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We discuss simulations of finite temperature nuclear matter on the lattice. We introduce a new approximation
to nucleon matrix determinants that is physically motivated by chiral effective theory. The method involves
breaking the lattice into spatial zones and expanding the determinant in powers of the boundary hopping
parameter.
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I. INTRODUCTION

We consider quantum simulations of nuclear matter on the
lattice. In particular, we address the problem of calculating
the contribution of nucleon/nucleon-hole loops at nonzero
nucleon density. With the help of auxiliary boson fields, all
nucleon interactions can be written in terms of one-body
interactions in a fluctuating background. In the grand canoni-
cal ensemble, the contribution of nucleon/nucleon-hole loops
to the partition function equals the determinant of the one-
body interaction matrix. Since the determinant of the inter-
action matrix for a general boson field configuration is not
positive, stochastic methods such as hybrid Monte Carlo
[1–3] do not give the sign or phase of the determinant. In-
stead one must rely on much slower and more memory in-
tensive algorithms based on LU factorization, which decom-
poses matrices in terms of a product of upper and lower
triangular matrices.

The number of required operations in LU factorization for
an n3n matrix scales asn3. It has been shown in the litera-
ture that repeated calculations of matrix determinants with
only localized changes can be streamlined in various ways
[4,5]. However it is difficult to avoid the poor scaling inher-
ent in the method. IfV is the spatial volume andb is the
inverse temperature measured in lattice units, a simulation
that includes nucleon/nucleon-hole loops requiressVbd3

times more operations than the corresponding quenched
simulation without loops. This slowdown should not be con-
fused with the infamous fermion sign or phase problem[30]
which becomes significant at temperaturesTø1 MeV. The
computational bottleneck we are considering is due to the
inefficiencies of the algorithm and persists at all tempera-
tures. It is this numerical challenge which sets current limits
on nuclear lattice simulations.

In this paper we introduce a new approach to approximat-
ing nucleon matrix determinants. We begin with a review of
the current status of nuclear matter simulations on the lattice
and look to chiral effective theory to determine the relative

importance of various interactions. We then introduce the
concept of spatial zones and suggest a new expansion of the
nucleon determinant in powers of the hopping parameter
connecting neighboring zones. Rigorous bounds on the con-
vergence of this expansion are given as well as an estimate
of the required size of the spatial zones as a function of
temperature. We apply the expansion to a realistic lattice
simulation of the interactions of neutrons and neutral pions.

II. NUCLEAR LATTICE SIMULATIONS

Recently Müller, Koonin, Seki, and van Kolck[6] pio-
neered the study of quantum many-body effects in infinite
nuclear matter at finite density and temperature. In their
work they considered only nucleon degrees of freedom and
used an effective Hamiltonian of the form

H = K + Vc + Vs, s1d

where K is the kinetic energy,Vc is the two-body scalar
potential, andVs is the two-body tensor potential. While
the simulation was done on the lattice we will write their
Hamiltonian in the more familiar continuum language. In
the continuumK, Vc, andVs take the form

K = −
1

2mN
E d3xWcst

† ¹2cst, s2d

Vc =
1

2
E d3xWd3xW8cst

† sxWdcs8t8
† sxW8dVcsxW − xW8dcs8t8sxW8dcstsxWd,

s3d

Vs =
1

2
E d3xWd3xW8cjt

† sxWdcj8t8
† sxW8d

3VssxW − xW8dsW jtkl · sW j8t8k8l8ck8l8sxW8dcklsxWd. s4d

In our notation summations are implied over repeated in-
dices. mN is the nucleon mass.cst

† scstd createssannihi-
latesd a nucleon of spins and isospint, andsW jtkl are the
elements of a generalized Pauli spin-isospin matrix. Both
potentials are assumed to have Skyrme-like on-site and
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next-nearest-neighbor interactions,

VcsxW − xW8d = Vc
s0ddsxW − xW8d + Vc

s2d¹2dsxW − xW8d, s5d

VssxW − xW8d = Vs
s0ddsxW − xW8d + Vs

s2d¹2dsxW − xW8d. s6d

The grand canonical partition function is given by

Z = Tr„expf− bsH − mtntdg…, s7d

wheremt is the isospin-dependent chemical potential and
nt is the nucleon number operator for isospin indext. We
can rewrite the quartic interactions inVc andVs using the
Hubbard-Stratonovich transformationf7,8g. The Hubbard-
Stratonovich transformation uses the identity

expS1

2
A2D = Î2pE

−`

`

dw expS−
1

2
w2 − wAD , s8d

where A is any quantum operator. This allows the map-
ping of the interacting nucleon problem to a system of
noninteracting nucleons coupled to a fluctuating back-
ground field. With this transformation the expectation
value of any observableO can be written as

kOl =
E DfGsfddet„Msfd…Osfd

E DfGsfddet„Msfd…
, s9d

wheref collectively represents the Hubbard-Stratonovich
fields sas well as any other bosonic fieldsd, Msfd is the
one-body nucleon interaction matrix, andGsfd is a func-
tion of the f’s.

Using this formalism Mülleret al. were able to measure
the thermodynamic properties of nuclear matter and find
signs of a first-order phase transition from an uncorrelated
Fermi gas to a clustered phase. They examined temperatures
from 3.0 MeV to 100 MeV with up to 30 time steps and a
spatial volume of 43 with lattice spacinga=1.842 fm. Unfor-
tunately the LU factorization algorithm used to compute de-
terminants in the simulation scales assVbd3 and thus going
beyond lattice systems of size 43 is problematic.

III. CHIRAL EFFECTIVE THEORY
AND NUCLEAR FORCES

There have been several recent efforts to describe nuclear
forces starting from chiral effective theory. This line of study
was initiated by Weinberg[9–11]. The idea is to expand the
nuclear interactions in powers ofq/Lx, whereq is the typical
external momentum of the nucleons andLx is the chiral
symmetry breaking scale or equivalently the hadronic mass
scales,1 GeVd. The momentum cutoff scaleL for the ef-
fective theory is set belowLx, and the renormalization group
flow of operator coefficients from scaleLx to L suppress the
effects of higher-dimensional operators. Chiral symmetry in
the limit of zero quark mass imposes additional constraints
on the possible momentum and spin dependence of the inter-
action terms. Assuming naturalness for the renormalized
coupling constants in the Lagrangian at the scaleLx, one

expects in the low-energy effective theory that contributions
to nucleon forces from operators at higher order in the chiral
expansion are negligible.

Weinberg’s work was followed by applications of chiral
effective theory to the nucleon potential[12] and alternative
approaches to power counting without apparent fine tuning
in the presence of long scattering lengths[13,14]. Recent
low-energy studies[15–18] have also integrated out pion
fields to produce energy independent two- and three- nucleon
potentials, and the effective theory approach has been used to
calculate nuclear spectra as well as phase shifts and scatter-
ing lengths which compare favorably with potential model
calculations.

In Weinberg’s power counting scheme one deals with in-
frared singularities in bound state problems by distinguishing
between reducible and irreducible diagrams. Reducible dia-
grams are those that can be disconnected by cutting internal
lines that correspond with particles in the initial or final state.
In the notation of Ref.[12], the power ofq/Lx for any irre-
ducible or nonreducible diagram is given by

n = 4 −
Ef

2
+ 2L − 2C + o

i
Vidi , s10d

whereEf is the number of external nucleon lines,L is the
number of loops,C is the number of connected pieces,Vi
is the number of vertices of typei, anddi is the index of
vertex i. The indexdi is given by

di = di +
f i

2
− 2, s11d

wheredi is the number of derivatives andf i is the number
of nucleon fields in the vertex.

We let N represent the nucleon fields,

N = Fp

nG ^ F↑

↓ G . s12d

We useti to represent Pauli matrices acting in isospin
space, and we usesW to represent Pauli matrices acting in
spin space. Pion fields are notated aspi, and m is the
nucleon chemical potential. We denote the pion decay
constant asFp<183 MeV and let

D = 1 +pi
2/Fp

2 . s13d

The lowest-order Lagrange density for low-energy pions
and nucleons is given by terms withdi =0,

Ls0d = −
1

2
D−2fs¹W pid2 − ṗi

2g −
1

2
D−1mp

2pi
2

+ Nfi]0 − smN − mdgN − D−1Fp
−1gANftisW ·¹W pigN

− D−1Fp
−2Nfei jktip jṗkgN −

1

2
CSNNNN

−
1

2
CTNsWN ·NsWN. s14d
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gA is the nucleon axial coupling constant andei jk is the
Levi-Civita symbol. For the purposes of power counting,
the pion massmp is equivalent to one power of the mo-
mentumq. The nucleon mass termNN actually has index
di =−1. However the coefficient of this term is fine-tuned
using m to set the nucleon density, and so theNN term is
reduced to the same size as other terms with indexdi =0.
At the next order we have terms withdi =1,

Ls1d =
1

2mN
N¹2N + ¯ . s15d

The important point for our discussion is that the lowest-
order Lagrange densityLs0d describes static nucleons. Spa-
tial hopping of nucleons first appears at subleading index
di =1. This suggests that in some cases one could compute
the determinant of the nucleon interaction matrix as an
expansion in powers of the spatial hopping parameter. We
should note one point of caution though. TheLs1d kinetic
energy term cannot be ignored if the infrared singularities
of Ls0d are not properly dealt with. Since diagrammatic
methods are not used in nuclear matter Monte Carlo simu-
lations, we cannot separate reducible and irreducible dia-
grams. However if the simulation is done at nonzero tem-
peratureT, then that will serve to regulate the infrared
singularities. We will explicitly see the effect of tempera-
ture on the convergence of the expansion later in our dis-
cussion.

IV. SPATIAL ZONES

In Ref. [19] spatial zones were used to calculate the chiral
condensate for massless QED in three dimensions. In that
paper the main problem was dealing with sign and phase
problems that arise in the Hamiltonian worldline formalism
with explicit fermions. The idea of the zone method is that
fermions at inverse temperatureb with spatial hopping pa-
rameterh have a localization length of

l , Îbh. s16d

We now apply the zone idea to our determinant problem.
Let M be the nucleon matrix, in general ann3n complex
matrix. We partition the lattice spatially into separate
zones such that the length of each zone is much larger
than the localization lengthl. Since most nucleon world-
lines do not cross the zone boundaries, they would not be
affected if we set the zone boundary hopping terms to
zero. Hence we anticipate that the determinant ofM can
be approximated by the product of the submatrix determi-
nants for each spatial zone.

Let us partition the lattice into spatial zones labeled by
index j. Let hPjj be a complete set of matrix projection op-
erators that project onto the lattice sites within spatial zonej.
We can write

M = o
i,j

PjMPi = M0 + ME, s17d

where

M0 = o
i

PiMPi , s18d

ME = o
iÞ j

PjMPi . s19d

If the zones can be sorted into even and odd sets so that

PjMPi = 0 s20d

wheneveri is even andj is odd or vice versa, then we say
that the zone partitioning is bipartite. We now have

detsMd = detsM0ddets1 + M0
−1MEd

= detsM0dexpftr„lns1 + M0
−1MEd…g. s21d

Using an expansion for the logarithm, we have

detsMd = detsM0dexpSo
p=1

` s− 1dp−1

p
tr„sM0

−1MEdp
…D .

s22d

Let us define

Dm = detsM0dexpSo
p=1

m s− 1dp−1

p
tr„sM0

−1MEdp
…D . s23d

Let lksM0
−1MEd be the eigenvalues ofM0

−1ME andR be the
spectral radius,

R= max
k=1,. . .,n

„ulksM0
−1MEdu…. s24d

It has been shownf20g that for R,1,

udetsMd − Dmu
uDmu

ø cRmecRm
, s25d

where

c = − n lns1 − Rd. s26d

The spectral radiusR determines the convergence of our
expansion.R can be reduced by increasing the size of the
spatial zone relative to the localization lengthl. In the
special case where the zone partitioning is bipartite, we
note that for any oddp,

tr„sM0
−1MEdp

… = 0. s27d

In that case

D2m+1 = D2m, s28d

and so we gain an extra order of accuracy without addi-
tional work.

V. APPLICATION TO NEUTRON MATTER SIMULATIONS

We now illustrate the zone determinant expansion for a
simple but realistic lattice simulation of neutron matter. The
formalism we use is a merger of chiral effective theory and
Euclidean lattice methods. In our analysis we focus on the
convergence and accuracy of the zone determinant expansion

ZONE DETERMINANT EXPANSIONS FOR NUCLEAR… PHYSICAL REVIEW C 68, 064003(2003)

064003-3



method. In order to provide a detailed quantitative assess-
ment we compare the zone determinant approximations with
exact determinant results. Given the severe limitations of the
exact determinant method, we are neither able to probe large
volumes nor comment on finite volume scaling. However, a
full account of results for large volume simulations as well as
an introduction to the new approach combining chiral effec-
tive theory and lattice methods is forthcoming in another
paper[21].

Our starting point is the same as that of Weinberg[9]. We
start with the most general local Lagrange density involving
pions and low-energy nucleons consistent with Lorentz and
translational invariance, isospin symmetry, and spontane-
ously broken chiral symmetry. This will produce an infinite
set of interaction terms with increasing numbers of deriva-
tives and/or nucleon fields. The dependence of each term on
the pion field is governed by the rules of spontaneously bro-
ken chiral symmetry. Degrees of freedom associated with
heavier mesons such asr, heavier baryons such asD’s, as
well as antinucleons are all integrated out. We also integrate
out nucleons with momenta greater than the cutoff scaleL.
The contribution of these effects appear as coefficients of
local terms in our pion-nucleon Lagrangian.

For simplicity we consider only neutrons and neutral
pions. We letc represent the neutron spin states

c =F↑

↓ G . s29d

The terms in our effective pion-nucleon Euclidean action
are

S= Spp + SNN + SpNN + SNNNN, s30d

where

Spp =E d3rWdr4F1

2S ] p0

] r4
D2

+
1

2
s¹W p0d2 +

1

2
mp

2p0
2G ,

s31d

SNN =E d3rWdr4Fc† ] c

] r4
− c†¹W 2c

2mN
+ smN − mdc†cG ,

s32d

SpNN =E d3rWdr4f− gc†ssW ·¹W p0dcg, s33d

SNNNN =E d3rWdr4F1

2
C:c†cc†c:G . s34d

We have kept terms in the lowest-order chiral Lagrange
density Ls0d containing neutrons and neutral pions. We
have dropped the factors ofD−1 which at lowest order
contribute to multipion processes. We have also chosen to
include the neutron kinetic energy term even though it
appears inLs1d. This is useful if we wish to recover the
exact free-neutron Fermi gas in the weak coupling limit.

On the lattice we leta be the spatial lattice spacing andat

be the temporal lattice spacing. We use the notation 1ˆ , 2̂, 3̂, or

4̂ to represent vectors that extend exactly one lattice unit
(eithera or at) in the respective direction. We use dimension-
less lattice fields and dimensionless masses and couplings by
multiplying by the corresponding power ofa. For example,

m̂p=mp·a, m̂N=mN·a, ĝ=g·a−1, m̂=m·a, and Ĉ=C·a−2. We
use standard fermion path integral conventions at finite time
step[22,23] and define

c8snWd = csnW − 4̂d s35d

in order to write the lattice path integral in standard form.
The lattice actions have the form

Spp = −
a

at
o
nW

psnWdpsnW + 4̂d −
at

a o
nW,l=1,2,3

psnWdpsnW + l̂d

+ FS m̂p
2

2
+ 3Dat

a
+

a

at
Go

nW
fpsnWdg2, s36d

SNN = o
nW

c†snWdc8snW + 4̂d −
at

2m̂Na o
nW,l=1,2,3

fc†snWdc8snW + l̂d

+ c†snWdc8snW − l̂dg + F− 1 +Sm̂N +
3

m̂N
Dat

a
− m̂

at

aG
3o

nW
c†snWdc8snWd, s37d

TABLE I. Convergence of determinant series forf1, 1, 1g zones.

Configuration No. 1 No. 2 No. 3

R 0.538 0.523 0.534
lnfdetsMdg 16.4727+0.3666i 18.1193+0.4479i 18.2612−0.1811i
lnsD0d 12.1700+0.3807i 13.7933+0.4900i 14.0060−0.2075i
lnsD2d 16.4964+0.3686i 18.1792+0.4477i 18.2841−0.1801i
lnsD4d 16.4959+0.3659i 18.1329+0.4468i 18.2856−0.1805i
lnsD6d 16.4664+0.3667i 18.1147+0.4482i 18.2548−0.1813i
lnsD8d 16.4739+0.3666i 18.1203+0.4478i 18.2622−0.1810i
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SpNN = −
ĝat

2a o
nW

hfc↑
*snWdc↑8snWd − c↓

*snWdc↓8snWdgfpsnW + 3̂d

− psnW − 3̂dgj −
ĝat

2a o
nW

hc↑
*snWdc↓8snWdfpsnW + 1̂d

− psnW − 1̂d − ipsnW + 2̂d + ipsnW − 2̂dgj −
ĝat

2a

3o
nW

hc↓
*snWdc↑8snWdfpsnW + 1̂d − psnW − 1̂d + ipsnW + 2̂d

− ipsnW − 2̂dgj, s38d

SNNNN =
Ĉat

a o
nW

c↑
*snWdc↑8snWdc↓

*snWdc↓8snWd. s39d

We can reexpressSNNNN using a discrete Hubbard-

Stratonovich transformationf24g for Ĉø0,

expS−
Ĉat

a
c↑

*snWdc↑8snWdc↓
*snWdc↓8snWdD

=
1

2 o
s=±1

expF− S Ĉat

2a
+ lsDfc↑

*snWdc↑8snWd

+ c↓
*snWdc↓8snWd − 1gG , s40d

wherel is defined by

coshl = expS−
Ĉat

2a
D . s41d

VI. RESULTS

For the simulation results presented in this section we use
the values a−1=150 MeV, at

−1=225 MeV, C=−4.0
310−5 MeV−2, and g=6.8310−3 MeV−1. The value ofg is
set according to the tree level Goldberger-Treiman relation
[25]

g = Fp
−1gA = 6.83 10−3 MeV−1. s42d

The value ofC is tuned to match thes-wave phase shifts
on the lattice for nucleon scattering at lattice spacing
s150 MeVd−1. The calculation of phase shifts on the lattice
is discussed in a forthcoming paper which details the en-
tire formalismf21g.

We present data for three independent pion and Hubbard-
Stratonovich field configurations on a 4336 lattice at tem-
perature T=37.5 MeV and neutron densityr=0.57rnucl
where nuclear density is

rnucl = 2.83 1014 g/cm3 = 1.23 109 MeV4. s43d

We refer to spatial zones according to theirx, y, z lattice
dimensionsfnx, ny, nzg. At this lattice spacing and tempera-
ture our localization length estimate is

l , Îbh = 0.57, s44d

and so we expect the zone determinant expansion to con-
verge for even the smallest zones,fnx, ny, nzg=f1, 1, 1g,
consisting of groups of lattice points with the same spatial
coordinate. In Table I we show the spectral radiusR of
M0

−1ME and the determinant expansion forf1, 1, 1g zones
for three independent pion and Hubbard-Stratonovich con-
figurations at equilibrium.

TABLE II. Determinant series forf1, 1, 1g zones atr=1.67rnucl.

Configuration No. 1 No. 2 No. 3

R 0.520 0.478 0.536
lnfdetsMdg 70.6349+0.4121i 76.1762+0.7098i 73.4831−0.1576i
lnsD0d 64.8000+0.4406i 71.0009+0.7989i 67.8503−0.1809i
lnsD2d 70.9530+0.4120i 76.3927+0.7005i 73.7923−0.1538i
lnsD4d 70.6032+0.4114i 76.1605+0.7106i 73.4483−0.1583i
lnsD6d 70.6390+0.4124i 76.1778+0.7097i 73.4888−0.1574i
lnsD8d 70.6343+0.4120i 76.1760+0.7098i 73.4819−0.1576i

TABLE III. Determinant series forf1, 1, 1g zones for varying temperatures.

T 37.5 MeV 25.0 MeV 18.8 MeV 12.5 MeV

R 0.5122 0.6742 0.7631 0.8638
lnfdetsMdg 65.8009−0.7250i 37.6912−1.5930i 16.0023+0.0541i 5.7618+0.0452i
lnsD0d 51.3988−0.7888i 20.7653−1.5752i 4.1999+0.2033i 0.1796−0.0019i
lnsD2d 66.0028−0.7218i 36.2570−1.6535i 11.7590+0.0861i 1.5071+0.0222i
lnsD4d 65.8289−0.7243i 38.0872−1.5800i 15.9390+0.0337i 3.8579+0.0399i
lnsD6d 65.7926−0.7253i 37.6528−1.5924i 16.3121+0.0478i 5.5534+0.0475i
lnsD8d 65.8026−0.7249i 37.6780−1.5943i 16.0111+0.0575i 6.0067+0.0473i
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We see that the spectral radiusR is less than 1, as ex-
pected from the localization length estimate. We also find
that the rigorous bounds in Eq.(25) are satisfied. Since most
of the eigenvalues ofM0

−1ME are much smaller in magnitude
than the spectral radiusR, we observe that the prefactorc in
Eq. (25) is actually much larger than needed for these ex-
amples. From the data in Table I we find empirically

udetsMd − D2mu
uD2mu

=
udetsMd − D2m+1u

uD2m+1u
, R2m+1. s45d

We now repeat the same analysis with the same lattice
dimensions and temperature but at much higher density,r
=1.67rnucl. The results for three independent pion and
Hubbard-Stratonovich field configurations are shown in
Table II.

Comparing Tables I and II, we conclude that the zone
determinant expansion appears to be unaffected by the in-
crease in nucleon density.

On the other hand, as the temperature decreases, the lo-
calization length increases and therefore the convergence of
the zone determinant expansion should slow down. In Table
III we show the expansion for a 6336 lattice at T
=37.5 MeV, 6339 lattice atT=25.0 MeV , 63312 lattice at
T=18.8 MeV, and 63318 lattice at T=12.5 MeV. The
chemical potential is kept at the same value used for the
results in Table Ism=0.8mNd.

The increase inR and the slow down in the series conver-
gence is consistent with our intuition based on the localiza-
tion length. Although we are looking at neutron matter in this
example, we comment that this is the appropriate tempera-
ture range for observing the liquid-gas transition in symmet-
ric nuclear mattersT,20 MeVd [26–28]. The localization
length becomes greater than 1 forT,10 MeV, and so we
expect the series to break down forf1, 1, 1g zones at colder
temperatures. This also happens to be the temperature at
which long range interactions due to pairing become impor-
tant. In order to see pairing correlations, one should therefore
use larger zone sizes. However we note that at temperatures
much less than 10 MeV there is also a significant sign prob-
lem, and the numerical difficulties will be substantial, inde-
pendent of the method used to calculate determinants.

We now look at how convergence of the expansion is
improved by using larger spatial zones. In Table IV we show
the determinant expansion for a 6336 lattice at T
=37.5 MeV for f1, 1, 1g, f2, 2, 2g, and f3, 3, 3g zones[31]. It
is somewhat unusual that the spectral radiusR is about the
same forf2, 2, 2g and f3, 3, 3g, however the convergence of
the series clearly improves as we increase the zone size.

We now investigate the convergence of the determinant
zone expansion for physical observables. Let us return to the
data in Table I for a moment. We observe that at any given
order the error appears to be about the same for each of the
three independent configurations. Since the measurement of

FIG. 1. Opposite spin radial distribution function using exact
determinants.

FIG. 2. Error in the opposite spin radial distribution function at
orderm=0.

TABLE IV. Determinant series for various zone sizes.

Zone f1, 1, 1g f2, 2, 2g f3, 3, 3g

R 0.5122 0.3013 0.3014
logfdetsMdg 65.8009−0.7250i 65.8009−0.7250i 65.8009−0.7250i
logsD0d 51.3988−0.7888i 58.6585−0.7543i 61.0471−0.7722i
logsD2d 66.0028−0.7218i 65.8570−0.7231i 65.8317−0.7233i
logsD4d 65.8289−0.7243i 65.8015−0.7251i 65.8007−0.7250i
logsD6d 65.7926−0.7253i 65.8009−0.7250i 65.8009−0.7250i
logsD8d 65.8026−0.7249i 65.8009−0.7250i 65.8009−0.7250i

DEAN J. LEE AND ILSE C. F. IPSEN PHYSICAL REVIEW C68, 064003(2003)

064003-6



a physical observable does not dependent on the overall nor-
malization of the partition function, this suggests that the
zone determinant expansion could be more accurate in ap-
proximating physical observables. We now check to see if
this is so for a particular example.

Let us define the neutron occupation number at siterW,

r↑s↓dsrWd = c↑s↓d
* srWdc↑s↓dsrWd = c↑s↓d

* srWdc↑s↓d8 srW + 4̂d. s46d

We measure the opposite spin radial distribution function,

kr↑srWdr↓s0dl, s47d

by sampling 20 independent pion and Hubbard-
Stratonovich field configurations. Forrx=0 we plot the
results for the opposite spin radial distribution function in
Fig. 1 using exact matrix determinants for a 4336 lattice
at T=37.5 MeV. In Figs. 2–6 we show the error in the
radial distribution function if the estimateDm is used in
place of detsMd for m=0, 2, 4, 6, 8.

The approximation at order 0 is a lot better than expected,
given the error ofD0 in approximating detsMd. Overall we
find that the zone expansion is significantly more accurate
for the radial distribution function than the expansion of the
determinants. It is premature to say if this is typical of all
physical observable measurements. Nevertheless if most of
the error of Dm is in fact independent of the pion and
Hubbard-Stratonovich configurations at equilibrium, then we
expect an improvement in accuracy for most physical ob-
servables.

VII. SUMMARY AND CONCLUSIONS

We have discussed lattice simulations of finite tempera-
ture nuclear matter and a new approximation method called
the zone determinant expansion for nucleon matrix determi-
nants. The expansion is made possible by the small size of
the spatial hopping parameter. We know from power count-
ing in chiral effective theory that the spatial hopping param-
eter is suppressed relative to the leading order interactions at
low energies. The zone determinant expansion is given by

FIG. 3. Error in the opposite spin radial distribution function at
orderm=2.

FIG. 4. Error in the opposite spin radial distribution function at
orderm=4.

FIG. 5. Error in the opposite spin radial distribution function at
orderm=6.

FIG. 6. Error in the opposite spin radial distribution function at
orderm=8.
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detsMd = detsM0dexpSo
p=1

` s− 1dp−1

p
tr„sM0

−1MEdp
…D ,

s48d

whereM is the nucleon one-body interaction matrix,ME is
the submatrix consisting of zone boundary hopping terms,
andM0 is the submatrix without boundary hopping terms.
The convergence of the expansion is controlled by the
spectral radius ofM0

−1ME. Physically we expect the con-
vergence to be rapid if the localization length of the nucle-
ons

l , Îbh s49d

is small compared to the size of the spatial zones.
We tested the zone determinant expansion using lattice

simulations of neutron matter with self-interactions and neu-
tral pion exchange. The convergence of the expansion was
measured for several configurations at temperatureT
=37.5 MeV and usingf1, 1, 1g spatial zones. By decreasing
the temperature fromT=37.5 MeV to 12.5 MeV we found
that the convergence of the expansion becomes slower, as
predicted by the increase in the localization length. But we
then showed that convergence could be accelerated by in-
creasing the size of the zones fromf1, 1, 1g to f3, 3, 3g. Fi-
nally, we looked at the convergence of the expansion for the
opposite spin radial distribution function

kr↑srWdr↓s0dl. s50d

We found that the accuracy of the expansion for this
physical observable was significantly better at each order
than that for the expansion of the determinants.

The number of required operations for calculating the
nucleon determinant using LU factorization for ann3n ma-
trix scales asn3. Therefore a nuclear lattice simulation that
includes nucleon/nucleon-hole loops requiressVbd3 times
more operations than the quenched simulation without loops.
This numerical challenge has been the most pressing limita-
tion on finite temperature nuclear lattice simulations to date.

For the zone determinant expansion method at fixed zone
size, the computation cost scales only asfsmdb3, wherem is
the order of the expansion. For a simulation on a lattice with
spatial dimensions 83, one can accelerate the simulation by a
factor of about 105 to 107, depending on the expansion order
and size of the spatial zone. The savings are greater on larger
lattices and should facilitate future work in the area of finite
temperature nuclear lattice simulations.
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