
Accurate Eigenvalues for Fast Trains. Participants from Berlin, Bologna and
Basel arrived by train, and so did those who had flown into Frankfurt or Düsseldorf
from Madrid, Manchester and Raleigh/Durham. The occasion: The IWASEP51 and
GAMM2 workshops in Hagen, Germany, during the week of 28 June 2004. The
subject: accurate solution of eigenvalue problems, and linear algebra in systems &
control theory. An application: trains. To be specific:

Vibration Analysis of Rails Excited by High-Speed Trains. This was the
topic of talks by Volker Mehrmann and Christian Mehl from the Technical University
of Berlin. In collaboration with the company SFE they study the resonances when rail
tracks are excited by high speed trains, the goal being to reduce noise and vibrations
in the trains. The new ICE trains travel across Europe at speeds as high as 300 km/h
but the numerical methods used to design them are at least 30 years old. More often
than not the classical finite element packages produce answers that are plain wrong,
failing to deliver even a single correct digit. Volker Mehrmann and Christian Mehl
showed how modern methods for linear algebra can provide answers accurate to 3
digits in single (!) precision, without a change in the finite element model. The idea
is to carefully exploit structure in the eigenvalue problem.
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Fig. 0.1. Discretization of the Rail.

To understand what Volker Mehrmann, Christian Mehl and their collaborators
have done, let’s start with the modelling of the rail. If the rail is straight and in-
finitely long, a simple finite element discretization, as shown in Figure 0.1, produces
an infinite-dimensional system of ordinary differential equations

Mẍ + Dẋ + Kx = F,

where the matrices M , D and K are block-tridiagonal. If, in addition, the rail sec-
tions between cross ties are identical, then the system is also periodic. After Fourier
transforming, and combining into one vector yj all unknowns located between cross
ties j and j + 1 we get a 3-term difference equation with constant coefficients,

AT
1 yj−1 + A0yj + A1yj+1 = Fj ,

where the complex coefficient matrices depend on the excitation frequency (here the
superscript T denotes the transpose). The matrix A0 is symmetric (AT

0 = A0) while

1http://www.fernuni-hagen.de/mathphys/iwasep5/
2http:/www.math.tu-berlin.de/˜kressner/gamm04/
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the matrix A1 is singular. The ansatz yj+1 = κyj leads to a rational eigenvalue
problem

R(κ)y = 0, where R(κ) ≡
1

κ
AT

1 + A0 + κA1.

Because R(κ) = R
(

1

κ

)T
, this eigenvalue problem is palindromic (in imitation of real-

world palindromes such as: Was it a car or a cat I saw?) As a result the eigenvalues
occur in pairs (κ, 1/κ). Such a spectrum is called symplectic; an example is shown in
Figure 0.2. To analyse the vibrations in the tracks, one needs to compute all finite,
non-zero eigenvalues and eigenvectors for many frequencies in the range 0-5000 Hz.
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Fig. 0.2. Example of a Symplectic Spectrum.

Eigenvalues. A popular approach for solving the rational eigenvalue problem
R(κ)y = 0 is to convert it to a polynomial eigenvalue problem which then in turn is
linearized. To this end write R(κ)y = 0 as the polynomial eigenvalue problem

P (λ)y = 0, where P (λ) = λ2AT
1 + λA0 + A1.

Then apply a classical linearization z = λy to get something like

(

0 I
−A1 −A0

) (

y
z

)

= λ

(

I 0
0 AT

1

)(

y
z

)

.

This is a generalized eigenvalue problem, which can be solved by public domain soft-
ware, such as the MATLAB function eig. That’s it, problem solved!

Not really. All we have done is produce garbage. The two big matrices in the lin-
earized problem are not symmetric; the structure of the original problem is destroyed.
This means numerical methods are not going to deliver a symplectic spectrum, i.e.
the computed eigenvalues are not going to exhibit mirror symmetry, and computed
eigenvalues at 0 and ∞ are not going to occur in pairs. We cannot trust any of the
computed eigenvalues. The conventional methods haved failed because they cannot
see the structure in the original problem and end up producing inaccurate, useless
eigenvalues.

What to do? If we want computed eigenvalues that are accurate then, at the very
least, they should retain the mirror symmetry of a symplectic spectrum. To get a
chance at delivering a symplectic spectrum, a numerical method is much better off if
it can work on a palindromic polynomial. This means, we need to linearize without
losing the palindromic structure. To this end, Volker Mehrmann and Christian Mehl,
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together with Niloufer and Steve Mackey, have developed a theory of structure pre-
serving linearizations, which yields a whole vector space full of linearizations. Not all
of the linearizations are useful, and choosing a ’best’ one (whatever that means) is an
open problem. For the application at hand, this one works:

(λZ + ZT )

(

z
y

)

= 0, where Z ≡

(

AT
1 A0 − A1

AT
1 AT

1

)

is a palindromic linearization3 of P (λ).
We are not home free, yet. As it turns out the computed eigenvalues in this

problem are badly scaled: their magnitudes range from 10−15 to 1015. That’s because,
when we look at the exact eigenvalus of P (λ), many are located at 0 and ∞. It is
therefore imperative to perform a similarity transformation that removes (deflates) the
eigenvalues at 0 and ∞, while managing to preserve the palindromic structure. Only
then can the remaining eigenvalues of P (λ) be computed with a carefully customized
Jacobi method.

The Upshot. It pays to preserve structure, if it can be done in a numerically
viable fashion. In the above train problem, structure-preserving linear algebra meth-
ods rescued an otherwise moribund computation. They made it possible to compute
accurate answers – in the face of a simplistic computational model and a coarse dis-
cretization.

Many details have been swept under the rug in the preceding description. They
can be found in the following references, which represent just a few of the many papers
on structure-preserving methods in linear algebra. A general survey of quadratic
eigenvalue problems, including the conventional linearizations, is given in [2]. A first
attempt at structure preserving linearizations for matrix polynomials was made in
[1]. Two forthcoming papers introduce vector spaces of linearizations for matrix
polynomials [3], and linearizations for palindromic polynomials [4]. The work on the
SFE project is described in the Master’s thesis [5].
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3Strictly speaking, it’s only a linearization if −1 is not an eigenvalue. If it is, it must be removed
(deflated) first.
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