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Abstract

To determine the order in which to display web pages, the search

engine Google computes the PageRank vector, whose entries are the

PageRanks of the web pages. The PageRank vector is the stationary

distribution of a stochastic matrix, the Google matrix. The Google matrix

in turn is a convex combination of two stochastic matrices: one matrix

represents the link structure of the web graph and a second, rank-one

matrix, mimics the random behaviour of web surfers and can also be used

to combat web spamming. As a consequence, PageRank depends mainly

the link structure of the web graph, but not on the contents of the web

pages. We analyze the sensitivity of PageRank to changes in the Google

matrix, including addition and deletion of links in the web graph.

Due to the proliferation of web pages, the dimension of the Google

matrix most likely exceeds ten billion. One of the simplest and most

storage-efficient methods for computing PageRank is the power method.

We present error bounds for the iterates of the power method and for

their residuals.
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1. Introduction

How does the search engine Google determine the order in which to display
web pages? The major ingredient in determining this order is the PageRank
vector, which assigns a score to a every web page. Web pages with high scores
are displayed first, and web pages with low scores are displayed later. The
PageRank of a web page is based on the link structure of the web graph and
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does not depend on the content of web pages. The importance of PageRank is
emphasized in one of Google’s web pages [1]:

The heart of our software is PageRankTM, a system for ranking web
pages developed by our founders Larry Page and Sergey Brin at
Stanford University. And while we have dozens of engineers working
to improve every aspect of Google on a daily basis, PageRank
continues to provide the basis for all of our web search tools.

The PageRank vector is the stationary distribution of a stochastic matrix,
called the Google matrix. In §2 we describe the Google matrix and define the
PageRank vector. The sensitivity of PageRank to changes in the Google matrix
is analyzed in §3, and the power method for computing PageRank is presented
in §4.

2. PageRank and the Google Matrix

The link structure of the web graph can be represented mathematically as a
matrix H [9]. Suppose web page i has li > 0 outlinks. If page i contains a link
to another page j 6= i, then Hij = 1/li, otherwise, Hij = 0. Matrix element
Hij represents the likelihood that a surfer follows the link from page i to page
j. If web page i has no outlinks then row i of H is zero. Such as web page,
called a dangling node, can be a pdf file or a page whose links have not yet been
crawled.

To transform H into a stochastic matrix1 S, one can fill every row
corresponding to a dangling node with a vector wT . That is, S ≡ H + dwT ,
where di = 1 if page i has no outlinks, and di = 0 otherwise; and w is a column
vector with w ≥ 0 and ‖w‖1 = 1. A popular choice is to set to 1/n every
element in the dangling node rows, where n is the number of nodes in the web
graph; in other words w = 1

n
1, where 1 is the column vector of all ones.

The Google matrix is defined as a convex combination of S and a rank-one
matrix, i.e.

G ≡ αS + (1 − α)1vT , 0 ≤ α < 1, v ≥ 0, ‖v‖1 = 1.

The damping factor α, originally set to .85, models the possibility that a web
surfer jumps from one web page to the next without necessarily following a link
[3]. The personalization vector v can be used to combat link spamming [7].

The matrix G is row stochastic and, in general, reducible. However it has
a distinct dominant eigenvalue. To see this, denote the eigenvalues of S by
λ1(S) = 1 and λi(S), i ≥ 2, where |λi(S)| ≤ 1. The eigenvalues of G are
1 and αλi(S), i ≥ 2 [5]. Due to the uniqueness of the dominant eigenvalue,
the stationary distribution π of G is unique. Therefore the PageRank vector is
defined as the stationary distribution π of G,

πT G = πT , π ≥ 0, ‖π‖1 = 1.

1A real square matrix is stochastic if all its elements lie between 0 and 1, and the elements

in each row sum to 1.
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The ith entry of π is the PageRank for web page i.

3. Sensitivity of PageRank

We show that the sensitivity of the PageRank vector to changes in the matrix
S, in the personalization vector v and in the damping factor α is governed by the
damping factor α; and that PageRank can be considered insensitive to changes
in G.

Perturbation theory for stationary distributions of Markov chains is well
understood, see for instance [4]. The results presented here exploit the particular
structure of the Google matrix. Several of these have already appeared in the
literature, but our proofs are rigorous and simple [8]. The proofs make use of
the fact that the eigenvector problem πT G = πT , ‖π‖1 = 1 is mathematically
equivalent to a system of linear equations whose coefficient matrix is a strictly
row diagonally dominant M-matrix [2]

πT (I − αS) = (1 − α)vT ,

as well as to a linear system whose right-hand side does not depend on α,

πT
(

I − α(S − 1vT )
)

= vT .

The equivalence of the eigenvector problem and the linear systems follows from
‖π‖1 = πT 1 = 1.

3.1. Changes in the Matrix S

The sensitivity of the PageRank vector π to changes in S depends on a
condition number that is bounded by α/(1 − α).

Specifically, let S + E be a stochastic matrix, and set

G̃ ≡ α(S + E) + (1 − α)1vT .

The perturbed PageRank vector is π̃, where π̃T G̃ = π̃T , π̃ ≥ 0, and ‖π̃‖1 = 1.
We obtain for the absolute error in π̃,

π̃T − πT = απ̃T E(I − αS)−1, ‖π̃ − π‖1 ≤
α

1 − α
‖E‖∞.

For the original damping factor α = .85 α/(1 − α) ≈ 5.7. Even for larger
damping factors, the sensitivity is still low: If α = .99 then α/(1 − α) = 99.

3.2. Changes in the Damping Factor α

The sensitivity of the PageRank vector π to changes in the damping factor
α depends on a condition number that is bounded by 2/(1 − α).
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Specifically, let 0 ≤ α + µ < 1 be a perturbed damping factor, and set
G̃ ≡ (α + µ)S + (1− (α + µ))1vT . The perturbed PageRank vector is π̃, where
π̃T G̃ = π̃T , π̃ ≥ 0, and ‖π̃‖1 = 1. The error in π̃ can be bounded by

‖π̃ − π‖1 ≤
2

1 − α
|µ|.

The condition number bound 2/(1 − α) is an increasing function in α.
Comparing this bound to the bounds for condition number α/(1 − α) in §3.1
shows that π is slightly more sensitive to changes in the parameter α than to
changes in the matrix S. For the original damping factor α = .85, the condition
number is 2/(1 − α) ≈ 13.4. For α = .99, we get 2/(1 − α) = 200.

3.3. Changes in the Personalization Vector v

The PageRank vector π is perfectly conditioned with regard to changes in
the personalization vector v.

Specifically, let v +f be the perturbed personalization vector with v +f ≥ 0
and ‖v+f‖1 = 1; and set G̃ ≡ αS +(1−α)1(v+f)T . The perturbed PageRank
vector is π̃, where π̃T G̃ = π̃T , π̃ ≥ 0, and ‖π̃‖1 = 1. The error bound for π̃
contains a condition number that is bounded by one,

‖π̃ − π‖1 ≤ ‖f‖1.

3.4. Addition of Inlinks

Adding an inlink to a web page increases its PageRank. Specifically, if a link
is added from webpage j to web page l 6= j and if web page j does not have a
link to itself then the PageRank of page l increases, i.e. π̃l > πl.

3.5. Addition of Outlinks

Adding an outlink to a web page can decrease the PageRank. In the following
example of a web graph with 3 web pages we add an outlink from page 3 to
page 1:
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The PageRanks for web page 3 before and after addition of the link are

π3 =
1 + α + α2

3(1 + α)
>

1 + α + α2

3(1 + α + α2/2)
= π̃3.
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Hence, adding an outlink from page 3 to page 1 decreases the PageRank for
page 3 from π3 to π̃3.

Although adding an outlink may decrease the PageRank of an individual
web page, we can still bound the total change in the entire PageRank vector. If
outlinks are added to and/or deleted from web page j then the new PageRank
vector π̃ differs from the old one by

‖π̃ − π‖1 ≤
2α

1 − α
π̃j .

Thus adding and deleting outlinks does not change the entire PageRank vector
significantly, provided the new PageRank of page j is not too large.

4. Computing PageRank

The definition of PageRank πT G = πT implies that π is a left eigenvector
of G associated with the dominant eigenvalue 1. The simplest way to compute
π is to apply the power method to G [9].

Pick x(0) > 0, ‖x(0)‖1 = 1, k = −1
Repeat k = k + 1, [x(k+1)]T = [x(k)]T G
until ‖x(k+1) − x(k)‖ ≤ τ

The difference of successive iterates in the stopping criterion is just the
residual, [x(k+1)]T − [x(k)]T = [x(k)]T G − [x(k)]T . The norm can be the one-,
two-, or infinity-norm. The parameter τ often lies between 10−8 and 10−4.

Although the matrix G = αS + (1 − α)1vT is dense, matrix multiplication
with G can be performed in a sparse manner by exploiting that S = H + dwT ,
see §2. Thus matrix vector multiplication of G with a vector x ≥ 0, ‖x‖1 = 1
amounts to:

xT G = αxT H + (αxT d)wT + (1 − α)vT .

This is a sparse multiplication with H , followed by adding multiples of the
vectors wT and vT . The term xT d is obtained by adding of all components of x
corresponding to dangling nodes. The cost of matrix vector multiplication with
G is proportional to the number of non-zeros in H , i.e. the number of links in
the web graph.

From the expressions for the eigenvalues of G in §2 follows that the power
method converges (in exact arithmetic), with an asymptotic convergence rate
bounded by α. This is also reflected in the error bounds for the iterates of the
power method and their residuals,

‖x(k) − π‖1,∞ ≤ 2αk, ‖[x(k)]T G − [x(k)]T ‖1,∞ ≤ 2αk.

Another way to compute PageRank is as the solution to the linear system
πT (I − αS) = (1 − α)vT , see §3, via stationary iterative methods (such as
the Jacobi method) or Krylov subspace methods (such as BiCGSTAB), see for
instance [6].
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