k−1(1 + βk−1)| ≤ Ck−1(1 + u) = Yk

always holds.
The expression (4.6b) for s̈k can be written as a martingale with respect to

σ2, δ2, β2, η3, σ3, δ3, . . . , ηk. By the induction hypothesis, the bounds

|(xj + ÿj)ηj | ≤ u(|xj |+ Yj), 3 ≤ j ≤ k
|c̈j−1βj−1| ≤ uCj−1,

|(xj−1 + z̈j−1)δj−1| ≤ u(|xj−1|+ Zj−1)

all hold simultaneously with probability at least 1 − (k − 1)η/n. Lemma 1.2 then
implies that |s̈k| ≤ Sk holds with probability at least 1− η/n.

The bounds |z̈k| ≤ Zk and |c̈k| ≤ Ck always hold, due to (4.6c) and (4.6d).

The following probabilistic bound expressed the error in compensated summa-
tion in terms of the bounds for child-errors.

Theorem 4.5 Let σ2, δ2, β2, η3, . . . , ηn, σn in (4.1), (4.2) and (4.3) be mean-independent

zero-mean random variables, 0 < η < 1, 0 < δ < 1−η, and λn,η ≡
√

2 ln(2n/η). Then

under (1.2), with probability at least 1− (δ+ η), the error in Algorithm 4.1 is bounded

by

|en| ≤ u
√

2 ln(2/δ)

(
(sn + Sn)2 +

n∑
j=3

(
(|xj |+ Yj)

2 + C2
j−1 + (|xj−1|+ Zj−1)2

))1/2

,

where Yj , Sj , Zj , Cj , 2 ≤ j ≤ n, are defined in Lemma 4.4.

4 The bounds depend on n and η, but we omit the subscripts, and simply write Sk instead
of Sk,n,η .
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Proof Keeping in mind that that en = ṡn, substitute (4.6b) into (4.4b), bound
the magnitude of the summands with probability at least 1− η via 4.4 and apply
Lemma 1.3 with additional probability δ. This derivation mirrors the proof of
Theorem 2.9 which relies on Lemma 2.8 to bound the magnitude of the summands
in the martingale.

The significant number of interacting terms make Theorem 4.5 difficult to
interpret, in comparison to Theorem 2.9. The simplest approach at this point
would be to truncate the terms Sk, Yk, Zk, Ck so that the overall bound holds to
second order (or higher, if desired). With Lemma 4.6 and Theorem 4.7, we instead
show that it is possible to obtain a bound that holds to all orders, at the cost of a
more complicated proof. Consequently we derive an alternative bound in the same
manner as before, alternating between the triangle inequality and the following
bound.

Lemma 4.6 There is a constant α =
√

6+O(u), so that the terms in Lemma 4.4 can

be bounded by k∑
j=3

(
Y 2
j + C2

j−1 + Z2
j−1

)1/2

≤ αu

k−1∑
j=2

(|sj |+ |xj |+ Sj)
2

1/2

, 3 ≤ k ≤ n.

Proof The precise value of α is derived in the Appendix A.

The next bounds for compensated summation is expressed in terms of partial
sums and inputs.

Theorem 4.7 Let σ2, δ2, β2, η3, σ3, δ3, . . . , ηn, σn be mean-independent zero-mean ran-

dom variables, 0 < η < 1, 0 < δ < 1 − η, and λn,η ≡
√

2 ln(2n/η). Then with

probability at least 1− (δ + η), the error in Algorithm 4.1 is bounded by

|en| ≤ u
√

2 ln(2/δ)

|sn|+ γ(
√

2 + αu)

√√√√ n∑
k=2

x2k + γαu

√√√√ n∑
k=2

s2k


≤ u

√
2 ln(2/δ)

(
1 +
√

2 +
√

6(
√
n+ 1)u

) n∑
k=1

|xk|+O(u3),

where

α ≡
√

1 + 3(1 + u)2 + 2(1 + u)4

1− u(1 + u)2
=
√

6 +O(u),

γ ≡
√

1 + λ2n,ηu2
(

1 + λn,ηα
√

2nu2 exp
(
λ2n,ηα

2nu4
))

= 1 +O(u2).

Proof Remember that en = ṡn, and abbreviate the summands in Theorem 4.5 and
in (4.10b) by

Rj ≡
(

(|xj |+ Yj)
2 + C2

j−1 + (|xj−1|+ Zj−1)2
)1/2

, 3 ≤ j ≤ n.
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We treat
∑n
j=3R

2
j as a two-norm and apply the following inequality for non-

negative vectors c, x, y, and z,(
‖x+ y‖22 + ‖x+ z‖22 + ‖c‖22

)1/2
≤
√

2‖x‖2 + ‖c+ y + z‖2.

followed by Lemma 4.6, two triangle inequalities, and the definition of Sj , n∑
j=3

R2
j

1/2

≤
√

2

(
n∑
k=2

x2k

)1/2

+

 n∑
j=3

(
Y 2
j + C2

j−1 + Z2
j−1

)1/2

≤
√

2

(
n∑
k=2

x2k

)1/2

+ αu

n−1∑
j=2

(|sj |+ |xj |+ Sj)
2

1/2

≤
√

2

(
n∑
k=2

x2k

)1/2

+ αu

(
n∑
k=2

(|sk|+ |xk|)2
)1/2

+ αu

n−1∑
j=3

S2
j

1/2

≤ (
√

2 + αu)

(
n∑
k=2

x2k

)1/2

+ αu

√√√√ n∑
k=2

s2k + λαu2

 ∑
j<j1≤n

R2
j

1/2

.

Proceed as in the proof of Theorem 2.12, n∑
j=3

R2
j

1/2

≤

 n∑
j=0

(λn,ηαu
2)j

√√√√(n
j

)(
√

2 + αu)

√√√√ n∑
k=2

x2k + αu

√√√√ n∑
k=2

s2k

 ,

(4.11)
where

n∑
j=1

(λn,ηαu
2)j

√√√√(n
j

)
≤ λn,ηα

√
2nu2 exp

(
λ2n,ηα

2nu4
)
. (4.12)

From Theorem 4.5; the inequality (a + b)2 + c2 ≤ (a +
√
b2 + c2)2 for a, b, c ≥ 0;

and the definition of Sn in (4.10b) follows

|ṡn| ≤ u
√

2 ln(2/δ)

(sn + Sn)2 +
n∑
j=3

R2
j

1/2

≤ u
√

2 ln(2/δ)|sn|+ u
√

2 ln(2/δ)

S2
n +

n∑
j=3

R2
j

1/2

= u
√

2 ln(2/δ)|sn|+ u
√

2 ln(2/δ)
√

1 + λ2n,ηu2

 n∑
j=3

R2
j

1/2

.

Combine this with (4.11) and (4.12).

Note that γ remains close to 1 as long as λn,ηu� 1 and λn,ηα
√

2nu2 � 1.
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5 Mixed precision

Mixed-precision algorithms aim to do as much of the computation as possible in
a lower precision without significantly degrading the accuracy of the computed
result; see the survey [1]. We extend Corollaries 2.10 and 2.14 to any number of
precisions (Theorems 5.1 and 5.2), present the first probabilistic error bounds for
the mixed precision FABsum algorithm (Corollary 5.3), and end with a heuristic for
designing mixed-precision algorithms (Remark 5.4).

The FABsum summation algorithm [2, Algorithm 3.1] computes the sum sn =
x1 + · · ·+xn in two stages. First, it splits the inputs into blocks of b numbers, and
sums each block with a fast summation algorithm, say in low precision. Second, it
sums the results with an accurate summation algorithm, say in high precision or
with compensated summation. We extend our approach to mixed precision, and
derive the first rigorous probabilistic error bounds for FABsum. Our computational
model is very general, so that, in theory, each operation can be evaluated in a
different precision.

Probabilistic model for sequences of roundoffs in mixed precision Extend model (1.2)
for roundoffs in terms of mean-independent zero-mean random variables δk by
assuming in addition that each δk can be a roundoff in a different precision uk,
that is, |δk| ≤ uk, 1 ≤ k ≤ n.

Below are the straightforward generalizations of Corollaries 2.10 and 2.14.

Theorem 5.1 Let 0 < η < 1, 0 < δ < 1 − η, and λn,η ≡
√

2 ln(2n/η). Then under

(1.2), with probability at least 1− (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤
√

2 ln(2/δ)

 n∑
j=2

u2j (|sj |+ Fj,n,η)2

1/2

, (5.1)

where Fj,n,η are defined by the recurrence

F2,n,η ≡ 0, Fk,n,η ≡ λn,η

∑
j≺k

u2j (|sj |+ Fj,n,η)2

1/2

, 3 ≤ k ≤ n. (5.2)

We derive a closed-form error bound with the same techniques as in the proof
of Theorem 2.12.

Theorem 5.2 Let 0 < η < 1, and 0 < δ < 1 − η. Then under (1.2), with probability

at least 1− (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤
√

2 ln(2/δ)
(

1 + φn,h̃,η

)√√√√ n∑
k=2

u2ks
2
k

≤
√
h̃
√

2 ln(2/δ)
(

1 + φn,h̃,η

) n∑
k=1

|xk|,

where h̃ ≡ maxk
∑
k≺`�n u

2
` is the weighted height of the computational tree and

φn,h̃,η ≡ λn,η
√

2h̃ u exp
(
λ2n,ηh̃u

2
)

with λn,η ≡
√

2 ln(2n/η). (5.3)
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Proof Repeated application of the 2-norm triangle inequality implies that the
bound

|en| ≤
√

2 ln(2/δ)
h∑
j=0

λjn,η

(
n∑
k=2

T 2
k,ju

2
ks

2
k

)1/2

, (5.4)

with

Tk,0 ≡ 1, Tk,j ≡

 ∑
k≺`1≺···≺`j�n

(u`1 · · ·u`n)2

1/2

, 2 ≤ k ≤ n, (5.5)

holds with probability at least 1−(δ+η). Now apply the Cauchy-Schwarz inequal-
ity (2.9) as before and swap the order of summation,

h∑
j=1

λjn,η

(
n∑
k=2

T 2
k,ju

2
ks

2
k

)1/2

≤

 h∑
j=1

2jλ2jn,η

n∑
k=2

T 2
k,ju

2
ks

2
k

1/2

=

 n∑
k=2

 h∑
j=1

2jλ2jn,ηT
2
k,j

u2ks
2
k

1/2

.

(5.6)

With h̃k ≡
∑
k≺`�n u

2
` being the weighted depth of node k, the inner sums are

bounded by

h∑
j=1

2jλ2jn,ηT
2
k,j =

∏
k≺`�n

(1 + 2λ2n,ηu
2
` )− 1, 2 ≤ k ≤ n

≤ exp
(

2λ2n,ηh̃k

)
− 1 ≤ 2λ2n,ηh̃k exp

(
2λ2n,ηh̃k

)
,

Insert the bounds h̃k ≤ h̃ into (5.6),

h∑
j=1

λjn,η

(
n∑
k=2

T 2
k,ju

2
ks

2
k

)1/2

≤ λn,η
√

2h̃ exp
(
λ2n,ηh̃

)√√√√ n∑
k=2

u2ks
2
k,

and combine this inequality with (5.4).

As a corollary, we obtain the first rigorous probabilistic error bound for the
mixed-precision version of FABsum [2] in Algorithm 5.1.

Algorithm 5.1 Mixed-precision FABsum

Input: Floating point numbers x1, . . . , xn; block size b; precisions ulo, uhi
Output: sn =

∑n
k=1 xk

1: for k = 1 : n/b do
2: sk = output of Algorithm 2.1 applied to x(k−1)b+1, . . . , xkb in precision ulo
3: end for
4: sn = output of Algorithm 2.1 applied to s1, . . . , sn/b in precision uhi
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Corollary 5.3 Let 0 < η < 1; 0 < δ < 1 − η; hlo the maximum height of all trees

in the low-precision calls to Algorithm 2.1; hhi the height of the portion of the tree in

the high-precision call to Algorithm 2.1. Then under the mixed-precision extension of

model (1.2), with probability at least 1− (δ+ η), the error in Algorithm 5.1 is bounded

by

|en| ≤
√
h̃
√

2 ln(2/δ)
(

1 + φn,h̃,η

) n∑
k=1

|xk|,

where h̃ ≡ hlou2lo + hhiu
2
hi, and φn,h̃,η is defined in (5.3).

Remark 5.4 Inspired by the error expression in Theorem 5.2, we offer the following

modified version of advice in Remark 2.5

In designing a mixed-precision summation method to achieve high accuracy,

the aim should be to minimize the absolute values of the intermediate quantities

uksk.

The FABsum Algorithm 5.1 attempts to do just this by reserving its high-precision compu-

tations for the end, when the intermediate sums sk are likely to have larger magnitudes.

6 Numerical experiments

After describing the setup, we present numerical experiments for recursive and
pairwise summation (Section 6.1), shifted summation (Section 6.2), compensated
summation (Section 6.3), and mixed-precision FABSum (Section 6.4).

Experiments are performed in MATLAB R2022a, with unit roundoffs [14]

– Half precision u = 2−11 ≈ 4.88 · 10−4.
– Single precision uhi = 2−24 ≈ 5.96 · 10−8 as the high precision in FABsum Algo-

rithm 5.1.
– Double precision u = 2−53 ≈ 1.11 · 10−16 for ‘exact’ computation.

Experiments plot errors from two rounding modes: round-to-nearest and stochastic
rounding as implemented with chop [13].

The summands xk are independent uniform [0, 1] random variables. The plots
show relative errors |ŝn − sn|/|sn| versus n, for 100 ≤ n ≤ 105. We choose relative
errors rather than absolute errors to allow for meaningful calibration: Relative
errors ≤ u indicate full accuracy; while relative errors ≥ .5 indicate zero digits of
accuracy.

For shifted summation we use the empirical mean of two extreme summands,

c = (min
k
xk + max

k
xk)/2.

For probabilistic bounds, the combined failure probability is δ+ η = 10−2 + 10−3,
hence

√
2 ln(2/δ) ≈ 3.26. For n = 105 and h = n we get λn,η ≈ 6.2, and in half

precision u = 2−11 the higher-order errors, 1 + φn,h,η ≈ 4.4, have a non-negligible
effect on our bounds.
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6.1 Sequential and pairwise summation

Figure 3 shows the errors in half precision from Algorithm 2.1 for sequential sum-
mation in one panel, and for pairwise summation in another panel, along with the
deterministic bounds from Theorem 2.4,

|en| ≤
n∑
k=2

|sk||δk|
∏

k≺j�n
|1 + δj | ≤ λh u

n∑
k=2

|sk| (6.1)

≤ λh hu
n∑
j=1

|xj |. (6.2)

and the probabilistic bounds from Corollary 2.14,

|en| ≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)√√√√ n∑
k=2

s2k (6.3)

≤ u
√
h
√

2 ln(2/δ)
(
1 + φn,h,η

) n∑
k=1

|xk|, (6.4)

Sequential summation The bound (6.3) remains within a factor of 2 of (6.4). Al-
though the higher-order error terms 1 + φn,h,η represent only a small part of the
error bounds, they may still be pessimistic, as the bounds curve upwards for large
n, while the actual errors increase more slowly. The reason may be the distribution
of floating point numbers: spacing between consecutive numbers is constant within
each interval [2t, 2t+1], so a roundoff δk is affected by previous errors primarily if
blog2(ŝk)c 6= blog2(sk)c. Some analyses have derived deterministic error bounds
for summation that do not contain second-order terms [16,17,21,25], and perhaps
a more careful analysis will be able to do the same for probabilistic bounds. Our
bounds otherwise accurately describe the behavior of stochastic rounding, but
round-to-nearest suffers from stagnation for larger problem sizes.

Pairwise summation The bound (6.4) grows proportional to
√

log2(n), while (6.3)
remains essentially constant. The behavior of (6.3) may be due to the monotoni-
cally increasing partial sums for uniform [0, 1] inputs, where the final sum is likely
to dominate all previous partial sums, (

∑n
k=2 s

2
k)1/2 = O(sn). This suggests that

pairwise summation of uniform [0, 1] inputs is highly accurate. The constant bound
accurately describes the behavior of the error under stochastic rounding, but not
round-to-nearest. We are not sure of the exact reason for the difference in behavior
between the two.

6.2 Shifted summation

Figure 4 shows the errors in half precision from Algorithm 3.1 for shifted sequential
summation and shifted pairwise summation, along with the probabilistic bounds
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Fig. 3 Relative errors in half precision for recursive summation (left) and sequential summa-
tion (right) versus number of summands n. The symbol (+) indicates round-to-nearest (RTN),
and (×) indicates stochastic rounding (SR). Horizontal line indicates unit roundoff u = 2−11,
and remaining points indicate deterministic bounds (6.1) and (6.2) and probabilistic bounds
(6.3) and (6.4).

Fig. 4 Relative errors in half precision for shifted sequential summation (left) and shifted
pairwise summation (right) versus number of summands n. The symbol (+) indicates round-
to-nearest (RTN), and (×) indicates stochastic rounding (SR). Horizontal line indicates unit
roundoff u = 2−11, and remaining points indicate probabilistic bounds (6.5) and (6.6).

from Theorem 3.1,

|en| ≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)√√√√s2n +
n∑
k=2

t2k +
n+1∑
k=1

y2k (6.5)

≤ u
√

2 ln(2/δ)
(
1 + φn,h,η

)(
n|c|+

√
h

n∑
k=1

(|xk − c|+ |xk|)

)
. (6.6)

A comparison with Figure 3 shows that shifting reduces both the actual errors
and the bounds. Errors are on the order of unit roundoff, in all cases: round-to-
nearest and stochastic rounding, and sequential and pairwise summation.
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Fig. 5 Relative errors in half precision for compensated summation (left) and mixed precision
with FABsum with high precision uhi = 2−24 (right) versus number of summands n. The symbol
(+) indicates round-to-nearest (RTN), and (×) indicates stochastic rounding (SR). Horizontal
line indicates unit roundoff ulo = 2−11, and remaining points indicate bounds (6.7)-(6.10)
(left) and (6.11)-(6.13) (right).

6.3 Compensated summation

The first panel in Figure 5 shows the errors in half precision for Algorithm 4.1
for 102 ≤ n ≤ 107 summands5, along with deterministic bounds derived from
Corollary 4.2,

|en| ≤ u|sn|+ 2u(1 + 3u)
n∑
k=2

|xk|+ 4u2
n−1∑
k=2

|sk|+O(u3) (6.7)

≤ (3u+ (4n− 2)u2)
n∑
k=1

|xk|+O(u3), (6.8)

and the probabilistic bounds from Theorem 4.7,

|en| ≤ u
√

2 ln(2/δ)

|sn|+ γ(
√

2 + αu)

√√√√ n∑
k=2

x2k + γαu

√√√√ n∑
k=2

s2k

 (6.9)

≤ u
√

2 ln(2/δ)
(

1 +
√

2 +
√

6(
√
n+ 1)u

) n∑
k=1

|xk|+O(u3). (6.10)

The probabilistic bounds (6.9) and (6.10) track the error behavior accurately,
with (6.9) even capturing the correct order of magnitude. This also illustrates the
higher accuracy of bounds involving partial sums.

6.4 Mixed-precision FABsum summation

The second panel of Figure 5 shows the errors for Algorithm 5.1 with ulo = 2−11 ≈
4.44·10−4, uhi = 2−24 ≈ 5.96·10−8, block size b = 32 and 102 ≤ n ≤ 107 summands,

5 Our simulation of half-precision ignores the range restriction realmax = 65504.
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where each internal call to Algorithm 2.1 uses recursive summation. We also plot
the deterministic first-order bound from [2, Eqn. 3.5],

|en| ≤ bu
n∑
k=1

|xk|+O(u2), (6.11)

and the probabilistic bounds derived from Theorem 5.2,

|en| ≤
√

2 ln(2/δ)
(

1 + φn,h̃,η

)√√√√ n∑
k=2

u2ks
2
k (6.12)

≤
√
h̃
√

2 ln(2/δ)
(

1 + φn,h̃,η

) n∑
k=1

|xk|, (6.13)

where h̃ = bu2 + (n/b)u2hi. Errors are on the order of unit roundoff for round-to-
nearest. We were surprised to observe that for stochastic rounding, errors fell to
more than an order of magnitude below unit roundoff for large problem sizes. This
behavior is correctly predicted by the bound in terms of the partial sums (6.12)
but not the bound in terms of the inputs (6.13), demonstrating the importance of
error expressions involving the partial sums.
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A Proof of Lemma 4.6

Define β ≡ u(1 + u)2 and

ωk ≡ |sk|+ |xk|+ Sk, 2 ≤ k ≤ n− 1. (A.1)

Lemma 4.4 implies

Zk = uωk + (1 + u)Yk = uωk + (1 + u)2Ck−1, 3 ≤ k ≤ n− 1 (A.2)

Ck = uωk + uZk = u(1 + u)ωk + βCk−1, (A.3)

where Z2 ≤ uω2 and C2 ≤ u(1 + u)ω2. For 3 ≤ k ≤ n, define the vectors

ck ≡
[
Ck−1 · · · C2

]T
, zk ≡

[
Zk−1 . . . Z2

]T
, wk ≡

[
ωk−1 . . . ω2

]T
.

From (A.3) follows the componentwise inequality

ck ≤ u(1 + u)wk + βUck,

where U is an upper shift matrix. Solving for ck gives another componentwise inequality with
a unit upper triangular matrix I− βU,

ck ≤ u(1 + u)(I− βU)−1wk,

and a bound
‖ck‖2 ≤ u(1 + u)‖(I− βU)−1wk‖2 ≤ u(1+u)

1−β ‖wk‖2.
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The bound for ‖zk‖2 follows from (A.2) and the definition of β,

‖zk‖2 ≤ u‖wk‖2 + (1 + u)2‖ck‖2 ≤ u(2+2u+u2)
1−β ‖wk‖2.

Finally, from Yk = (1 + u)Ck−1 follows the Frobenius norm bound k∑
j=3

(
Y 2
j + C2

j−1 + Z2
j−1

)1/2

=
∥∥[(1 + u)ck ck zk

]∥∥
F
≤ αu‖wk‖2,

where the higher order terms in α follow from the Taylor series expansion (1 − β)−2 = 1 +
2u+O(u2),

α2 =
1 + 3(1 + u)2 + 2(1 + u)4

(1− β)2
= 6 + 26u+O(u2).

References

1. Abdelfattah, A., Anzt, H., Boman, E.G., Carson, E., Cojean, T., Dongarra, J., Fox, A.,
Gates, M., Higham, N.J., Li, X.S., et al.: A survey of numerical linear algebra meth-
ods utilizing mixed-precision arithmetic. The International Journal of High Performance
Computing Applications 35(4), 344–369 (2021)

2. Blanchard, P., Higham, N.J., Mary, T.: A class of fast and accurate summation algorithms.
SIAM J. Sci. Comput. 42(3), A1541–A1557 (2020)

3. Chung, F., Lu, L.: Concentration inequalities and martingale inequalities: a survey. Inter-
net Math. 3(1), 79–127 (2006)

4. Connolly, M.P., Higham, N.J., Mary, T.: Stochastic rounding and its probabilistic back-
ward error analysis. SIAM J. Sci. Comput. 43(1), A566–A585 (2021)

5. Constantinides, G., Dahlqvist, F., Rakamaric, Z., Salvia, R.: Rigorous roundoff error anal-
ysis of probabilistic floating-point computations (2021)

6. Dahlqvist, F., Salvia, R., Constantinides, G.A.: A probabilistic approach to floating-point
arithmetic (2019)

7. Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM J. Sci.
Comput. 25(4), 1214–1248 (2003/04)

8. Goldberg, D.: What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. 23(1), 5–48 (1991)

9. Hallman, E.: A refined probabilistic error bound for sums (2021)
10. Higham, N.J.: Accuracy and stability of numerical algorithms, second edn. SIAM, Philadel-

phia (2002)
11. Higham, N.J., Mary, T.: A new approach to probabilistic rounding error analysis. SIAM

J. Sci. Comput. 41(5), A2815–A2835 (2019)
12. Higham, N.J., Mary, T.: Sharper probabilistic backward error analysis for basic linear

algebra kernels with random data. SIAM J. Sci. Comput. 42(5), A3427–A3446 (2020)
13. Higham, N.J., Pranesh, S.: Simulating low precision floating-point arithmetic. SIAM J.

Sci. Comput. 41(5), C585–C602 (2019)
14. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE Standard

754–2008 (2019). Http://ieeexplore.ieee.org/document/4610935
15. Ipsen, I.C.F., Zhou, H.: Probabilistic error analysis for inner products. SIAM J. Matrix

Anal. Appl. 41(4), 1726–1741 (2020)
16. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-point

arithmetic. SIAM Journal on Matrix Analysis and Applications 34(2), 338–344 (2013)
17. Jeannerod, C.P., Rump, S.M.: On relative errors of floating-point operations: optimal

bounds and applications. Mathematics of Computation 87(310), 803–819 (2018)
18. Kahan, W.: Further remarks on reducing truncation errors. Comm. ACM 8(1), 40 (1965)
19. Kahan, W.: Implementation of algorithms (lecture notes by W. S. Haugeland and D.

Hough). Tech. Rep. 20, Department of Computer Science, University of California, Berke-
ley, CA 94720 (1973)

20. Knuth, D.: The Art of Computer Programming, vol. II, third edn. Addison-Wesley, Read-
ing, MA (1998)



Error bounds for Floating Point Summation 29

21. Lange, M., Rump, S.M.: Sharp estimates for perturbation errors in summations. Mathe-
matics of computation 88(315), 349–368 (2019)

22. Lohar, D., Prokop, M., Darulova, E.: Sound probabilistic numerical error analysis. In:
Intern. Conf. Integrated Formal Methods, pp. 322–340. Springer (2019)

23. Mitzenmacher, M., Upfal, E.: Probability and computing: randomization and probabilistic
techniques in algorithms and data analysis. Cambridge University Press (2005)

24. Roch, S.: Modern discrete probability: An essential toolkit. University Lecture (2015)
25. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT Numer-

ical Mathematics 52(1), 201–220 (2012)


	1 Introduction
	2 General summation on a computational tree
	3 Shifted summation
	4 Compensated sequential summation
	5 Mixed precision
	6 Numerical experiments
	A Proof of Lemma 4.6

