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We discuss simulations of finite temperature nuclear matter on the lattice. We introduce a new approximation
to nucleon matrix determinants that is physically motivated by chiral effective theory. The method involves
breaking the lattice into spatial zones and expanding the determinant in powers of the boundary hopping

parameter.
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[. INTRODUCTION importance of various interactions. We then introduce the

. . . concept of spatial zones and suggest a new expansion of the
We consider quantum simulations of nuclear matter on th b b 99 P

nucleon density. With the help of auxiliary boson fields, all ot the required size of the spatial zones as a function of
nucleon interactions can be written in terms of one-bodytemperature. We apply the expansion to a realistic lattice
interactions in a fluctuating background. In the grand canonisjmulation of the interactions of neutrons and neutral pions.
cal ensemble, the contribution of nucleon/nucleon-hole loops

to the. partitiqn functign equals the determinant of the. one- Il. NUCLEAR LATTICE SIMULATIONS

body interaction matrix. Since the determinant of the inter-

action matrix for a general boson field configuration is not Recently Miller, Koonin, Seki, and van Kold6] pio-
positive, stochastic methods such as hybrid Monte Carl@eered the study of quantum many-body effects in infinite
[1-3] do not give the sign or phase of the determinant. In-nuclear matter at finite density and temperature. In their
stead one must re|y on much slower and more memory inWOfk they considered only nucleon degrees of freedom and
tensive algorithms based on LU factorization, which decomused an effective Hamiltonian of the form

poses matrices in terms of a product of upper and lower
triangular matrices. H=K+Vc+V,, (1)

The number of required operations in LU factorization for where K is the kinetic energyy, is the two-body scalar
annxn matrix scales ag®. It has been shown in the litera- potential, andV,, is the two-body tensor potential. While
ture that repeated calculations of matrix determinants withhe simulation was done on the lattice we will write their
only localized changes can be streamlined in various waygiamiltonian in the more familiar continuum language. In
[4,5]. However it is difficult to avoid the poor scaling inher- the continuumk, V., andV, take the form
ent in the method. 1V is the spatial volume an@ is the
inverse temperature measured in lattice units, a simulation 3ot o2
that includes nucleon/nucleon-hole loops requit®4s)? K==o0 | 9%V, 2
times more operations than the corresponding quenched N
simulation without loops. This slowdown should not be con- 1
fused with the infamous fermion sign or phase prob — 3ed3er 1t (vt (e o g % >
which becomes significant at temgeraturﬂ)'esl MpeV. ['?g]e Ve= 2 J XA 0o (XX =X 120 (X)),
computational bottleneck we are considering is due to the (3)
inefficiencies of the algorithm and persists at all tempera-
tures. It is this numerical challenge which sets current limits .
on nuclear lattice simulations. _ 3g3gr 1T vt (g

In this paper we introduce a new approach to approximat- Vo= 2 f XX (Xt (X)
ing nucleon matrix determinants. We begin with a review of I - . .
thg current status of nuclear matter simug:ations on the lattice XVoX=X) G+ Tgrrtinr b X ) (X). - (4)
and |00k to Chiral eﬁective theory to determine the relativeln our notation Summations are |mp||ed over repeated in-

dices. my is the nucleon massy! (y,,) creategannihi-

lates a nucleon of spirr and isospinr, anddy,,, are the
*Electronic address: djlee3@unity.ncsu.edu elements of a generalized Pauli spin-isospin matrix. Both
"Electronic address: ipsen@math.ncsu.edu potentials are assumed to have Skyrme-like on-site and
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next-nearest-neighbor interactions, expects in the low-energy effective theory that contributions
to nucleon forces from operators at higher order in the chiral
Ve(X=X') = V(co) S(X=X') + V(cz)V25(i‘ X), 5 expansion are negligible.
Weinberg’s work was followed by applications of chiral
V, (X-X')= Vf,o)é(i— X') + fo)vza(i— X'). (6) effective theory to the nucleon potentjdl2] and alternative

approaches to power counting without apparent fine tuning
in the presence of long scattering lengttis8,14. Recent
Z=Tr(exd- B(H - w.n)]), ) Ipw-energy studies[lS—l_Ej have also integrated out pion
fields to produce energy independent two- and three- nucleon
where i, is the isospin-dependent chemical potential andpotentials, and the effective theory approach has been used to
n, is the nucleon number operator for isospin indexVe  calculate nuclear spectra as well as phase shifts and scatter-
can rewrite the quartic interactions \f, andV,, using the ing lengths which compare favorably with potential model
Hubbard-Stratonovich transformati¢®,8]. The Hubbard- calculations.
Stratonovich transformation uses the identity In Weinberg’s power counting scheme one deals with in-
- frared singularities in bound state problems by distinguishing
exp<}A2> = "ZTJ do exp(— }goz_ goA), (8)  between reducible and irreducible diagrams. Reducible dia-
2 — 2 grams are those that can be disconnected by cutting internal
lines that correspond with particles in the initial or final state.

vv_hereA IS any quantum operator. This allows the map- |, the notation of Ref[12], the power ofg/A, for any irre-
ping of the interacting nucleon problem to a system Ofducible or nonreducible diagram is given by

noninteracting nucleons coupled to a fluctuating back-
ground field. With this transformation the expectation

The grand canonical partition function is given by

E
value of any observabl® can be written as v=d4-—+2L-2C+ > Vié, (10
2 i
f D¢G(¢p)detM(¢))O(¢) wherekE; is the number of external nucleon lindsjs the
(0) = (9) number of loopsC is the number of connected piecés,
’ is the number of vertices of typie and &, is the index of
jD‘ﬁG(‘Z’)de(M(‘l’)) vertexi. The indexd; is given by
where ¢ collectively represents the Hubbard-Stratonovich f,
fields (as well as any other bosonic fielddM(¢) is the S =0 +§ -2, (11
one-body nucleon interaction matrix, a@{¢) is a func-
tion of the ¢'s. whered, is the number of derivatives arfdis the number

Using this formalism Miilleret al. were able to measure of nucleon fields in the vertex.
the thermodynamic properties of nuclear matter and find We letN represent the nucleon fields,
signs of a first-order phase transition from an uncorrelated
Fermi gas to a clustered phase. They examined temperatures D 1
from 3.0 MeV to 100 MeV with up to 30 time steps and a N= { ] ®
spatial volume of Awith lattice spacinga=1.842 fm. Unfor- 1
tunately the LU factorization algorithm used to compute de-, . . L .
terminants in the simulation scales @43)% and thus going We user to reprgsent Paull matrlcgs act!ng In 1S0Spin
beyond lattice systems of sizé & problematic. space, and we usé to represent Pauli matrices acting in
spin space. Pion fields are notated as and u is the
nucleon chemical potential. We denote the pion decay
constant ag-,~183 MeV and let

(12)

Ill. CHIRAL EFFECTIVE THEORY
AND NUCLEAR FORCES

There have been several recent efforts to describe nuclear D=1+m/F2, (13
forces starting from chiral effective theory. This line of study The |owest-order Lagrange density for low-energy pions
was initiated by Weinber®-11]. The idea is to expand the 5n4 nucleons is given by terms with=0,
nuclear interactions in powers gfA , whereq is the typical
external momentum of the nucleons aAd is the chiral 1 - 1
symmetry breaking scale or equivalently the hadronic mass £©=- ED_Z[(V’JTi)Z_ ] - ED‘lmeq-riz
scale(~1 GeV). The momentum cutoff scal& for the ef-
fective theory is set below,, and the renormalization group + N[iao — (my- wIN- D—lF—lgAN[T_é: . ﬁw-]N
flow of operator coefficients from scalg, to A suppress the i ' '
effects of higher-dimensional operators. Chiral symmetry in
the limit of zero quark mass imposes additional constraints
on the possible momentum and spin dependence of the inter-
action terms. Assuming naturalness for the renormalized —}C NGN - NoN (14)
coupling constants in the Lagrangian at the scale one 27 '

_ 1 — —
- D'F; N[ € 7y N = SCSNNNN

064003-2



ZONE DETERMINANT EXPANSIONS FOR NUCLEAR. PHYSICAL REVIEW C 68, 064003(2003

ga is the nucleon axial coupling constant amlg is the _ MD.

Levi-Civita symbol. For the purposes of powe?; counting, MO_; PMP, (18)
the pion massn, is equivalent to one power of the mo-
mentumgq. The nucleon mass tertdN actually has index
8=-1. However the coefficient of this term is fine-tuned

using u to set the nucleon density, and so Bl term is .
reduced to the same size as other terms with index. If the zones can be sorted into even and odd sets so that

At the next order we have terms wiif=1, P.MP. =0 (20)
] I

Mg=2, P;MP;. (19)
i#]

whenever is even and is odd or vice versa, then we say

1) — N2
L= Z_mNNV N+ - (15 that the zone partitioning is bipartite. We now have

The important point for our discussion is that the lowest- de(M) = de{Mg)de(1 + Mg'Mg)

order Lagrange densitg® describes static nucleons. Spa- _ -1

tial hopping of nucleons first appears at subleading index = detMoexpitr(in(1 + Mo Me)]. (2Y)
&=1. This suggests that in some cases one could computdsing an expansion for the logarithm, we have

the determinant of the nucleon interaction matrix as an
expansion in powers of the spatial hopping parameter. We
should note one point of caution though. TH& kinetic
energy term cannot be ignored if the infrared singularities
of £© are not properly dealt with. Since diagrammatic
methods are not used in nuclear matter Monte Carlo simu- Let us define

lations, we cannot separate reducible and irreducible dia- "
grams. However if the simulation is done at nonzero tem- _

peratureT, then that will serve to regulate the infrared Am=de(Mo)ex 21
singularities. We will explicitly see the effect of tempera- >
ture on the convergence of the expansion later in our disket \((Mg'Mg) be the eigenvalues dfl;'Mg andR be the
cussion. spectral radius,

o]

_a\p-1
dei(M) = de{Mg)ex 2( L7
p=1

tr(Mg'M E>p>) :

(22)

(-t

tr((MalME)p)). (23)

R= max (\(Mg'Mg)]). (24)

IV. SPATIAL ZONES k=1,...n
In Ref.[19] spatial zones were used to calculate the chiralt has been showfi20] that for R<1,

condensate for massless QED in three dimensions. In that
paper the main problem was dealing with sign and phase w
problems that arise in the Hamiltonian worldline formalism | Al
with explicit fermions. The idea of the zone method is that, . e
fermions at inverse temperatugewith spatial hopping pa-

< cR"R" (25)

rameterh have a localization length of c=-nIn(1-R). (26)
| ~\Bh. (16) The spectral radiuf determines the convergence of our

expansionR can be reduced by increasing the size of the
We now apply the zone idea to our determinant problemspatial zone relative to the localization lengthin the
Let M be the nucleon matrix, in general anx<n complex  special case where the zone partitioning is bipartite, we
matrix. We partition the lattice spatially into separatenote that for any odgb,
zones such that the length of each zone is much larger
than the localization length Since most nucleon world- tr((Mg*Mg)P) = 0. (27)
lines do not cross the zone boundaries, they would not bﬁ1 that case
affected if we set the zone boundary hopping terms to
zero. Hence we anticipate that the determinantvbtan Ao = Ao, (28)
be approximated by the product of the submatrix determi- _ i i
nants for each spatial zone. a_md so we gain an extra order of accuracy without addi-

Let us partition the lattice into spatial zones labeled bytional work.

index j. Let {P;} be a complete set of matrix projection op-
erators that project onto the lattice sites within spatial Zone V. APPLICATION TO NEUTRON MATTER SIMULATIONS

We can write . . .
We now illustrate the zone determinant expansion for a

simple but realistic lattice simulation of neutron matter. The
M= E PiMP;=Mq+ Mg, (17) formalism we use is a merger of chiral effective theory and
" Euclidean lattice methods. In our analysis we focus on the
where convergence and accuracy of the zone determinant expansion
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TABLE |. Convergence of determinant series far 1, 1] zones.

Configuration No. 1 No. 2 No. 3

R 0.538 0.523 0.534

In[detM)] 16.4727+0.3666 18.1193+0.4479 18.2612-0.181i1
In(Ap) 12.1700+0.3807 13.7933+0.4900 14.0060-0.2075
In(A,) 16.4964+0.3686 18.1792+0.4477 18.2841-0.1801
In(A,) 16.4959+0.3659 18.1329+0.44618 18.2856-0.1805
In(Ag) 16.4664+0.3667 18.1147+0.4482 18.2548-0.1813
In(Ag) 16.4739+0.3666 18.1203+0.4478 18.2622-0.1810

method. In order to provide a detailed quantitative assess- -
ment we compare the zone determinant approximations with SARN= f d¥dr [~ gy'(G - Vo), (33
exact determinant results. Given the severe limitations of the
exact determinant method, we are neither able to probe large
volumes nor comment on finite volume scaling. However, a 1
full account of results for large volume simulations as well as SN = J d3Fdr4[—C:¢T¢w*¢:] )
an introduction to the new approach combining chiral effec- 2
tive theory and lattice methods is forthcoming in anothenye have kept terms in the lowest-order chiral Lagrange
paper(21]. . L . density £© containing neutrons and neutral pions. We
Our starting point is the same as that of Weinbjgig We have dropped the factors d! which at lowest order
start with the most general local Lagrange density involving ontribute to multipion processes. We have also chosen to

pions and low-energy nucleons consistent with Lorentz angl, . ,qe the neutron kinetic energy term even though it
translational invariance, isospin symmetry, and spontane:

ously broken chiral symmetry. This will produce an infinite appears inC'". This is useful if we wish to recover the
y y Y- P exact free-neutron Fermi gas in the weak coupling limit.

set of interaction terms with increasing numbers of deriva- : . . .
tives and/or nucleon fields. The dependence of each term on On the lattice we lek be the spatial lattice spacing aad

the pion field is governed by the rules of spontaneously brobe the temporal lattice spacing. We use the notatiéh3, or
ken chiral symmetry. Degrees of freedom associated witld to represent vectors that extend exactly one lattice unit
heavier mesons such as heavier baryons such &ss, as  (eitheraor &) in the respective direction. We use dimension-
well as antinucleons are all integrated out. We also integratéess lattice fields and dimensionless masses and couplings by
out nucleons with momenta greater than the cutoff sdale multiplying by the corresponding power af For example,
The contribgtion of_ these effects appear as coefficients Orfhwzm,,-a, M =my-a, §=g-a’, i=u-a and C=C.a2 We
local terms in our pion-nucleon Lagrangian. use standard fermion path integral conventions at finite time

_ For simplicity we consider only neutrons and neutralsien[22 23 and define
pions. We lety represent the neutron spin states

(34)

1 Y () = (i~ 4) (35)
¥= (29) in order to write the lattice path integral in standard form.
! The lattice actions have the form
The terms in our effective pion-nucleon Euclidean action
are a -~ a -
Srp=- X mWaicd) - 3 aim(i+l)
S= S, + Sin+ S+ S (30 o w2
where + (m_i + 3)3 +2 > [#(A)]? (36)
2 a a5 v
1(om\? 1 - 1
S7T,T:Jd3r*dr4 —(l)) +=(Vag)2+ =mimd |,
2\ ar,) 2 2 . a A
Sin= 2 YA A+d) - — > [Ty (A+])
(31) N E 2M\ag 151,2,3

- 3\ &

- R AWLAGEII RS B R W by

) Y, V2y my/a " a

S = J d3rdr4{¢*a—r—w*g+(mwm¢*w ! "
! " X2 Wy (), (37)
(32 i
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TABLE Il. Determinant series fof1, 1, 1] zones afp=1.67p,,¢!

Configuration No. 1 No. 2 No. 3

R 0.520 0.478 0.536

In[detM)] 70.6349+0.4121 76.1762+0.7098 73.4831-0.1576
In(Ap) 64.8000+0.4406 71.0009+0.7989 67.8503-0.1809
In(A,) 70.9530+0.4120 76.3927+0.7005 73.7923-0.1538
In(A,) 70.6032+0.4114 76.1605+0.7106 73.4483-0.1583
In(Ag) 70.6390+0.4124 76.1778+0.7097 73.4888-0.1574
In(Ag) 70.6343+0.4120 76.1760+0.7098 73.4819-0.1576

S =~ g S AL D) = 4 (5 + )

1= 311} - o S W i+ D

N gy
-m(A-1)-i7(A+2)+im(A-2)]} - —

2a

XS AW (DY) + 1) - 7= D) +im(i+2)

—im(A- 21},

Ca N
SNRN= ?E (M) (M) (M) gy (7).

(38)

(39)

VI. RESULTS

For the simulation results presented in this section we use
the values a?'=150 MeV, a'=225MeV, C=-4.0
X107 MeV~2, andg=6.8x10°MeV. The value ofg is
set according to the tree level Goldberger-Treiman relation

[25]

g=F.'ga=6.8x 10° MeV 2, (42)

The value ofC is tuned to match the-wave phase shifts
on the lattice for nucleon scattering at lattice spacing
(150 MeV)™. The calculation of phase shifts on the lattice
is discussed in a forthcoming paper which details the en-
tire formalism[21].

We present data for three independent pion and Hubbard-
Stratonovich field configurations on &6 lattice at tem-
perature T=37.5 MeV and neutron densityp=0.57p,,¢

We can reexpressSyun Using a discrete Hubbard- where nuclear density is
Stratonovich transformatiof24] for C<0,

Cag o .
exp(— ?dﬁ(n) ARG z,//l(n))

1 Ca o
=32 exp[— (z—at +xs>[wT(n>¢T<n>
+ 4 (R) ] (R) = 1]] , (40)
where\ is defined by
meed-2) @
cosh\ =ex 2 ) (41)

pruci=2.8X 10 g/lenm?=1.2Xx 10° MeV*. (43

We refer to spatial zones according to thgjry, z lattice
dimensiongn,, n,, n,]. At this lattice spacing and tempera-
ture our localization length estimate is

| ~\Bh=0.57, (44)

and so we expect the zone determinant expansion to con-
verge for even the smallest zondsy,, ny,n,|=[1,1, 1],
consisting of groups of lattice points with the same spatial
coordinate. In Table | we show the spectral radRiof
My*Mg and the determinant expansion fidr, 1, 1] zones

for three independent pion and Hubbard-Stratonovich con-
figurations at equilibrium.

TABLE lll. Determinant series fof1, 1, 1] zones for varying temperatures.

T 37.5 MeV 25.0 MeV 18.8 MeV 12.5 MeV

R 0.5122 0.6742 0.7631 0.8638

In[det(M)] 65.8009-0.7250 37.6912-1.5930 16.0023+0.054i1 5.7618+0.0452
In(Ag) 51.3988-0.7888 20.7653-1.5752 4.1999+0.20383 0.1796-0.0010
In(A,) 66.0028-0.721i8 36.2570-1.6535 11.7590+0.0861 1.5071+0.0222
In(Ay) 65.8289-0.724i3 38.0872-1.5800 15.9390+0.0337 3.8579+0.0399
In(Ag) 65.7926-0.7253 37.6528-1.5924 16.3121+0.0478 5.5534+0.0476
In(Ag) 65.8026—-0.7249 37.6780-1.594i3 16.0111+0.0575 6.0067+0.0473
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TABLE IV. Determinant series for various zone sizes.

Zone (1,11 2,22 (3,33

R 0.5122 0.3013 0.3014

log[detM)] 65.8009-0.7250 65.8009-0.7250 65.8009-0.7250
log(Ap) 51.3988-0.7888 58.6585-0.754i3 61.0471-0.7722
log(Ay) 66.0028-0.721i8 65.8570-0.7231 65.8317-0.7233
log(A,) 65.8289-0.7243 65.8015-0.7251 65.8007-0.7250
log(Ag) 65.7926-0.7253 65.8009-0.7250 65.8009-0.7250
log(Ag) 65.8026—-0.7249 65.8009-0.7250 65.8009-0.7250

We see that the spectral radigsis less than 1, as ex- The increase iR and the slow down in the series conver-

pected from the localization length estimate. We also findgence is consistent with our intuition based on the localiza-
that the rigorous bounds in E(R5) are satisfied. Since most tion length. Although we are looking at neutron matter in this
of the eigenvalues d¥1;*Mg are much smaller in magnitude example, we comment that this is the appropriate tempera-
than the spectral radiuR, we observe that the prefactoin  ture range for observing the liquid-gas transition in symmet-
Eg. (25) is actually much larger than needed for these ex+ic nuclear mattefT~20 MeV) [26—28. The localization
amples. From the data in Table | we find empirically length becomes greater than 1 for~10 MeV, and so we
expect the series to break down fdr, 1, 1] zones at colder
temperatures. This also happens to be the temperature at
|detM) — Aan _ |[detM) = Agmea| Rl (45  which long range interactions due to pairing become impor-

| Aol |Agmial ' tant. In order to see pairing correlations, one should therefore

We now repeat the same analysis with the same latticySe larger zone sizes. However we note that at temperatures

. : . .. much less than 10 MeV there is also a significant sign prob-
dimensions and temperature but at much higher dengsity, . e 1 . >
- - : lem, and the numerical difficulties will be substantial, inde-
=1.67p,r The results for three independent pion and

Hubbard-Stratonovich field configurations are shown inper\}\c/jent of tre Iinethﬁd used to calculatefditermmantg .
Table II. e now look at how convergence of the expansion is

. improved by using larger spatial zones. In Table IV we show
e e S e b 7e"ehe dterminat. expansion for =6 latice st T

X . =37.5 MeV for[1,1,1], [2, 2,2, and[3, 3, 3 zones[31]. It
crease in nucleon density.

is somewhat unusual that the spectral rad®is about the

On the other hand, as the temperature decreases, the l%;'\me for2, 2,7 and[3, 3,3, however the convergence of

calization length increases and therefore the convergence ar . . . ;
the zone determinant expansion should slow down. In Table € series cl_early IMProves as we increase the zone SIZ€.
: We now investigate the convergence of the determinant

Il we show the expansion for a3&6 lattice at T : .
—375 MeV. 6x09 lattice atT=25.0 MeV . §x 12 lattice at 2°N€ expansion for physical observables. Let us return to the
R . s ' data in Table | for a moment. We observe that at any given

T=18.8 MeV, and 6x18 lattice at T=12.5MeV. The order the error appears to be about the same for each of the

chemlcql potentlal_ls kept at the same value used for th?hree independent configurations. Since the measurement of
results in Table Ku=0.81y).

Error in <p L(r)pT(O)>’ order=0

<p L(r)pT(0)> exact determinant

FIG. 1. Opposite spin radial distribution function using exact FIG. 2. Error in the opposite spin radial distribution function at
determinants. orderm=0.
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Error in <pi(r)pT(0)>, order=2 Errorin <pi(r)pT(0)>, order=6

FIG. 3. Error in the opposite spin radial distribution function at ~ FIG. 5. Error in the opposite spin radial distribution function at
orderm=2. orderm=6.

a physical observable does not dependent on the overall nor- 1he approximation at order 0 is a lot better than expected,
malization of the partition function, this suggests that thediven the error ofd, in approximating déMm). Overall we
zone determinant expansion could be more accurate in apind that the zone expansion is significantly more accurate
proximating physical observables. We now check to see ifor the radial distribution function than the expansion of the
this is so for a particular example. determinants. It is premature to say if this is typical of all
Let us define the neutron occupation number at ite physical observable measurements. Nevertheless if most of
the error of A, is in fact independent of the pion and
. . R Hubbard-Stratonovich configurations at equilibrium, then we
1)) =y (O by () () = ¢, (D (T+4).  (46)  expect an improvement in accuracy for most physical ob-

. . . o .__servables.
We measure the opposite spin radial distribution function,

VIl. SUMMARY AND CONCLUSIONS

(p1(Npy(0)), (47) _ o : .

] ] ] We have discussed lattice simulations of finite tempera-
by sampling 20 independent pion and Hubbard-yre nyuclear matter and a new approximation method called
Stratonovich field configurations. Far,=0 we plot the the zone determinant expansion for nucleon matrix determi-
results for the opposite spin radial distribution function in ygnts. The expansion is made possible by the small size of
Fig. 1 using exact matrix determinants for &x46 Iat_tlce the spatial hopping parameter. We know from power count-
at T=37.5 MeV. In Figs. 2-6 we show the error in the jng in chiral effective theory that the spatial hopping param-
radial distribution function if the estimatd, is used in  eter js suppressed relative to the leading order interactions at
place of detM) for m=0, 2, 4,6, 8. low energies. The zone determinant expansion is given by

Error in <p L(r)pT(O)>, order=4 Error in <p L(r)pT(O)>, order=8

FIG. 4. Error in the opposite spin radial distribution function at  FIG. 6. Error in the opposite spin radial distribution function at
orderm=4. orderm=8.
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)

detM) = de(Mp)exp| >,
p=1

<P¢(F)PL(O)>- (50

We found that the accuracy of the expansion for this
(48) physical observable was significantly better at each order

than that for the expansion of the determinants.
whereM is the nucleon one-body interaction matrMg is The number of required operations for calculating the
the submatrix consisting of zone boundary hopping termspucleon determinant using LU factorization for a®x n ma-
andMy is the submatrix without boundary hopping terms. trix scales as®. Therefore a nuclear lattice simulation that
The convergence of the expansion is controlled by théncludes nucleon/nucleon-hole loops requirt@4)® times
spectral radius oMalME. Physically we expect the con- more operations than the quenched simulation without loops.
vergence to be rapid if the localization length of the nucle-This numerical challenge has been the most pressing limita-

(-prt

tr((Malle)")> ,

ons tion on finite temperature nuclear lattice simulations to date.
For the zone determinant expansion method at fixed zone
| ~ \ﬁ (49) size, the computation cost scales onlyfés) 8%, wherem is
, ) . the order of the expansion. For a simulation on a lattice with
is small compared to the size of the spatial zones. spatial dimensions33one can accelerate the simulation by a

~ We tested the zone determinant expansion using latticgctor of about 18to 107, depending on the expansion order
simulations of neutron matter with self-interactions and neuynd size of the spatial zone. The savings are greater on larger

tral pion exchange. The convergence of the expansion Wagttices and should facilitate future work in the area of finite
measured for several configurations at temperatdite (emperature nuclear lattice simulations.

=37.5 MeV and usind1, 1, 1] spatial zones. By decreasing
the temperature fronT=37.5 MeV to 12.5 MeV we found
that the convergence of the expansion becomes slower, as
predicted by the increase in the localization length. But we D.L. is grateful to B. Borasoy, T. Schaefer, R. Seki, U.
then showed that convergence could be accelerated by iwan Kolck, and participants at the 2003 CECAM Sign Prob-
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