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ERGODICITY COEFFICIENTS DEFINED BY VECTOR NORMS∗

ILSE C. F. IPSEN† AND TERESA M. SELEE‡

Abstract. Ergodicity coefficients for stochastic matrices determine inclusion regions for subdom-
inant eigenvalues; estimate the sensitivity of the stationary distribution to changes in the matrix;
and bound the convergence rate of methods for computing the stationary distribution. We survey
results for ergodicity coefficients that are defined by p-norms, for stochastic matrices as well as for
general real or complex matrices. We express ergodicity coefficients in the one-, two-, and infinity-
norms as norms of projected matrices, and we bound coefficients in any p-norm by norms of deflated
matrices. We show that two-norm ergodicity coefficients of a matrix A are closely related to the sin-
gular values of A. In particular, the singular values determine the extreme values of the coefficients.
We show that ergodicity coefficients can determine inclusion regions for subdominant eigenvalues of
complex matrices, and that the tightness of these regions depends on the departure of the matrix
from normality. In the special case of normal matrices, two-norm ergodicity coefficients turn out to
be Lehmann bounds.
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1. Introduction. Ergodicity, in its most general form, has to do with the long-
term behavior of dynamical systems. Here we concentrate on particular systems,
namely finite inhomogeneous Markov chains, and try to understand measures of
ergodicity from the point of view of linear algebra.

In the context of inhomogeneous Markov chains, ergodicity refers to the asymp-
totic behavior of products of stochastic matrices1 where the number of factors grows
unbounded. Very informally, a Markov chain is ergodic if the matrix products con-
verge to a rank-one matrix, that is, a stochastic matrix all of whose rows are equal.
So-called coefficients of ergodicity were introduced to estimate how fast, if at all, these
products converge to a matrix of rank one.

In the simplest case, all factors in the products are identical to the same stochastic
matrix S. Order the eigenvalues λi(S) in order of decreasing magnitude, 1 = λ1(S) ≥
|λ2(S)| ≥ . . . . If the subdominant eigenvalue is strictly smaller in magnitude than the
dominant eigenvalue, i.e., |λ2(S)| < 1, then |λ2(S

k)| = |λ2(S)|k → 0 as k → ∞. This
means, the powers Sk converge to a stochastic matrix of rank one, and the magnitude
of the subdominant eigenvalue, |λ2(S)|, estimates the asymptotic rate of convergence.
In this situation |λ2(S)| could serve as a coefficient of ergodicity; see [27, 71].

Suppose now the products consist of different stochastic matrices Sj whose num-
ber is increasing and we would like to know at which rate, if at all, the products
S1 · · ·Sj converge to a rank-one matrix as j → ∞. The second eigenvalue is of no use
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here, since in general λ2 (S1 · · ·Sj) �= λ2(S1) · · ·λ2(Sj). We need a substitute for |λ2|,
with some kind of multiplicative property, and the ability to recognize when a matrix
has rank one.

An example of such a substitute is the one-norm coefficient of ergodicity,

(1.1) τ1(S) = max
‖z‖1=1, zT11=0

‖ST z‖1,

where the maximum ranges over real vectors z, the superscript T denotes the trans-
pose, and 11 is the column vector of all ones. The coefficient τ1(S) is simply the norm
of the matrix S restricted to the subspace that is orthogonal to 11. The coefficient
τ1(S) bounds the non-unit eigenvalues of the stochastic matrix S: |λ| ≤ τ1(S) for any
eigenvalue λ �= 1 of S; and it is submultiplicative: τ1(S1S2) ≤ τ1(S1)τ1(S2) for any
two stochastic matrices S1 and S2.

Seneta [78, section 1] identifies two ways to think about ergodicity coefficients:
First one can think of an ergodicity coefficient as a vector norm, maximized over a
particular subspace, as in (1.1). From this point of view it is natural to extend the
concept of ergodicity coefficient to any rectangular matrix A, any vector norm p, and
any vector w,

τp(w,A) = max
‖z‖p=1, zTw=0

‖AT z‖p.(1.2)

Second, one can think of ergodicity coefficients as eigenvalue bounds expressed in
terms of a deflated matrix, with the deflation approximating the dominant spectral
projector,

|λ| ≤ τ1(S) =
1

2
max
1≤j≤n

∥∥ST (I − ej11
T )
∥∥
1
.

Seneta’s two viewpoints, maximization of vector norms and deflation by projectors,
represent the guiding principle for this paper. Initially, though, it was the second point
of view, the connection of ergodicity coefficients to deflated (or downdated) matrices,
that sparked our interest, as we explain in the next section.

1.1. Motivation. We became interested in coefficients of ergodicity in the con-
text of work on the Google matrix [43, 44, 45, 84, 90].

The Google matrix is a convex combination of a stochastic matrix S and a rank-
one stochastic matrix, G ≡ αS+(1−α)11vT , where v is a nonnegative column vector
whose elements sum to one, and 0 ≤ α < 1. Various algorithms have been proposed
to compute the stationary distribution of G, that is, a column vector π �= 0 with
πTG = πT and πT 11 = 1. In [43] we analyzed a so-called aggregation-disaggregation
algorithm and showed that its asymptotic convergence rate is bounded by the ergod-
icity coefficient τ1 of the aggregated matrix.

Alternatively, the stationary distribution π can be computed by applying the
power method toG. The power method has an asymptotic convergence rate of |λ2(G)|,
where λi(G) are the eigenvalues of G labeled in descending order, 1 = λ1(G) ≥
|λ2(G)| ≥ · · · . A derivation “from scratch” [25, 34, 87] shows that |λ2(G)| ≤ α, but
it also follows immediately from |λ2(G)| ≤ τ1(G) = ατ1(S) ≤ α, since τ1(S) ≤ 1. The
asymptotic convergence of the power method on G and its relation to ergodicity has
also been noted by Seneta [84, section 8.2],

Note that the vector 11 in the expression for G is a dominant eigenvector of S
and also of G, since both matrices are stochastic. Hence the rank-one matrix 11vT is
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almost a spectral projector, but not quite. This helped us to realize that τ1 implicitly
deflates a stochastic matrix by removing the dominant spectral projector through the
constraint zT 11 = 0.

The Google matrix form has been extended to general complex matrices [38].
Let A be a complex square matrix with dominant eigenvalue λ and right eigenvec-
tor w, i.e., Aw = λw. Set H ≡ γA + (1 − γ)wx∗, where the superscript ∗ denotes
the conjugate transpose, γ is a complex scalar, and x is a complex column vector
with x∗w = 1. Then one can show [14, Theorems 29 and 32], [38, Corollary 3.3]
that λ2(H) = γ λ2(A). With the more general ergodicity coefficient (1.2) we obtain
readily that |λ2(H)| ≤ |γ| τp(w,A). Again, as for the Google matrix above, the rank-
one matrix wx∗ approximates a spectral projector.

When we started looking at the literature on ergodicity coefficients, we found
many scattered results; it was not always clear how they were related; and the notation
was at times inconsistent and not always transparent. Our difficulty in understanding
the entirety of the existing results was the motivation for writing this paper.

1.2. Overview. We survey coefficients of ergodicity that are defined by vector
norms, from the vantage point of numerical linear algebra. We try to present a coherent
discussion of existing results, with simplified and complete proofs. We argue that
ergodicity coefficients can be viewed as norms of deflated matrices. For two-norm
coefficients we present new explicit expressions and establish connections to singular
values and eigenvalue bounds.

We restrict our attention to ergodicity coefficients of finite dimensional matrices.
Ergodicity coefficients for stochastic matrices of infinite dimension have been studied
by, among others, Isaacson and Madsen [46], Paz [61], Paz and Reichaw [63], and
Rhodius [70].

We could have started this survey with ergodicity coefficients in their most
general form and derived the results for stochastic matrices as corollaries. Instead,
we decided to follow the historical development a bit, which began with coeffi-
cients for stochastic matrices: in the one norm (section 3), infinity norm (sec-
tion 4), and any p-norm (section 5). Subsequently we extend the coefficients to
real matrices (section 6), and to complex matrices with maximization over arbitrary
subspaces (section 7). We illustrate applications of ergodicity coefficients to estimat-
ing the sensitivity of stationary distributions (section 3.4), and determining inclu-
sion regions for eigenvalues of several classes of matrices, which include nonnegative
(section 6.5), general complex (section 7.2), and normal matrices (section 7.5). We
end with a summary and a few suggestions for further research (section 8). The bib-
liography includes back references that point to the pages where each reference is
cited.

1.3. New results. We present a self-contained proof for the explicit form of the
one-norm ergodicity coefficient (Theorem 3.7).

We represent ergodicity coefficients as norms of obliquely projected matrices, in
the one-norm (Corollary 3.8), and in the infinity-norm (Corollaries 4.4 and 6.14).
For the two-norm, we derive explicit expressions in terms of orthogonal projections
of the matrix (Theorems 6.15, 6.19, 7.6, and 7.7). We show that general ergodicity
coefficients in any p-norm can be bounded by the norm of a deflated matrix
(Theorem 7.2).

We illustrate that two-norm coefficients can reproduce any singular value (Corol-
laries 6.20 and 7.8), and that their extreme values are determined by singular values
(Theorem 7.9). We apply ergodicity coefficients to determine inclusion regions for
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subdominant eigenvalues of general complex matrices (Theorems 7.5 and 7.11) and
show that the tightness of the inclusion regions depends on the departure of the ma-
trix from normality. In the special case of normal matrices, the two-norm ergodicity
coefficients turn out to be Lehmann bounds (Theorem 7.13).

1.4. Notation. The elements of anm× nmatrixA are denoted by aij , 1≤ i≤m,
1 ≤ j ≤ n, and the column space is range(A) ≡ {b : b = Ax for any x ∈ Cn}. The
orthogonal complement of range(A) in Rm or Cm is range(A)⊥. The transpose of A
is AT , and the conjugate transpose is A∗. The identity matrix is I, and its columns
are the canonical vectors ei, i ≥ 1.

For an n×1 column vector x =
(
x1 . . . xn

)T
, the one-norm and infinity norms

are, respectively,

‖x‖1 =

n∑
i=1

|xi|, ‖x‖∞ = max
1≤i≤n

|xi|.

The componentwise inequality x ≥ 0 (x > 0) means that all elements satisfy xi ≥ 0
(xi > 0), while |x| > 0 means that all elements satisfy xi �= 0. The vector x is

stochastic if x ≥ 0 and xT 11 = 1, where 11 =
(
1 . . . 1

)T
. By x1:k we mean the k× 1

vector x1:k =
(
x1 . . . xk

)T
. The n× n diagonal matrix constructed from the n× 1

vector x is denoted by

diag(x) ≡

⎛⎜⎝x1

. . .

xn

⎞⎟⎠ .

2. General ergodicity coefficients for stochastic matrices. We present a
formal definition of ergodicity, and introduce two very general classes of ergodicity
coefficients.

2.1. Weak ergodicity. Ergodicity, in general, refers to the long-term behavior
of dynamical systems. In the context of finite, inhomogeneous Markov chains, ergod-
icity describes the long-term behavior of products of stochastic matrices where the
number of factors is increasing. Seneta attributes the following definition of weak
ergodicity to a 1931 paper by Kolmogorov.

Definition 2.1 (section 4 in [53], section 1 in [75]). Let {Sk} be a sequence

of n × n stochastic matrices, k ≥ 1, and let t
(p,r)
ij be the (i, j) entry of the forward

product T (p,r) = Sp+1Sp+2 · · ·Sp+r. The sequence {Sk} is called weakly ergodic if for
all 1 ≤ i, j, k ≤ n and p ≥ 0,

t
(p,r)
ik − t

(p,r)
jk → 0 as r → ∞.

This means, a sequence of stochastic matrices is weakly ergodic if the rows of the
products tend to equalize as the number of factors in the product increases.

Conditions for weak ergodicity appear in numerous sources. Among the earliest
works we found were papers by Bernštein [8, 9, 10, 11, 12, 13], Doeblin [23], Dobrushin
[21], Dynkin [24], Sapogov [72, 73], and Sarymsakov [74]; these papers appeared be-
tween 1920 and 1950. More recent papers by Cohn [18, 19], Dobrushin [22], Hajnal
[28, 29], Kingman [48], and Paz and Reichaw [63] are written in English and are
more easily accessible. Excellent summaries can be found in Seneta’s technical papers
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[75, section 1], [76, section 1], his biography of Markov [84, sections 7–9], and his book
[85, Chapters 3–4]. This revised printing of the 1981 version of Seneta’s book [85] also
contains a list of more recent papers on various aspects of ergodicity coefficients. Ap-
plications of ergodicity coefficients in the context of nonhomogeneous matrix products
are presented in [33].

2.2. First class of ergodicity coefficients. This class of ergodicity coefficient
is defined specifically for stochastic matrices.

Definition 2.2 (page 509 in [75]). A coefficient of ergodicity, or ergodicity co-
efficient, is a continuous scalar function μ(·) defined for stochastic matrices S that
satisfies 0 ≤ μ(S) ≤ 1. A coefficient of coefficient is proper if

μ(S) = 0 ⇐⇒ S = 11vT ,

where v is a stochastic vector.
A proper coefficient of ergodicity is equal to zero if all rows of the stochastic

matrix are identical. This, in turn, is the case if and only if the rank of the stochastic
matrix equals one. Sometimes one finds an alternative definition, where the ergodicity
coefficient is defined instead as μ̂(S) ≡ 1−μ(S) and is called proper if: μ̂(S) = 1 ⇐⇒
rank(S) = 1 [15], [29, section 2], [42, p. 56], [48, section 4], [75, section 2].

For the particular case of doubly stochastic2 matrices, a proper ergodicity coeffi-
cient is zero for both the matrix and its transpose at the same time. This is because
the rank of a matrix is equal to the rank of its transpose. The corresponding statement
below was shown for τ1(·) in [61, Property 1].

Theorem 2.3. If Sd ∈ R
n×n is a doubly stochastic matrix and μ(·) a proper

coefficient of ergodicity, then

μ(Sd) = μ
(
ST
d

)
= 0 ⇐⇒ rank(Sd) = 1.

Proof. According to Definition 2.2, μ(Sd) = 0 ⇐⇒ rank(Sd) = 1. Since ST
d is

also stochastic, μ(ST
d ) = 0 ⇐⇒ rank(ST

d ) = 1. The desired statement follows from
the fact that rank(Sd) = rank(ST

d ).
Although a doubly stochastic matrix of rank one equals Sd = 1

n1111
T and is sym-

metric, doubly stochastic matrices of larger rank are in general not symmetric.
Definition 2.2 allows us to express the condition for weak ergodicity in terms of

proper ergodicity coefficients.
Theorem 2.4 (page 136 in [85]). Let {Sk} be a sequence of n × n stochastic

matrices, k ≥ 1, and let T (p,r) = Sp+1Sp+2 · · ·Sp+r. The sequence {Sk} is weakly
ergodic if for all p ≥ 0

μ
(
T (p,r)

)
→ 0 as r → ∞,

where μ(·) is a proper coefficient of ergodicity.
Example 2.5. Let S be a stochastic matrix. The following are proper ergodicity

coefficients [85, p. 137],

τ1(S) =
1

2
max
ij

∑
k

|sik − sjk| = 1−min
ij

∑
k

min{sik, sjk},

α(S) = max
k

max
ij

|sik − sjk|,

β(S) = 1−
∑
k

min
i

sik.

2A stochastic matrix Sd is doubly stochastic if ST
d is also stochastic.
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The equalities for τ1(S) will be proved in Theorem 3.7 and Corollary 3.9.
The following ergodicity coefficient is not proper [85, p. 137]

γ(S) ≡ 1−max
k

min
i

sik.

This is because the n × n stochastic matrix S = 1
n1111

T has rank(S) = 1 but γ(S) =
1− 1

n �= 0.
The ergodicity coefficients in Example 2.5 can be related to each other in a number

of ways [61], [75, section 1]. Below is one of the simpler relations.
Theorem 2.6 (page 56 in [42], pages 137–138 in [85]). If S is a stochastic matrix,

then the ergodicity coefficients in Example 2.5 satisfy

α(S) ≤ τ1(S) ≤ β(S) ≤ γ(S).

Proof. We start with the bound α(S) ≤ τ1(S). Choose indices l,m, and r so that
α(S) = smr − slr ≥ 0. Then

τ1(S) =
1

2
max
ij

∑
k

|sik − sjk| ≥ 1

2

∑
k

|smk − slk|.

We remove the absolute values by breaking up the sum as follows. Let Pm be the set
of all indices k with smk ≥ slk, and let Pl be the set of all indices k with smk < slk.
Then ∑

k

|smk − slk| =
∑

k∈Pm

(smk − slk) +
∑
k∈Pl

(slk − smk) .

Since the elements in each row of S sum to one we obtain∑
k∈Pl

smk = 1−
∑

k∈Pm

smk,
∑
k∈Pl

slk = 1−
∑

k∈Pm

slk.

Applying these two equalities to
∑

k∈Pl
(slk − smk) gives∑

k∈Pl

(slk − smk) =
∑

k∈Pm

(smk − slk) ,

hence

τ1(S) ≥ 1

2

∑
k

|smk − slk| =
∑

k∈Pm

(smk − slk).

We have expressed the sum in terms of Pm, because α(S) = smr − slr ≥ 0 implies
that the index r must be in Pm. Extracting the rth term from the sum gives∑

k∈Pm

(smk − slk) = (smr − slr) +
∑

k∈Pm
k 	=r

(smk − slk) = α(S) +
∑

k∈Pm
k 	=r

(smk − slk).

The indices k ∈ Pm are those for which smk ≥ slk, hence
∑

k∈Pm
k 	=r

(smk − slk) ≥ 0,

and τ1(S) ≥ α(S).
To prove τ1(S) ≤ β(S), let i0 and j0 be indices that achieve the minimum in the

second expression for τ1 in Example 2.5. From min{si0,k, sj0,k} ≤ mini sik follows

1− τ1(S) =
∑
k

min{si0,k, sj0,k} ≥
∑
k

min
i

si,k = 1− β(S).

At last, the bound β(S) ≤ γ(S) follows from maxk mini sik ≤∑k mini sik.
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2.3. Second class of ergodicity coefficients. This second class of coefficients
gives rise to many of the popular ergodicity coefficients.

Definition 2.7 (section 2 in [76]). Let S ∈ Rn×n be a stochastic matrix, and let d
be a metric defined on the set of stochastic vectors D = {x : x ∈ Rn, x ≥ 0, xT 11 = 1}.
The quantity

τ(S) = sup
x,y∈D
x 	=y

d
(
xTS, yTS

)
d (xT , yT )

is a coefficient of ergodicity.
For instance, supx,y∈D,x 	=y ‖xTS − yTS‖1/‖xT − yT ‖1 is a coefficient of ergodicity

in the sense of Definition 2.7, as well as Definition 2.2, because it is continuous, takes
on values in [0, 1], and is generated by a metric; see section 3 for more details.

However, there are situations where Definitions 2.2 and 2.7 are not consistent
[55]. The coefficient μ(S) = s11 satisfies Definition 2.2 because it is continuous and
0 ≤ μ(S) ≤ 1; but μ(S) does not satisfy Definition 2.7 because it cannot be generated
by a metric on D. The coefficient supx,y∈D,x 	=y ‖xTS − yTS‖∞/‖xT − yT ‖∞ satisfies
Definition 2.7, but it does not satisfy Definition 2.2 because it can take on values
greater than 1; see section 4.

There are many ways to choose a metric d [55, 67, 68, 71, 76]. Two popular choices
are presented below.

Birkhoff’s Contraction Coefficient. The projective distance between two vec-
tors x > 0 and y > 0 is

dB(x, y) = ln

(
maxi

xi

yi

minj
xj

yj

)
= max

ij
ln

(
xiyj
xjyi

)
.

The corresponding ergodicity coefficient

τB(S) = sup
dB
(
xTS, yTS

)
dB (xT , yT )

,

whose supremum ranges over all vectors x > 0 and y > 0 that are not multiples
of each other, is called Birkhoff’s Contraction Coefficient [85, sections 3.1 and 3.4].
It can actually be defined for the larger class of row-allowable matrices, which are
nonnegative square matrices with at least one positive entry per row [85, sections
3.1 and 3.4], [33, section 2.2]. Hajnal [30, (7)] presents basic properties of τB , and
Seneta [85, sections 3.1 and 3.4] derives explicit expressions. Hartfiel [33, sections 2.2
and 5] presents an in-depth treatment of τB with application to nonhomogeneous
matrix products. Artzrouni and others have studied τB in the context of more general
dynamical systems [3, 4, 5].

Ergodicity coefficients defined by vector norms. Norm-based coefficients
appear as early as 1956 in a paper by Dobrushin [22, sections 1.4 and 1.5]. For an
operator S derived from a transition probability function and a particular norm ‖ · ‖,
Dobrushin chooses the metric d(x, y) = ‖x− y‖, so that

τ(S) = sup
x,y,∈D
x 	=y

‖S(x− y)‖
‖x− y‖ .
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The continuity of norms, together with z = x− y, implies

τ(S) = sup
‖z‖=1

zT11=0

‖Sz‖ .

For the remainder of the paper we focus on ergodicity coefficients defined by
vector norms, because such coefficients appear most often in the context of stochastic
matrices. Rhodius [68, section 1] credits Seneta [76, section 2] with introducing these
coefficients. Unfortunately, there is some confusion associated with their definition,
because many authors assume that a vector and its transpose have the same vector
norm, i.e., ‖x‖p =

∥∥xT
∥∥
p
for all vectors x [27, 31, 32, 54, 55, 66, 68, 69, 70, 71, 76,

77, 79, 84, 88, 89]. We do not make this assumption.
To be consistent with the commonly used indices for ergodicity coefficients, we

define the p-norm ergodicity coefficient for stochastic matrices S as

(2.1) τp(S) = max
‖z‖p=1

zT11=0

∥∥ST z
∥∥
p
,

where the maximum ranges over z ∈ Rn. The subscript p indicates the dependence on
the norm, and the order of the matrix-vector multiplication has been reversed so that
the norm always applies to a column vector. Since τp(·) is a continuous real-valued
function on a finite dimensional real vector space, there is a vector that achieves the
maximum, and the supremum reduces to a maximum.

3. One-norm ergodicity coefficients for stochastic matrices. The coeffi-
cient (2.1) in the one-norm applied to a stochastic matrix S is [76, section 2], [85,
section 4.3]

(3.1) τ1(S) = max
‖z‖1=1

zT11=0

∥∥ST z
∥∥
1
,

where the maximum ranges over z ∈ Rn. This coefficient is also called the “Dobrushin
coefficient” or “delta coefficient” [47, 62, 88]. We start with two auxiliary results in
section 3.1 for vectors whose components sum to zero, like those in (3.1), and then
derive properties of τ1(S) in section 3.2. In section 3.3 we show that τ1(S) is identical to
the explicit expressions in Example 2.5. An application of τ1(S) to condition numbers
of stationary distributions is discussed in section 3.4.

3.1. Vectors whose elements sum to zero. We present several results for real
vectors whose elements sum to zero, like those that define the maximum for τ1(S) in
(3.1). These results will be instrumental in deriving explicit expressions for τ1(S) in
section 3.3, and for τ∞(S) in section 4.1.

First we show that vectors whose elements sum to zero can be represented as
linear combinations with nonnegative coefficients of vectors ei − ej .

Lemma 3.1 (Lemma 2.4 in [85]). If x ∈ Rn satisfies x �= 0 and xT 11 = 0, then

x =
∑
i	=j

yij
ei − ej

2
, where yij ≥ 0,

∑
i	=j

yij = ‖x‖1.

Proof. The proof proceeds by induction over the dimension n of x.
If n = 2, assume, without loss of generality, that x1 > 0. Then xT 11 = 0 implies

x = x1

(
1 −1

)T
. Setting y12 ≡ 2x1 gives x = y12(e1 − e2)/2 and y12 = ‖x‖1 > 0.
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Now assume the lemma holds for n ≥ 2 and we will show it holds for n + 1.
Let x �= 0 be a vector of dimension n + 1 with xT 11 = 0, and assume it has been
permuted so that xn > 0 and xn+1 < 0. Without loss of generality we also assume
xn = max1≤i≤n+1 |xi|. Then

x =

⎛⎝x1:n−1

xn

xn+1

⎞⎠ =

⎛⎝ x1:n−1

xn + xn+1

0

⎞⎠− xn+1

⎛⎝01:n−1

1
−1

⎞⎠ .

Define the vector x̂ =
(
xT
1:n−1 xn + xn+1

)T
of dimension n, which satisfies x̂T 11 =

xT 11 = 0. If x̂ = 0, then the conclusion follows as in the case n = 2. If x̂ �= 0, then we
apply the induction hypothesis to x̂ and obtain

x̂ =
∑
i	=j

yij
ei − ej

2
, where yij ≥ 0,

∑
i	=j

yij = ‖x̂‖1 .

Applying the definition of x̂ and setting yn,n+1 = −2xn+1 > 0 gives∑
i	=j

yij + yn,n+1 = ‖x̂‖1 − 2xn+1 = ‖x1:n−1‖1 + |xn + xn+1| − 2xn+1.

From xn = max1≤i≤n+1 |xi| > 0 and xn+1 < 0 follows xn + xn+1 > 0. Hence
|xn + xn+1| = xn + xn+1 and

∑
i	=j yij + yn,n+1 = ‖x‖1. Furthermore, from the

definition of yn,n+1 we obtain the desired expression for x,

x =

(
x̂
0

)
− xn+1

⎛⎝01:n−1

1
−1

⎞⎠ =
∑
i	=j

yij
ei − ej

2
+ yn,n+1

en − en+1

2
.

The following bounds from [35] apply to inner products of real vectors where one
of the vectors has elements summing to zero. We extend these bounds to complex
vectors.

Lemma 3.2 (Lemma (2.3) in [35]). If x, y ∈ Cn and xT 11 = 0, then for any
scalar θ

|xT y| ≤ ‖x‖p ‖y − θ11‖q, 1

p
+

1

q
= 1.

Proof. The idea is to incorporate the constraint xT 11 = 0 into the inner product,
by writing xT y = xT (y − θ11), and then applying Hölder’s inequality.

Below are two special cases of Lemma 3.2 for particular choices of p, q, and θ.
Seneta discusses the proper attribution of (3.2) in [84, sections 7.1 and 7.3], and refers
to it as Markov’s Contraction Inequality.

Lemma 3.3 (Corollary (2.4) in [35]). If x, y ∈ Cn and xT 11 = 0, then

|xT y| ≤ ‖x‖1
2

max
ij

|yi − yj |.(3.2)

If y is real, with elements labeled in nonincreasing order y(1) ≥ · · · ≥ y(n), then

|xT y| ≤ ‖x‖∞ φ(y),(3.3)
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where

φ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n/2∑
i=1

y(i) −
n∑

i=n/2+1

y(i) if n is even,

(n−1)/2∑
i=1

y(i) −
n∑

i=(n+3)/2

y(i) if n is odd.

Proof. Inequality (3.2) follows from Lemma 3.2 with p = 1, q = ∞, and θ chosen
as follows. Let k and l be such that |yk − yl| = maxij |yi − yj|. Then all points yi lie
in a ball with diameter |yk − yl| and center θ = (yk + yl)/2. The distance between
any yi and the center θ is bounded by the radius |yk − yl|/2. Hence ‖y − θ11‖∞ =
maxi |yi − θ| ≤ |yk − yl|/2.

Inequality (3.3) follows from Lemma 3.2 with p = ∞, q = 1, and θ = y(l), where
l = n/2 for n even, and l = (n+ 1)/2 for n odd. This gives, for even n and l = n/2,

‖y − θ11‖1 =

n∑
i=1

|y(i) − y(n/2)| =
n/2∑
i=1

(y(i) − y(n/2)) +

n∑
i=n/2+1

(y(n/2) − y(i))

=

n/2∑
i=1

y(i) −
n∑

i=n/2+1

y(i) = φ(y),

while for odd n and l = (n+ 1)/2 we obtain

‖y − θ11‖1 =

n∑
i=1

|y(i) − y(l)| =
l∑

i=1

(y(i) − y(l)) +

n∑
i=l+1

(y(l) − y(i))

=

l−1∑
i=1

y(i) −
n∑

i=l+1

y(i) = φ(y).

3.2. Properties. We show that τ1(S) in (3.1) is a proper coefficient of ergodicity
in the sense of Definition 2.2, that it is submultiplicative, and that it represents a
bound for subdominant eigenvalues.

The ergodicity coefficient τ1(S) represents the norm of S restricted to the subspace
spanned by the left eigenvectors associated with eigenvalues λ �= 1. This is because
the elements in each row of the stochastic matrix S sum to one, S11 = λ11 = 11, so that
11 is a right eigenvector for λ = 1, and left eigenvectors associated with eigenvalues
λ �= 1 are orthogonal to 11.

By construction τ1 is an ergodicity coefficient in the sense of Definition 2.7. Below
we show that τ1 is also an ergodicity coefficient in the sense of Definition 2.2.

Theorem 3.4 (section 4.3 in [85]). If S, S1, and S2 are stochastic matrices, then
1. 0 ≤ τ1(S) ≤ 1,
2. |τ1(S1)− τ1(S2)| ≤ τ1(S1 − S2),
3. τ1(S) = 0 ⇐⇒ rank(S) = 1.

Therefore, τ1 is a proper coefficient of ergodicity in the sense of Definition 2.2.



ERGODICITY COEFFICIENTS 163

Proof.
1. The first set of equalities follows from

0 ≤ τ1(S) = max
‖z‖1=1,zT11=0

∥∥ST z
∥∥
1
≤ max

‖z‖1=1
‖ST z‖1 = ‖ST‖1 = ‖S‖∞ = 1.

2. Let τ1(S1) ≥ τ1(S2), and τ1(S1) =
∥∥ST

1 y
∥∥
1
for a vector y with ‖y‖1 = 1 and

yT 11 = 0. Then

0 ≤ τ1(S1)− τ2(S2) = ‖ST
1 y‖1 − max

‖z‖1=1

zT11=0

∥∥ST
2 z
∥∥
1
≤ ∥∥ST

1 y
∥∥
1
− ∥∥ST

2 y
∥∥
1
.

The triangle inequality implies∥∥ST
1 y
∥∥
1
−∥∥ST

2 y
∥∥
1
≤
∥∥∥(S1 − S2)

T
y
∥∥∥
1
≤ max

‖z‖1=1

zT11=0

∥∥∥(S1 − S2)
T
z
∥∥∥
1
= τ1(S1−S2).

3. If τ1(S) = 0, then
∥∥ST z

∥∥
1
= 0 for any z with zT 11 = 0, and in particular for

z = 1
2 (ei−ej) with i �= j. This means that any two rows of ST are identical and

rank(S) = 1. Conversely, if rank(S) = 1, then S = 11vT for some stochastic
vector v. For any vector z with zT 11 = 0 this implies ST z = v11T z = 0. Hence
τ1(S) = 0.

Item 1 implies that τ1 takes on values in [0, 1], and item 2 implies that τ1(S) is
a continuous function of S. Therefore τ1 is a coefficient of ergodicity in the sense
of Definition 2.2. Furthermore, item 3 implies that τ1 is a proper coefficient of
ergodicity.

Remark 3.5. For stochastic matrices S and S+E, the proof Theorem 3.4 implies

|τ1(S + E)− τ1(S)| ≤ ‖E‖∞.

This means, small changes in S produce only small changes in τ1(S). In other words,
τ1(S) is well-conditioned in the absolute sense with respect to changes in S.

Since τ1 is a proper ergodicity coefficient, Theorem 2.3 implies for a doubly
stochastic matrix Sd that τ1 is zero at the same time for Sd and ST

d [61, Property 1],

τ1(Sd) = τ1(S
T
d ) = 0 ⇐⇒ rank(Sd) = 1.

Now we show that τ1(S) is an upper bound on all non-unit eigenvalues of a
stochastic matrix S, and that τ1 is submultiplicative.

Theorem 3.6 (section 5.2 in [6], section 3.2 in [76], section 4 in [78]). If S, S1,
and S2 are stochastic matrices, then

1. |λ| ≤ τ1(S) for all eigenvalues λ �= 1 of S,
2. τ1(S1S2) ≤ τ1(S1)τ1(S2).

Proof.
1. If λ �= 1 is a real eigenvalue of S, then there is a real left eigenvector v

with ST v = λv and ‖v‖1 = 1. Since v is a left eigenvector, and 11 is a
right eigenvector for a different eigenvalue, v and 11 must be orthogonal, i.e.,
vT 11 = 0. Hence

|λ| = |λ|‖v‖1 = ‖λv‖1 =
∥∥ST v

∥∥
1
≤ max

‖z‖1=1

zT11=0

∥∥ST z
∥∥
1
= τ1(S).
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If λ �= 1 is a complex eigenvalue, then its eigenvectors v are complex, too.
In this case the following more general, but less intuitive, proof applies [76,
section 3.2], [78, section 4]. For any complex vector y define the function

f(y) ≡ 1

2
max
ij

|yi − yj | = 1

2
max
i,j

|(ei − ej)
T y|.

Applying f to the vector Sy gives

f(Sy) =
1

2
max
ij

|(ei − ej)
TSy| = 1

2
|(ek − el)

TSy|

for some k and l. Since (ek − el)
TS11 = 0, (3.2) implies

1

2
|(ek − el)

TSy| ≤ ‖ST (ek − el)‖1
2

maxij |yi − yj |
2

≤ τ1(S) f(y),

where the last inequality follows from the expression for τ1 in (3.1) and the
fact that (ek−el)

T 11 = 0. Therefore, for any real or complex vector y we have

f(Sy) ≤ τ1(S) f(y).(3.4)

Now let v be a right eigenvector associated with an eigenvalue λ �= 1 of S, so
that Sv = λv. Then

f(v) =
1

2
max
ij

|(ei − ej)
T v| = 1

2
|(ek − el)

T v|

for some k and l, and

f(Sv) =
1

2
max
ij

|(ei − ej)
TSv| ≥ 1

2
|(ek − el)

TSv| = |λ|
2

|(ek − el)
T v|

= |λ| f(v).
Hence |λ| f(v) ≤ f(Sv). Combining this with (3.4) gives

|λ| f(v) ≤ τ1(S) f(v).

Since v is a right eigenvector of S associated with an eigenvalue λ �= 1, v
cannot be a multiple of 11, hence f(v) �= 0. Dividing the above inequality by
f(v) gives |λ| ≤ τ1(S). An alternative proof in [6, section 5.2] is based on
constructing a seminorm on Cn that is equal to τ1(S).

2. Let y be a vector with τ1(S1S2) = ‖ (S1S2)
T y‖1, ‖y‖1 = 1, and yT 11 = 0.

The vector x ≡ ST
1 y/

∥∥ST
1 y
∥∥
1
satisfies ‖x‖1 = 1 and xT 11 = 0. Then

τ1(S1S2) =
∥∥∥(S1S2)

T y
∥∥∥
1
=
∥∥ST

2 S
T
1 y
∥∥
1
=
∥∥ST

1 y
∥∥
1

∥∥ST
2 x
∥∥
1

≤ τ1(S1) τ1(S2).

The interesting feature of Theorem 3.6 is that the magnitude of complex eigen-
values can be bounded by an expression that is maximized over real vectors. Seneta
[81, p. 191] credits the submultiplicative property to Dobrushin [22]; it also appears
in a 1975 paper by Kingman [48, (4.10)].

Kirkland and Neumann [50] characterize classes of irreducible stochastic matrices
S that have subdominant eigenvalues λ �= 1 for which equality holds in Theorem 3.6.
In their work, as in section 1.1, we find a connection to the Google matrix. Kirkland
and Neumann transform the matrices S so that they have constant row sums, and
they do this by adding to S a suitable matrix of rank one. The resulting matrix has
the form of a Google matrix.
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3.3. Explicit expressions. We show that τ1(S) in (3.1) is identical to the two
expressions in Example 2.5.

Markov, in 1906, may have been the first to present an explicit expression for the
ergodicity coefficient τ1(S), as part of a construction of a Weak Law of Large Numbers
[57, pp. 358-359], [56, 58]. For a stochastic matrix S, Markov introduces a quantity
0 < H < 1 that satisfies

H =
1

2
max
ij

∑
k

|sik − sjk|.

In fact 0 ≤ H ≤ 1. The quantityH is equal to the first expression for τ1(S) in Example
2.5. Seneta comments on this use of H in Markov’s works [83, section 5], [84, section
7]. On the occasion of Markov’s 150th birthday in 2006, Seneta offers a fascinating
account of Markov’s life and legacy [84, sections 1–6].

In the context of the Central Limit Theorem for Markov chains [22, p. 70]
Dobrushin shows that

sup
x,y

‖STx− ST y‖1
‖x− y‖1 = 1−min

ij

∑
k

min{sik, sjk}.

This explains why Seneta refers to τ1(S) as the “Markov-Dobrushin coefficient of
ergodicity” [84, p. 10]. Other authors, such as Kirkland and Neumann [50, section
1], credit Deutsch and Zenger [20] with this bound. Paz [62] refers to the expression
1 − minij

∑
k min{sik, sjk} as the δ-coefficient, which was later adopted by other

authors, including Tan [89] and Rhodius [66, 69, 70].
We show that the first expression for τ1(S) in Example 2.5 is identical to the

expression in (3.1), i.e.,

max
‖z‖1=1

zT11=0

∥∥ST z
∥∥
1
=

1

2
max
ij

∑
k

|sik − sjk|.

Theorem 3.7 (sections 3.1 and 4.3 in [85]). If S ∈ Rn×n is a stochastic matrix,
then

τ1(S) =
1

2
max
ij

∥∥ST (ei − ej)
∥∥
1
=

1

2
max
ij

n∑
k=1

|sik − sjk|.

Proof. Let τ1(S) =
∥∥STx

∥∥
1
, where xT 11 = 0 and ‖x‖1 = 1. Applying Lemma 3.1

gives x =
∑

i	=j yij (ei − ej) /2, where
∑

i	=j yij = ‖x‖1 = 1. The triangle inequality

applied to ‖STx‖1 yields

(3.5) τ1(S) =
∥∥STx

∥∥
1
≤
∑
i	=j

yij
2

∥∥ST (ei − ej)
∥∥
1
≤ 1

2
max
ij

∥∥ST (ei − ej)
∥∥
1
.

Hence τ1(S) ≤ 1
2 maxij ‖ST (ei − ej)‖1.

To show the reverse inequality, set y = (ei − ej)/2 for some i �= j. Then yT 11 = 0,
‖y‖1 = 1, and

τ1(S) = max
‖z‖1=0

zT11=0

∥∥ST z
∥∥
1
≥ ∥∥ST y

∥∥
1
=

1

2

∥∥ST (ei − ej)
∥∥
1
.



166 ILSE C. F. IPSEN AND TERESA M. SELEE

Since this inequality holds for any i and j, we have τ1(S) ≥ 1
2 maxij ‖ST (ei − ej)‖1.

According to the definition of the one-norm, ‖ST (ei − ej)‖1 =
∑n

k=1 |sik − sjk|,
so that τ1(S) =

1
2 maxij

∑n
k=1 |sik − sjk|.

Theorem 3.7 has several consequences. First we can view τ1(S) as the norm of an
(oblique) projection of S, with the projection being onto range(11)⊥.

Corollary 3.8. If S ∈ Rn×n is a stochastic matrix, then

τ1(S) =
1

2
max
1≤j≤n

∥∥ST (I − ej11
T )
∥∥
1
.

Proof. In the expression for τ1(S) from Theorem 3.7 write

max
ij

∥∥ST (ei − ej)
∥∥
1
= max

ij

∥∥ST (I − ej11
T )ei

∥∥
1
= max

1≤j≤n

∥∥ST (I − ej11
T )
∥∥
1
.

Another consequence of Theorem 3.7 is the second expression for τ1(S) from
Example 2.5.

Corollary 3.9 (sections 3.1 and 4.3 in [85], pages 1733–1734 in [41]). If S ∈
R

n×n is a stochastic matrix, then τ1(S) = 1−minij
∑n

k=1 min{sik, sjk}.
Proof.3 Any two real numbers s and t satisfy

min{s, t} =
1

2
(|s+ t| − |s− t|) .

Applying this to the expression in Theorem 3.7 yields

1

2

n∑
k=1

|sik − sjk| = 1

2

n∑
k=1

(sik + sjk)−
n∑

k=1

min{sik, sjk} = 1−
n∑

k=1

min{sik, sjk},

where the last equality follows because the elements in each row of S sum to one.
Taking the maximum over i and j gives the desired expression.

In place of the above expression, several authors choose as a coefficient ergodicity
instead the negative version 1− τ1(S) = minij

∑n
k=1 min{sik, sjk} [22, 29, 41, 46, 63,

65].
In many situations, τ1(S) is only of interest when it is less than 1. Eigenvalue

bounds, and bounds on the condition number of the stationary distribution as in
Theorem 3.14 in the next section, are just two examples. Corollary 3.9 implies that
τ1(S) < 1 is possible if and only if any two rows of S “intersect” by having a positive
element in a corresponding position. Such matrices have their own name.

Definition 3.10 (section 2 in [29], section 3.2 in [75], page 82 in [85]). A stochas-
tic matrix S is scrambling if any two rows share some column in which they both have
a positive element.

What can we say about scrambling matrices? Scrambling matrices are a subset of
primitive stochastic matrices [29, 85]. Therefore matrices with a single element in each
column, such as permutation matrices, cannot be scrambling. An extreme example is
Markov matrices, which have at least one entirely positive column.

Definition 3.11 (section 3.2 in [75]). A stochastic matrix S is a Markov matrix
if maxj (mini sij) > 0.

Thus all Markov matrices are scrambling matrices. The properties of being scram-
bling and Markov are preserved by multiplication.

3We thank one of the reviewers for simplifying this proof.
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Theorem 3.12 (Lemma 2 in [29], section 4 in [76]). If S and Q are stochastic
matrices and one of them is scrambling, then SQ and QS are also scrambling.

Proof. This follows from the submultiplicative property, τ1(SQ) ≤ τ1(S)τ1(Q) in
Theorem 3.6.

Theorem 3.13 (section 3.2 in [75]). If S and Q are stochastic matrices and one
of them is a Markov matrix, then SQ and QS are also Markov matrices.

More examples and properties of scrambling matrices can be found in [33, sec-
tion 4.1].

Next we derive a perturbation bound for the stationary distribution of scrambling
matrices.

3.4. Condition number for the stationary distribution. We show that
τ1(S) yields a bound for the normwise condition number of the stationary distribution
of a scrambling matrix.

Theorem 3.14 (section 2 in [79]). Let S and S + E be stochastic, irreducible
matrices with πTS = πT , π̂T (S + E) = π̂T , and ‖π‖1 = ‖π̂T ‖1 = 1. If S is scrambling
so that τ1(S) < 1, then

‖π̂ − π‖1 ≤ ‖E‖∞
1− τ1 (S)

.

Proof. From πT (I − S) = 0 and π̂T (I − S) = π̂TE follows

(3.6) (π̂ − π)
T
(I − S) = π̂TE.

Because S is irreducible, and τ1(S) < 1, the dominant eigenvalue 1 is simple and we
can write S = 11πT + Q, where the eigenvalues of Q are less than 1 in magnitude.
Substituting this into expression (3.6) and using πT 11 = π̂T 11 = 1 gives

(π̂ − π)T (I −Q) = π̂TE.

Because all eigenvalues of Q are less than 1 in magnitude, I −Q is nonsingular and
(I −Q)−1 =

∑∞
i=0 Q

i [59, p. 126]. Thus

(π̂ − π)
T
= π̂TE (I −Q)−1 =

∞∑
i=0

yTQi, where yT ≡ π̂TE.

Taking norms and applying the triangle inequality gives

‖π̂ − π‖1 =
∥∥∥(π̂ − π)T

∥∥∥
∞

=

∥∥∥∥∥
∞∑
i=0

yTQi

∥∥∥∥∥
∞

≤
∞∑
i=0

∥∥yTQi
∥∥
∞ =

∞∑
i=0

∥∥∥(Qi
)T

y
∥∥∥
1
.

From S11 = 11 and (S+E)11 = 11 followsE11 = 0, hence yT 11 = 0. The submultiplicative
property of τ1 in Theorem 3.6 implies

∞∑
i=0

∥∥∥(Qi
)T

y
∥∥∥
1
≤

∞∑
i=0

τ1
(
Qi
) ‖y‖1 ≤

∞∑
i=0

[τ1 (Q)]i ‖y‖1 ≤ ‖y‖1
1− τ1 (Q)

.

Since yT 11 = 0 implies yTQ = yTS, we get τ1(Q) = τ1(S). Finally, use the fact that
‖π̂‖1 = 1 to bound ‖y‖1 =

∥∥ET π̂
∥∥
1
≤ ‖E‖∞ ‖π̂‖1 = ‖E‖∞.
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Theorem 3.14 suggests that 1/(1 − τ1(S)) is a bound on the condition number
of π with regard to normwise absolute changes in the matrix S. From ‖π‖1 = 1 and
‖S‖∞ = 1 follows

‖π̂ − π‖1
‖π‖1 ≤ 1

1− τ1 (S)

‖E‖∞
‖S‖∞

,

so that 1/(1 − τ1(S)) is also a bound on the condition number of π with regard to
normwise relative changes in S.

Since Seneta’s derivation [79] appeared in 1988, several tighter bounds for the
condition number of π have been derived [17, section 4], [49], as have optimal condition
numbers in terms of ergodicity coefficients applied to the group inverse of I − S [52].
In [84, section 9] Seneta surveys more recent perturbation results, including those by
Cho and Meyer [16, 17], Kirkland, Neumann, and Shader [51], Haviv and Van der
Heyden [35], Hunter [39, 40], and himself [80, 82].

4. Infinity-norm ergodicity coefficients for stochastic matrices. We
present properties and explicit expressions for

τ∞(S) = max
‖z‖∞=1

zT11=0

∥∥ST z
∥∥
∞ ,(4.1)

where the maximum ranges over z ∈ Rn [76, section 2]. We present properties and
explicit expressions for τ∞(S) in section 4.1, and exhibit relations between τ∞(S) and
τ1(S) in section 4.2.

Unlike τ1(S) which is bounded above by 1, τ∞(S) has no fixed upper bound that
is independent of the dimension of the matrix S. This means τ∞(S) is a coefficient of
ergodicity according to Definition 2.7, but not Definition 2.2. Here is an example of
an n× n stochastic matrix for which τ∞(S) grows proportional to n,

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
...

...
...

...
1 0 · · · 0 0
0 0 · · · 0 1
...

...
...

...
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, with τ∞(S) =

n

2
.

Here n is even, and the leading n/2 rows of S are the same, as are the trailing n/2
rows. Other examples of stochastic matrices for which τ∞(S) > 1 include a 6 × 6
matrix in [88, p. 861] and a 62× 62 matrix in [76, section 3].

4.1. Properties and explicit expressions. The coefficient τ∞(S) has many
properties in common with τ1(S) in section 3, because τ∞(S) is bounded, well-
conditioned in the absolute sense, submultiplicative, and proper.

Theorem 4.1 ((7) and (8) in [88]). If S, S1, and S2 are stochastic matrices, then
1. 0 ≤ τ∞(S) ≤ ‖S‖1,
2. |τ∞(S1)− τ∞(S2)| ≤ τ∞(S1 − S2),
3. τ∞(S) = 0 if and only if rank(S) = 1,
4. τ∞(S1S2) ≤ τ∞(S1) τ∞(S2).

Proof. The proofs are analogous to those of Theorems 3.4 and 3.6, as shown
in [88].
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Since τ∞(·) is a proper ergodicity coefficient, Theorem 2.3 implies for a doubly
stochastic matrix Sd that τ∞(·) is zero at the same time for Sd and ST

d ,

τ∞(Sd) = τ∞(ST
d ) = 0 ⇐⇒ rank(Sd) = 1.

We derive an explicit expression for τ∞(S) first, before we show it is a bound on
the subdominant eigenvalues.

Theorem 4.2 (section 2 in [88]). If S ∈ Rn×n is a stochastic matrix, then

τ∞(S) = max
1≤j≤n

φ(Sej),

where the function φ is defined in Lemma 3.3.
Proof. Let s be a column of S and x a vector that together achieve the maximum

in τ∞(S), i.e.,

τ∞(S) = max
‖z‖∞=1

zT11=0

∥∥ST z
∥∥
∞ = max

‖z‖∞=1

zT11=0

max
j

∣∣eTj ST z
∣∣ = |sTx|.

The inequality (3.3) implies |xT s| ≤ φ(s) ≤ max1≤i≤n φ(Sei).
To show the reverse inequality, let s be a column of S so that max1≤i≤n φ(Sei) =

φ(s). Let P be a permutation matrix that orders the elements of Ps in decreasing

magnitude, i.e., Ps =
(
s1 . . . sn

)T
with s1 ≥ · · · ≥ sn. Define the vector

y ≡

⎧⎪⎨⎪⎩P
(
11Tn/2 −11Tn/2

)T
if n even,

P
(
11T(n−1)/2 0 −11T(n−1)/2

)T
if n odd.

Then φ(s) = |yT s|, yT 11 = 0, and ‖y‖∞ = 1. Hence max1≤i≤n φ(Sei) = φ(s) =
|yT s| ≤ τ∞(S).

With the help of Theorem 4.2 we can now show that τ∞(S) is an eigenvalue
bound.

Theorem 4.3 (section 3 in [78]). If S is a stochastic matrix, then |λ| ≤ τ∞(S)
for all eigenvalues λ �= 1 of S.

Proof. The idea is to show that maximizing over complex vectors in τ∞(S) gives
the same value as maximizing over real vectors.

Let z be any complex vector with zT 11 = 0 and ‖z‖∞ = 1. Since the infinity
norm is the maximal row sum, ‖ST z‖∞ = |eTj ST z| for some j. From (3.3) follows

|(Sej)T z| ≤ ‖z‖∞φ(Sej) = φ(Sej), where the right-hand side is independent of z.
Theorem 4.2 implies

max
z∈Cn,‖z‖∞=1,zT11=0

‖ST z‖∞ ≤ φ(Sej) ≤ τ∞(S).

If v is a possibly complex left eigenvector associated with an eigenvalue λ �= 1, so that
ST v = λv and ‖v‖∞ = 1, then vT 11 = 0 and

|λ| = |λ| ‖v‖∞ = ‖ST v‖∞ ≤ max
z∈Cn,‖z‖∞=1,zT11=0

‖ST z‖∞ ≤ τ∞(S).

Like τ1(S) in Corollary 3.8, we can also view τ∞(S) as the norm of an (oblique)
projection of S, with the projection being onto range(11)⊥.
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Corollary 4.4. If S ∈ Rn×n is a stochastic matrix, then for some 1 ≤ k ≤ n,

τ∞(S) =
∥∥ST (I − ek11

T )
∥∥
∞ .

Proof. The proof of Theorem 4.2 implies that τ∞(S) = ‖Sej − θ11‖1 for some
j, where θ is an element of Sej , that is, θ = eTk Sej for some 1 ≤ k ≤ n. Then
Sej − eTk Sej11 =

(
I − 11eTk

)
Sej and

τ∞(S) =
∥∥(I − 11eTk

)
Sej
∥∥
1
=
∥∥(I − 11eTk

)
S
∥∥
1
=
∥∥ST

(
I − ek11

T
)∥∥

∞ .

Theorem 4.2 also implies lower and upper bounds for τ∞(S) in terms of the
coefficient α(S) = maxj maxil |sij − slj | from Example 2.5.

Theorem 4.5 (Proposition 4 in [88]). If S ∈ Rn×n is a stochastic matrix, then

α(S) ≤ τ∞(S) ≤
{

n
2 α(S) if n even,
n−1
2 α(S) if n odd.

Proof. We start with the lower bound on τ∞(S). For every column j of S, let kj
be an index that achieves the maximum in

min
1≤k≤n

n∑
i=1

|sij − skj | =
n∑

i=1

|sij − skjj |.

Let column l of S achieve the maximum in α(S) so that α(S) = |si1l−si2l| for some i1
and i2. Adding and subtracting skll inside α(S) and applying the triangle inequality
gives

α(S) = |si1l − skll + skll − si2l| ≤ |si1l − skll|+ |si2l − skll| ≤
n∑

i=1

|sil − skll|

≤ max
j

n∑
i=1

|sij − skjj | = τ∞(S),

where the last inequality follows from the proof of Theorem 4.2, since we showed there
that τ∞(S) = maxj ‖Sej − θ11‖1 = maxj

∑k
i=1 |sij − skjj |.

As for the upper bound on τ∞(S), let column j assume the maximum in τ∞(S),
and assume that the rows of S have been permuted so that s1j ≥ · · · ≥ snj . Theorem
4.2 implies for even n

τ∞(S) =

n/2∑
i=1

(sij − sn/2+i,j) ≤ n

2
max
i,l

|sij − slj | ≤ n

2
α(S),

and for odd n,

τ∞(S) =

(n−1)/2∑
i=1

(sij − s(n+1)/2+i,j) ≤ n− 1

2
max
i,l

|sij − slj | ≤ n− 1

2
α(S).

Theorem 4.5 implies the value in Corollary 4.6 for the maximum of τ∞(S) over
all stochastic matrices S. Rhodius [66] and Lešanovský [55] attribute this result to
Tan [88]. In addition, we characterize the class of all stochastic matrices that achieve
this maximal value.
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Corollary 4.6. If Sn is the set of stochastic matrices in Rn×n, then

max
S∈Sn

τ∞(S) =

{
n
2 if n even,
n−1
2 if n odd.

The matrices that achieve this bound must be row or column permutations of the two
matrices below for even and odd n, respectively,

Se =

(
11n/2 0

0 Ŝe

)
, So =

(
11(n−1)/2 0

0 Ŝo

)
,

where Ŝe and Ŝo are stochastic4 matrices of dimension (n/2) × (n − 1) and ((n +
1)/2)× (n− 1), respectively.

Proof. Theorems 2.6 and 3.4 imply α(S) ≤ τ1(S) ≤ 1. Together with Theorem
4.5 this gives maxS∈Sn τ∞(S) ≤ n/2 for even n, and maxS∈Sn τ∞(S) ≤ (n− 1)/2 for
odd n.

Applying the explicit expression for τ∞ from Theorem 4.2 to their leading column
shows that Se and So achieve these bounds; and so do row or column permutations
of Se and So, because τ∞ is invariant under permutations.

To show that all matrices must have this form in order to achieve the maximal
value for τ∞, consider the case of even n, and the explicit expression for τ∞ from
Theorem 4.2 with the notation from Lemma 3.3. A matrix S with τ∞(S) = n/2

must have have at least one column s with
∑n/2

i=1 s(i) − ∑n
i=n/2+1 s(i) = n/2.

Hence
∑n/2

i=1 s(i) ≥ n/2. But the elements of S are bounded above by 1, so that∑n/2
i=1 s(i) ≤ n/2. The two inequalities imply

∑n/2
i=1 s(i) = n/2 and

∑n
i=n/2+1 s(i) = 0.

Hence the n/2 largest elements of s must be equal to 1, while the remaining n/2
elements must be equal to 0. Since the elements in each row of S sum to one, the n/2
rows of S containing the nonzero elements of s must have zero elements everywhere
else. The argument for odd n is analogous.

The maximal value for τ∞(S) in Corollary 4.6 also follows from a more general
result for p-norms in Theorem 5.9.

4.2. Relations between infinity-norm and one-norm coefficients. We
present relations between the coefficients τ1(S) and τ∞(S). For stochastic matrices of
very small dimension, the two coefficients are identical.

Theorem 4.7 (section 3.3 in [76]). If S is a 2 × 2 or 3 × 3 stochastic matrix,
then τ1(S) = τ∞(S).

Proof. For n = 2 Theorem 3.7 implies τ1(S) =
1
2

∥∥ST (e1 − e2)
∥∥
1
, while Theorem

4.2 implies τ∞(S) =
∥∥ST (e1 − e2)

∥∥
∞. Since ST (e1 − e2) =

(
s −s

)T
for some scalar

s, we obtain τ1(S) = τ∞(S) = |s|.
For n = 3 Theorem 3.7 implies τ1(S) = 1

2 max1≤i,j≤3

∥∥ST (ei − ej)
∥∥
1
, while

Theorem 4.2 implies τ∞(S) = max1≤i,j≤3

∥∥ST (ei − ej)
∥∥
∞. For i �= j we have

v ≡ ST (ei − ej) =
(
v1 v2 −v1 − v2

)T
for some scalars v1 and v2. If v1 and v2 have

the same sign, then ‖v‖1 = 2(|v1|+|v2|) and ‖v‖∞ = |v1|+|v2|, hence τ1(S) = τ∞(S). If
v1 and v2 have different signs, assume without loss of generality that |v1| ≥ |v2|, so that
|−v1−v2| = |v1|−|v2|. Then ‖v‖1 = 2|v1| and ‖v‖∞ = |v1|, hence τ1(S) = τ∞(S).

4We can extend the definition of stochasticity to a rectangular matrix Z, by requiring that Z
have all elements in [0, 1] and satisfy Z11 = 11.
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For stochastic matrices of larger dimensions, the following relations hold.
Theorem 4.8. If S ∈ Rn×n is a stochastic matrix and n ≥ 2, then

2

n
τ1(S) ≤ τ∞(S) ≤

{
n
2 τ1(S) if n even,
n−1
2 τ1(S) if n odd.

Proof. We start with the lower bound on τ∞(S). In Theorem 3.7, let i �= j be
indices so that 2τ1(S) =

∥∥ST (ei − ej)
∥∥
1
≤ n‖ST (ei − ej) ‖∞. From (ei − ej)

T 11 = 0

and ‖ei − ej‖∞ = 1 follows ‖ST (ei − ej) ‖∞ ≤ τ∞(S).
As for the upper bound on τ∞(S), Theorem 4.5 implies τ∞(S) ≤ n

2α(S) for even
n and τ∞(S) ≤ n−1

2 α(S) for odd n. Now combine this with the bound α(S) ≤ τ1(S)
from Theorem 2.6.

The upper bound in Theorem 4.8 is tight for the matrices Se and So from Corollary
4.6.

Doubly stochastic matrices. Theorem 4.8 relates τ1(S) and τ∞(S) for sto-
chastic matrices S. In the special case of doubly stochastic matrices Sd, the transpose
ST
d is also stochastic, so that we can try to relate τ1(Sd) and τ∞(ST

d ). The motivation
is as follows. We know that ‖S‖1 = ‖ST ‖∞ in general. However, τ1(·) and τ∞(·) are
norms of matrices that are restricted to subspaces orthogonal to the dominant right
eigenvector 11. Since Sd and ST

d have the same right dominant eigenvector 11, then is
there anything we can say about τ1(Sd) and τ∞(ST

d )?
Theorem 4.9 (page 344 in [77]). If Sd ∈ Rn×n is a doubly stochastic matrix,

then

τ1(Sd) = 1 =⇒ τ∞
(
ST
d

)
= 1.

Proof. The explicit expression τ1(Sd) = 1−minij
∑n

k=1 min {sik, sjk} from Corol-
lary 3.9 implies: If τ1(Sd) = 1, then there exist indices i and j so that sik = 0 or
sjk = 0 for every k. First consider the case n even. Then one row of Sd contains at
least n/2 zeros, implying that a column c of ST

d contains at least n/2 zeros. If we label
the elements of c so that c1 ≥ · · · ≥ cn, then ci = 0, n/2 + 1 ≤ i ≤ n. Theorem 4.2

implies φ(c) =
∑n/2

i=1 ci −
∑n

i=n/2+1 ci = 1 so that τ∞(ST
d ) = 1.

If n is odd, an analogous argument implies that one row of Sd contains at least

(n+ 1)/2 zeros and φ(c) =
∑(n−1)/2

i=1 ci −
∑n

i=(n+3)/2 ci = 1.

The converse of Theorem 4.9 is not true [77, p. 344]. The symmetric matrix

Sd =

⎛⎜⎜⎝
1/3 0 0 2/3
0 5/6 0 1/6
0 0 5/6 1/6

2/3 1/6 1/6 0

⎞⎟⎟⎠
has τ∞

(
ST
d

)
= 1 but τ1(Sd) = 5/6 < 1.

We can make a stronger statement for a particular class of doubly stochastic
matrices, where all rows contain the same elements, but not necessarily in the same
order. Such matrices have been studied in [64].

Theorem 4.10 (page 345 in [77]). If Sd ∈ Rn×n is a doubly stochastic matrix in
which all rows contain the same elements, then τ1(Sd) ≤ τ∞

(
ST
d

)
.
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Proof. First consider the case when n is even. Since all rows of Sd contain the
same elements, s1 ≥ · · · ≥ sn, and

∑n
i=1 si = 1, Theorem 4.2 implies

τ∞(ST
d ) =

n/2∑
i=1

si −
n∑

i=n/2+1

si = 1− 2

n∑
i=n/2+1

si.

From
∑n

k=1 min {sil, sjk} ≥ 2
∑n

i=n/2+1 si and Corollary 3.9 follows

τ1(S) = 1−min
ij

n∑
k=1

min {sik, sjk} ≤ 1− 2
n∑

i=n/2+1

si = τ∞(ST
d ).

If n is odd, an analogous argument implies

τ∞(ST
d ) =

(n−1)/2∑
i=1

si −
n∑

i=(n+3)/2

si = 1− 2

n∑
i=(n+3)/2

si − s(n+1)/2,

and

τ1(Sd) = 1−min
ij

n∑
k=1

min {sik, sjk} ≤ 1− 2

n∑
i=(n+3)/2

si − s(n+1)/2 = τ∞(ST
d ).

Corollary 4.11 (page 345 in [77]). If Sd ∈ Rn×n is a symmetric stochastic
matrix in which all rows contain the same elements then τ1 (Sd) ≤ τ∞(Sd).

For the special class of symmetric matrices in Corollary 4.11, one can show that
equality holds, i.e., τ1 (Sd) = τ∞(Sd), for n = 2, 3, 4 [77, p. 345-346].

5. p-norm ergodicity coefficients for stochastic matrices. For any integer
p ≥ 1, the p-norm ergodicity coefficient of a stochastic matrix S is [76, section 2]

(5.1) τp(S) = max
‖z‖p=1

zT11=0

∥∥ST z
∥∥
p
,

where the maximum ranges over z ∈ Rn. We present basic properties of τp(S), and
derive the maximal value of τp(S) over all stochastic matrices S.

The coefficient τp(S) has the same basic properties as τ∞(S) in Theorem 4.1; it
is bounded, well-conditioned in the absolute sense, proper, and submultiplicative.

Theorem 5.1 (section 1 in [89], [66]). If S, S1, and S2 are stochastic matrices,
then

1. 0 ≤ τp(S) ≤
∥∥ST

∥∥
p
,

2. |τp (S1)− τp (S2)| ≤ τp(S1 − S2),
3. τp(S) = 0 if and only if rank(S) = 1,
4. τp (S1S2) ≤ τp (S1) τp (S2).
5. If S is irreducible and 1 is the only eigenvalue of modulus 1, then |λ| ≤ τp(S)

for all eigenvalues λ �= 1.
Proof. The proofs for items 1–4 are analogous to those of Theorems 3.4 and 3.6.

The bound for item 5 follows from Theorem 6.21.
For 2 × 2 stochastic matrices, all coefficients τp(S) are the same and identical to

the magnitude of the subdominant eigenvalue of S.
Theorem 5.2 (page 585 in [76]). If S is a 2×2 stochastic matrix with eigenvalues

1 and λ, then τp(S) = |λ| for all integers p ≥ 1.
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Proof. Let S =

(
s1 1− s1
s2 1− s2

)
with 0 ≤ s1, s2 ≤ 1. Then λ = s1 − s2. All vectors

z with zT 11 = 0 and ‖z‖p = 1 satisfy ST z = λz. Hence τp(S) = |λ| for all p.
In 1988 Rhodius [66] determined, for any p-norm, the maximal values of τp(S)

over all stochastic matrices S. To this end he showed that maxS τp(S) is achieved by
an extreme point, which is a stochastic matrix Q that has a single one in each row.
Then he exploited the particular structure of QT z to determine maxz ‖QT z‖p as a
function of p and the matrix dimension n. We illustrate this development.

To start with, we present two compactness results.
Lemma 5.3. The set Sn of n×n stochastic matrices is convex and compact. The

set of extreme points Extr(Sn) consists of stochastic matrices that have a single one
in each row.

Proof. If S1 and S2 are stochastic matrices, then so is γS1 + (1 − γ)S2 for any
0 ≤ γ ≤ 1. This is because the elements of γS1 + (1− γ)S2 are in [0, 1] and

(γS1 + (1− γ)S2) 11 = γS111 + (1 − γ)S211 = γ11 + (1− γ)11 = 11.

Hence the set Sn is convex.
To show compactness of Sn, we establish that it is bounded and closed. The

matrix Hölder inequality [36, (6.19)] implies for a matrix S ∈ Sn that

‖S‖p ≤ ‖S‖1/p1 ‖S‖1−1/p
∞ = ‖S‖1/p1 ≤ n1/p,

since ‖S‖∞ = 1, and the elements of S are bounded by 1. Hence Sn is bounded.
To show that Sn is closed, let {Sk} be a sequence of stochastic matrices that

converges to a matrix Z, i.e., ‖Sk −Z‖p → 0 as k → ∞. This implies componentwise
convergence (Sk)ij → Zij . Since the elements (Sk)ij are in the closed interval [0, 1],
Zij must be in [0, 1]. It remains to assert that the elements in each row of Z sum to
1. The convergence of {Sk} implies that for every ε > 0 there exists a k so that

ε > ‖Sk − Z‖p ≥ ‖(S − Z)11‖p
‖11‖p = n−p‖11− Z11‖p.

Hence Z11 = 11. We have shown that the limit of a converging sequence of stochastic
matrices is also stochastic, so that Sn is closed. The compactness of Sn follows because
a closed and bounded set in a finite dimensional vector space is compact.

An n×1 canonical vector ej has n−1 zero elements, so that it cannot be expressed
as a linear combination of other stochastic vectors. Therefore matrices in Sn whose
rows are (transposes of) canonical vectors are extreme points of Sn.

Lemma 5.4. The set Hn =
{
x : x ∈ Rn, xT 11 = 0 and ‖x‖p = 1

}
is compact.

Proof. We show that Hn is closed and bounded. Compactness of Hn then follows
because Hn is a subset of a finite dimensional vector space.

The set Hn is bounded because ‖x‖p = 1. To show that Hn is closed, let {xk} be
a sequence of vectors in Hn that converges to some vector z, i.e., ‖xk − z‖p → 0 as
k → ∞. Thus, for every ε > 0 there exists a k so that

ε > ‖xk − z‖p =
∥∥(xk − z)T

∥∥
q
≥
∣∣(xk − z)T 11

∣∣
‖11‖q =

|zT 11|
‖11‖q = n−q|zT 11|,

where 1
p + 1

q = 1. Thus zT 11 = 0 and z ∈ H. This means, the limit of a converging
sequence of vectors in Hn is also in Hn. Therefore Hn is closed.
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Now we are ready for the important results. First we establish that in order to
determine the maximal τp for all stochastic matrices, it suffices to look at the extreme
points of Sn.

Theorem 5.5 (Theorem 1(a) in [66]). For integers p ≥ 1

max
S∈Sn

τp(S) = max
z∈Hn

max
Q∈Extr(Sn)

‖QT z‖p.

Proof. Since Sn and Hn are compact sets, as was established in Lemmas 5.3 and
5.4, and since the p-norm is a continuous real-valued function, we can switch the two
maxima below,

max
S∈Sn

τp(S) = max
S∈Sn

max
z∈Hn

‖ST z‖p = max
z∈Hn

max
S∈Sn

‖ST z‖p.

Fix z ∈ Hn. Then the convex function f(S) = ‖ST z‖p on the convex compact set
Sn attains its maximum at an extreme point [37, p. 535]. Thus maxS∈Sn f(S) =
maxQ∈Extr(Sn) f(Q).

For matrices Q ∈ Extr(Sn) one can write vectors QT z in terms of sets that record
the position of ones in each column of Q.

Remark 5.6 (page 142 in [66]). If Q ∈ Extr(Sn) and z ∈ Rn, then

QT z =

⎛⎜⎝
∑

i∈D1
zi

...∑
i∈Dn

zi

⎞⎟⎠ ,

where the set Dj contains the indices of all rows that have a 1 in position j, that is,
i ∈ Dj if qij = 1.

We illustrate this for the case n = 3. Let

Q =

⎛⎝1 0 0
1 0 0
0 0 1

⎞⎠ , z =

⎛⎝z1
z2
z3

⎞⎠ .

The stochastic matrix Q is in Extr(S3), and

QT z =

⎛⎝z1 + z2
0
z3

⎞⎠ =

⎛⎝∑i∈D1
zi∑

i∈D2
zi∑

i∈D3
zi

⎞⎠ .

From q11 = q21 = 1 follows D1 = {1, 2}. Since qi2 = 0 for all i we have D2 = ∅, while
q33 = 1 implies D3 = {3}.

Now we show that maxS∈Sn τp(S) can be obtained by summing only the positive
elements in those vectors that achieve the maximum.

Corollary 5.7 (page 144 in [66]). For integers p ≥ 1

max
S∈Sn

τp(S) = max
1≤l≤n−1

max
z∈Hn∩Al

21/p(z1 + · · ·+ zl),

where Al = {z ∈ Rn : z1, . . . , zl > 0, zl+1, . . . , zn ≤ 0}.
Proof. Theorem 5.5 and Remark 5.6 imply

L ≡ max
S∈Sn

τp(S) = max
z∈Hn

max
D1,...,Dn

∥∥∥∥∥∥∥
⎛⎜⎝
∑

i∈D1
zi

...∑
i∈Dn

zi

⎞⎟⎠
∥∥∥∥∥∥∥
p

,
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where the maximum ranges over all sets Dj that satisfy D1 ∪ · · · ∪Dn = {1, . . . , n},
and Di ∩Dj = ∅ for i �= j. Define

R ≡ max
1≤l≤n−1

max
z∈Hn∩Al

21/p(z1 + · · ·+ zl).

Since Rhodius [66] did not provide a proof for L = R, we give one below.
First we show that L ≥ R. The vectors appearing in R are vectors z ∈ Hn ∩ Al

that satisfy

0 = zT 11 = zT1:l11 + zTl+1:n11 = ‖z1:l‖1 − ‖zl+1:n‖1.
Hence ‖zl+1:n‖1 = ‖z1:l‖1. Let the maximum in R be achieved by an index k and a
vector x ∈ Hn ∩ Ak, i.e.,

max
1≤l≤n−1

max
z∈Hn∩Al

(z1 + · · ·+ zl) = x1 + · · ·+ xk = ‖x1:k‖1.

From ‖x1:k‖1 = ‖xk+1:n‖1 follows

R = 21/p‖x1:k‖1 = (‖x1:k‖p1 + ‖xk+1:n‖p1)1/p

=

∥∥∥∥( x1 + · · ·+ xk

xk+1 + · · ·+ xn

)∥∥∥∥
p

≤ max
z∈Hn

max
D1,...,Dn

∥∥∥∥∥∥∥
⎛⎜⎝
∑

i∈D1
zi

...∑
i∈Dn

zi

⎞⎟⎠
∥∥∥∥∥∥∥
p

= L.

Now we show that L ≤ R. Let x ∈ Hn be a vector that attains the maximum in
L, and let k be the number of positive elements in x. Then we can label the elements
of x so that x1, . . . , xk > 0 and xk+1, . . . , xn ≤ 0, which means x ∈ Ak. As above,
x ∈ Hn implies that ‖x1:k‖1 = ‖xk+1:n‖1. Consider the elements of the vector in L,
and split the sums into their positive and negative parts,∑

i∈Dj

xi = pj − nj , where pj ≡
∑

i∈Dj ,xi>0

xi, nj ≡ −
∑

i∈Dj ,xi≤0

xi,

and pj = 0 or nj = 0 if the corresponding set is empty. Then ‖x1:k‖1 =
∑n

j=1 pj =∑n
j=1 nj. From pj ≥ 0 and nj ≥ 0 follows |pj − nj | ≤ max{pj, nj}, hence

|pj − nj |p ≤ (max{pj, nj})p ≤ ppj + np
j .

Applying these inequalities to the pth power of L gives

Lp =

n∑
j=1

∣∣∣∣∣∣
∑
i∈Dj

xi

∣∣∣∣∣∣
p

=

n∑
j=1

|pj − nj |p ≤
n∑

j=1

ppj +

n∑
j=1

np
j

≤
⎛⎝ n∑

j=1

pj

⎞⎠p

+

⎛⎝ n∑
j=1

nj

⎞⎠p

= 2‖x1:k‖p1 ≤ Rp.

Next we characterize vectors z that achieve the maximum in Corollary 5.7 and
show that their elements z1, . . . , zl can be chosen to be all the same.

Theorem 5.8 (Theorem 2 in [66]). For integers p ≥ 1, the function

f(z, l) = 21/p (z1 + · · ·+ zl)
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achieves its maximum over Hn ∩ Al at vectors z with z1 = · · · = zl and zl+1 =
· · · = zn.

Proof. Let x ∈ Hn ∩ Al be a vector where f(z, l) achieves the maximum, i.e.,
f(x, l) = maxz∈Hn∩Al

f(z, l). We construct a vector y of the desired form by setting

y1 = · · · = yl =
1

l
(x1 + · · ·+ xl) , yl+1 = · · · = yn =

1

n− l
(xl+1 + · · ·+ xn) .

Then yT 11 = 0, y ∈ Al, and f(y, l) = f(x, l). We will show that f(y/‖y‖p, l) = f(x, l).
Since x achieves the maximum of f(z, l), we must have f (y/‖y‖p, l) ≤ f(x, l). Suppose
we can show that ‖y‖p ≤ 1. Combined with f(x, l) = f(y, l) this implies

f

(
y

‖y‖p , l
)
=

1

‖y‖p f(y, l) =
1

‖y‖p f(x, l) ≥ f(x, l).

Therefore f (y/‖y‖p, l) = f(x, l).
We still need to show that ‖y‖p ≤ 1. Since the leading l elements of y are the

same, and so are the trailing n− l elements, we get ‖y‖pp = l|y1|p+(n− l)|yl+1|p. Write

y1 = xT
1:l11l/l, where x1:l =

(
x1 . . . xl

)
. The Hölder inequality with 1/p+ 1/q = 1

gives

|y1| ≤ 1

l
‖x1:l‖p‖11l‖q = 1

l
‖x1:l‖pl1/q = l−1/p‖x1:l‖p.

Similarly, |y1+l| ≤ (n− l)−1/p‖xl+1:n‖p, where xl+1:n =
(
xl+1 . . . xn

)
. Substituting

the bounds for |y1| and |yl+1| into the above expression for ‖y‖pp implies that ‖y‖p ≤
‖x‖p = 1.

At last, the characterization of the vectors in Theorem 5.8 makes it possible to
determine explicit values for the maximum in Corollary 5.7.

Theorem 5.9 (Theorem 3 in [66]). For integers p ≥ 1

max
S∈Sn

τp(S) =

⎧⎨⎩
(
n
2

)1−1/p
if n is even,(

1
2

)1−1/p
(

2
(n+1)1−p+(n−1)1−p

)1/p
if n is odd.

Proof. Corollary 5.7 and Theorem 5.8 imply

max
S∈Sn

τp(S) = max
1≤l≤n−1

max
z∈Hn∩Al

f(z, l) = 21/p max
1≤l≤n−1

max
z∈Hn∩Al

lz1.

We need to determine lz1 so that maxS∈Sn τp(S) does not depend on l or z. From
zT 11 = 0 follows lz1 + (n − l)zl+1 = 0, hence zl+1 = −lz1/(n− l). Substituting this

into ‖z‖pp = 1 gives lz1 =
(
l1−p + (n− l)1−p

)−1/p
. Hence

21/p max
1≤l≤n−1

max
z∈Hn∩Al

lz1 =

(
2

l1−p + (n− l)1−p

)1/p

.

This expression is maximized if l = n/2 for even n, and l = (n± 1)/2 for odd n.
In the special case p = ∞, Theorem 5.9 reduces to Corollary 4.6.

6. Ergodicity coefficients for real matrices. In 1984 Seneta [78, (1)] ex-
tended the coefficient of ergodicity from stochastic matrices to rectangular matrices
A ∈ Rm×n and arbitrary vectors w ∈ Rm,

τp(w,A) = max
‖z‖p=1

zTw=0

∥∥AT z
∥∥
p
,
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where the maximum ranges over z ∈ Rm. We present general properties and bounds
in section 6.1, and explicit expressions for coefficients defined by different norms: for
the one-norm in section 6.2, for the infinity-norm in section 6.3, and for the two-
norm in section 6.4. Eigenvalue bounds for nonnegative matrices are discussed in
section 6.5.

6.1. Properties and bounds common to all p-norm coefficients. We
present properties of τp(w,A) for rectangular matrices A. The coefficients τp(w,A)
are bounded, well-conditioned in the second argument, and only very weakly submul-
tiplicative because w is generally not an eigenvector of A.

Theorem 6.1. If A,A1, A2 ∈ Rm×n and w ∈ Rm, then
1. 0 ≤ τp(w,A) ≤ ‖AT ‖p,
2. |τp (w,A1)− τp(w,A2)| ≤ τp (w,A1 −A2),
3. τp(w,AB) ≤ ‖BT ‖p τp(w,A) for B ∈ Rn×k.

Proof.
1. This follows from max‖z‖p=1

zTw=0

∥∥AT z
∥∥
p
≤ max‖z‖p=1

∥∥AT z
∥∥
p
=
∥∥AT

∥∥
p
.

2. Let τp(w,A1) ≥ τp(w,A2), and τp(w,A1) =
∥∥AT

1 y
∥∥
p
for some vector y ∈ Rm

with ‖y‖p = 1 and yTw = 0. Then

0 ≤ τp(w,A1)− τp(w,A2) =
∥∥AT

1 y
∥∥
p
− max

‖z‖p=1

zTw=0

∥∥AT
2 z
∥∥
p
≤ ∥∥AT

1 y
∥∥
p
− ∥∥AT

2 y
∥∥
p
.

The triangle inequality implies∥∥AT
1 y
∥∥
p
− ∥∥AT

2 y
∥∥
p
≤
∥∥∥(A1 −A2)

T
y
∥∥∥
p
≤ max

‖z‖p=1

zTw=0

∥∥∥(A1 −A2)
T
z
∥∥∥
p

= τp(w,A1 −A2).

3. Let y ∈ Rm be a vector with τp (w,BA) = ‖ (BA)
T
y‖p, yTw = 0, and

‖y‖p = 1. The submultiplicative property of the p-norms implies

τp(w,BA) = ‖ATBT y‖p ≤ ‖AT ‖p‖BT y‖p
≤ ‖AT ‖p max

‖z‖p=1

zTw=0

‖BT z‖p = ‖AT ‖p τp(w,B).

If w happens to be a real eigenvector of A, then a submultiplicative property
holds for powers of A.

Theorem 6.2. Let A ∈ Rn×n and w ∈ Rn be a right eigenvector of A. Then for
l,m ≥ 1

τp
(
w,Al+m

) ≤ τp
(
w,Al

)
τp (w,A

m) .

Proof. Let y ∈ Rn be a vector with τp
(
w,Al+m

)
= ‖ (AT

)l+m
y‖p, yTw = 0, and

‖y‖p = 1. Since Aw = λw for some real number λ, we have[
(AT )my

]T
w = yTAmw = λmyTw = 0.

Hence the vector x =
(
AT
)m

y/
∥∥(AT

)m
y
∥∥
p
satisfies ‖x‖p = 1 and xTw = 0, so that

τp
(
w,Al+m

)
=
∥∥∥(AT

)l+m
y
∥∥∥
p
=
∥∥∥(AT

)l
x
∥∥∥
p

∥∥∥(AT
)m

y
∥∥∥
p
≤ τp

(
w,Al

)
τp (w,A

m) .

The special case of Theorems 6.1 and 6.2 for stochastic matrices and their sta-
tionary distributions was shown in [89, p. 279].
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Bounds. We present two upper bounds for τp(w,A) that could possibly improve
the bound in Theorem 6.1. They also furnish eigenvalue bounds for irreducible non-
negative matrices in section 6.5.

The first bound expresses the constraint zTw = 0 in terms of a rank-one downdate
of the matrix. The bounds for τ2 below involve the Frobenius norm, which is defined

as ‖A‖F =
√∑

i,j |aij |2.
Theorem 6.3 (Theorem 5.5 in [71]). If A ∈ Rm×n and w ∈ Rm with w �= 0, then

for all vectors x ∈ Rn

τp(w,A) ≤
∥∥∥(A− wxT

)T∥∥∥
p
.

In particular for p = 2 we have

τ2(w,A) ≤
∥∥A− wxT

∥∥
2
≤ ∥∥A− wxT

∥∥
F
,

and minx ‖A− wxT ‖F = ‖(I − wwT

‖w‖2
2
)A‖F .

Proof. Let z ∈ Rm be a vector with zTw = 0 and ‖z‖p = 1. Then(
A− wxT

)T
z = AT z − x wT z = AT z

implies

τp(w,A) = max
‖z‖p=1

zTw=0

∥∥AT z
∥∥
p
= max

‖z‖p=1

zTw=0

∥∥∥(A− wxT
)T

z
∥∥∥
p
≤
∥∥∥(A− wxT

)T∥∥∥
p
.

This proves the first bound.
For the case p = 2, use ‖AT ‖2 = ‖A‖2 and ‖A‖2 ≤ ‖A‖F to conclude that∥∥∥(A− wxT

)T∥∥∥
2
=
∥∥A− wxT

∥∥
2
≤ ∥∥A− wxT

∥∥
F
.

To find a vector x that minimizes
∥∥A− wxT

∥∥
F
, write the Frobenius norm as a sum

of two-norms,

∥∥A− wxT
∥∥2
F
=

n∑
i=1

∥∥(A− wxT
)
ei
∥∥2
2
=

n∑
i=1

‖Aei − wxi‖22 .

Thus minx
∥∥A− wxT

∥∥2
F

consists of n independent minimization problems ‖Aei −
wxi‖2. Each minimization problem ‖wxi − Aei‖2 is a least squares problem with
m × 1 coefficient matrix w of full column rank and right-hand side Aei. The unique

solution is x̂i =
(
wTw

)−1
wTAei = eTi A

Tw/‖w‖22. Thus x̂ ≡ ATw/‖w‖22, and

A− wx̂T = A− wwTA

‖w‖22
=

(
I − wwT

‖w‖22

)
A.

The second bound relates coefficients based on different vectors. We will use it to
show continuity of τp(w,A) with regard to w.

Theorem 6.4 (Lemma 4.1 in [27]). Let B ∈ Rm×n and f ∈ Rm. Then for every
pair of vectors v, w ∈ R

m with vT f = wT f = 1

τp(w,A) ≤ τp(v,A) + 2
∥∥AT

∥∥
p
‖f‖p‖v − w‖q,
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where 1/p+ 1/q = 1.
Proof. If τp(w,A) = 0, the inequality holds trivially. Now assume that y ∈ Rm is

a vector such that yTw = 0, ‖y‖p = 1, and τp(w,A) =
∥∥AT y

∥∥
p
> 0. We will bound

τp(v,A) from below in terms of a projection of y, namely the vector (Im − fvT )y =
y − vT y f .

If y − vT y f = 0, then y = vT yf . This, together with wT f = 1, implies wT y =
vT y wT f = vT y. Hence 0 = wT y = vT y. From vT y = 0 and ‖y‖p = 1 follows

τp(v,A) = max
‖z‖p=1

zT v=0

∥∥AT z
∥∥
p
≥ ‖AT y‖p = τ(w,A),

so that the desired inequality holds.
If y − vT y f �= 0 we can define the vector

z =
y − vT y f

‖y − vT y f‖p
=

y − (v − w)T y f

‖y − (v − w)T y f‖p
,

which satisfies ‖z‖p = 1 and zT v = 0, so that

τp(v,A) ≥
∥∥AT z

∥∥
p
=

∥∥∥AT y − (v − w)
T
y AT f

∥∥∥
p∥∥∥y − (v − w)

T
y f
∥∥∥
p

.

The triangle and Hölder inequalities imply

‖AT z‖p ≥
∥∥AT y

∥∥
p
− ‖v − w‖q ‖y‖p

∥∥AT
∥∥
p
‖f‖p

‖y‖p + ‖v − w‖q ‖y‖p‖f‖p
.

From τp(w,A) =
∥∥AT y

∥∥
p
and ‖y‖p = 1 follows

τp(v,A) ≥
τp(w,A) − ‖v − w‖q

∥∥AT
∥∥
p
‖f‖p

1 + ‖v − w‖q ‖f‖p
.

Rearranging gives

τp(w,A) ≤ τp(v,A)
[
1 + ‖v − w‖q ‖f‖p

]
+ ‖v − w‖q

∥∥AT
∥∥
p
‖f‖p .

The desired inequality now follows from τp(v,A) ≤
∥∥AT

∥∥
p
in Theorem 6.1.

Theorem 6.4 implies that τp(w,A) is a continuous function of the first argument
on the set

{
x ∈ R

n : xT f = 1
}
.

Corollary 6.5 (Corollary 4.2 in [27]). Let A ∈ Rm×n and f ∈ Rm. Then for
every pair of vectors v, w ∈ Rm with vT f = wT f = 1

|τp(w,A) − τp(v,A)| ≤ 2
∥∥AT

∥∥
p
‖f‖p‖v − w‖q,

where 1/p+ 1/q = 1.



ERGODICITY COEFFICIENTS 181

6.2. Explicit expressions for one-norm coefficients. We derive an explicit
expression for τ1(w,A) for real rectangular matrices A.

We start with an easy case, that of square matrices with constant row sum and
w = 11, since this scenario is similar to that of stochastic matrices.

Theorem 6.6 ([2, 65], page 584 in [76], pages 189–191 in [81]). If A ∈ R
n×n with

A11 = a11, then

τ1(11, A) =
1

2
max
ij

n∑
k=1

|aik − ajk| = a−min
ij

n∑
k=1

min {aik, ajk} .

Proof. This is an extension of the explicit expression for τ1(S) for stochastic
matrices S in Theorem 3.7 and Corollary 3.9, and a special case of Theorem 6.8
below.

For general, real matrices A, we begin with the case where all elements of w are
nonzero, i.e., |w| > 0. We view w as a diagonal scaling of the vector 11, and derive an
expression for vectors x that satisfy xTw = 0. This is done in the extension below of
Lemma 3.1.

Lemma 6.7 (page 192 in [78]). If x,w ∈ Rn with x �= 0, |w| > 0, and xTw = 0,
then

x =
∑
i	=j

yij
D−1 (ei − ej)

‖D−1 (ei − ej)‖1
, where yij ≥ 0,

∑
i	=j

yij = ‖x‖1,

and D = diag(w).
Proof. The idea is to view the inner product xTw as an inner product involving

the vector 11, and then to apply Lemma 3.1. To this end write

0 = xTw = xT (D11) = x̃T 11, where x̃ ≡ Dx.

Applying Lemma 3.1 to x̃ gives

x̃ =
∑
i	=j

ỹij
ei − ej

2
, where ỹij ≥ 0,

∑
i	=j

ỹij = ‖x̃‖1.

Multiplying by D−1 gives the desired linear combination

x =
∑
i	=j

yij
D−1(ei − ej)

‖D−1(ei − ej)‖1 , where yij ≡ ỹij
2

‖D−1(ei − ej)‖1.

It remains to show that
∑

i	=j yij = ‖x‖1. This is done by induction over n.
For n = 2 the proof of Lemma 3.1 implies ỹ12 = 2x̃1, where x̃1 = w1x1 > 0. From

|w1x1| = |w2x2| follows

y12 =
ỹ12
2

(
1

|w1| +
1

|w2|
)

= |x1|+
∣∣∣∣w2x2

w2

∣∣∣∣ = ‖x‖1.

For the induction step assume that x̃ = Dx has been permuted so that wnxn > 0,
wn+1xn+1 < 0, and wnxn = max1≤i≤n+1 |wixi|. We write

x = x̂− wn+1xn+1 D
−1(en − en+1), where x̂ ≡

⎛⎝ x1:n−1

xn + wn+1xn+1

wn

0

⎞⎠
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and x̂Tw = xTw = 0. If x̂ = 0, then the conclusion follows as in the case n = 2. If
x̂ �= 0, apply the induction hypothesis to the leading n elements of x̂,

x̂ =
∑
i	=j

yij
D−1(ei − ej)

‖D−1(ei − ej)‖1
, where yij ≥ 0,

∑
i	=j

yij = ‖x̂‖1.

Set yn,n+1 ≡ −wn+1xn+1 ‖D−1(en − en+1)‖1 and use the definition of x̂ to obtain∑
i	=j

yij + yn,n+1 = ‖x̂‖1 − wn+1xn+1 ‖D−1(en − en+1)‖1

= ‖x1:n−1‖1 +
∣∣∣∣xn +

wn+1xn+1

wn

∣∣∣∣ − wn+1xn+1

(
1

|wn| +
1

|wn+1|
)
.

From wnxn = max1≤i≤n+1 |wixi| > 0 and wn+1xn+1 < 0 follows∣∣∣∣xn +
wn+1xn+1

wn

∣∣∣∣ = 1

|wn| (wnxn + wn+1xn+1) .

Hence ∑
i	=j

yij + yn,n+1 = ‖x1:n−1‖1 + wnxn

|wn| − wn+1xn+1

|wn+1| .

From wnxn > 0 and wn+1xn+1 < 0 follows

wnxn

|wn| − wn+1xn+1

|wn+1| =
|wnxn|
|wn| +

|wn+1xn+1|
|wn+1| = |xn|+ |xn+1|.

Therefore
∑

i	=j yij + yn,n+1 = ‖x‖1.
When w = 11, then D = I and ‖D−1(ei − ej)‖1 = 2, so that Lemma 6.7 reduces

to Lemma 3.1.
As in Theorem 3.7, we make use of Lemma 6.7 to determine an explicit expression

for τ1(w,A) for real matrices A and real vectors w. We distinguish the two cases when
all elements of w are nonzero, and when some elements of w can be zero.

The expression below, for vectors w with all nonzero elements, extends Theorem
3.7. from stochastic to real matrices.

Theorem 6.8 (page 193 in [78]). If A ∈ Rm×n, w ∈ Rm, and |w| > 0, then

τ1(w,A) = max
ij

∥∥ATD−1(ei − ej)
∥∥
1

‖D−1(ei − ej)‖1
.

Proof. Let τ1(w,A) = ‖ATx‖1, where xTw = 0 and ‖x‖1 = 1. Applying Lemma
6.7 to x gives x =

∑
i	=j yij D

−1 (ei − ej)/
∥∥D−1 (ei − ej)

∥∥
1
, where

∑
i	=j yij = ‖x‖1 =

1 and D = diag(w). The triangle inequality applied to ‖ATx‖1 yields

τ1(w,A) =
∥∥ATx

∥∥
1
≤
∑
i	=j

yij
‖ATD−1(ei − ej)‖1
‖D−1(ei − ej)‖1

≤ max
ij

‖ATD−1(ei − ej)‖1
‖D−1(ei − ej)‖1

.

To show the reverse inequality, set y = D−1(ei − ej)/
∥∥D−1(ei − ej)

∥∥
1
for some i �= j.

Then yTw = yTD11 = 0, ‖y‖1 = 1, and

τ1(w,A) = max
‖z‖1=0

zTw=0

‖AT z‖1 ≥ ‖AT y‖1 =

∥∥ATD−1(ei − ej)
∥∥
1

‖D−1(ei − ej)‖1
.
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Since this inequality holds for any i and j,

τ1(w,A) ≥ max
ij

‖ATD−1(ei − ej)‖1
‖D−1(ei − ej)‖1

.

If A is a stochastic matrix and w = 11, then Theorem 6.8 reduces to Theorem 3.7.
If A is also irreducible, then all elements of its stationary distribution π are nonzero,
and we obtain the bound below for w = π.

Theorem 6.9 (Remark, page 284 in [89]). If S is an irreducible stochastic matrix,
πTS = πT , where π > 0, then

τ1 (π, S) = max
i	=j

∥∥STD−1 (ei − ej)
∥∥
1

‖D−1 (ei − ej)‖1
,

where D = diag(π).
Now we consider the more general situation when w can have zero elements. We

choose a permutation matrix P to isolate the nonzero elements in w, and permute
the rows of A correspondingly,

Pw =

(
w1:k

0

)
, PA =

(
Ak

Am−k

)
,

where w1:k is a k × 1 vector with |w1:k| > 0, and Ak has k rows. The following
expression extends Theorem 6.11 from stochastic to real matrices.

Theorem 6.10 (page 194 in [78]). Let A ∈ Rm×n, w ∈ Rm, and P be a permu-
tation matrix so that |w1:k| > 0. Then

τ1(w,A) = max {τ1(w1:k, Ak), ‖Am−k‖∞} .
Proof. Let x ∈ Rm be a vector with τ1(w,A) = ‖ATx‖1, ‖x‖1 = 1, and xTw = 0.

Partitioning Px =
(
xT
k xT

m−k

)T
with xk being k × 1 gives

ATx = ATPTPx = AT
k xk +AT

m−kxm−k.

We distinguish the cases xk = 0 and xk �= 0.
If xk = 0, then

∥∥ATx
∥∥
1
≤ ∥∥AT

m−k

∥∥
1
‖xm−k‖1 and ‖xm−k‖1 = ‖x‖1 = 1. Hence

τ1(w,A) = ‖ATx‖1 ≤ ∥∥AT
m−k

∥∥
1
= ‖Am−k‖∞. To show the reverse inequality, choose x

such that Px = ek+i for some 1 ≤ i ≤ m− k and ‖AT
m−k‖1 = ‖AT

m−kei‖1 = ‖ATx‖1.
Since the trailing m − k elements of Pw are zero, xTw = 0. This, together with
‖x‖1 = 1, implies ‖AT

m−k‖1 = ‖ATx‖1 ≤ τ1(w,A).

If xk �= 0, then 0 = xTw = xTPTPw = xT
kw1:k, and we can apply Lemma 6.7 to

obtain

xk =
∑
i	=j

yij
D−1

k (ei − ej)∥∥D−1
k (ei − ej)

∥∥
1

, where yij ≥ 0,
∑
i	=j

yij = ‖xk‖1,

and Dk = diag(w1:k). Substituting this into the above expression for ‖ATx‖1 gives

∥∥ATx
∥∥
1
≤ ‖xk‖1 max

ij

∥∥AT
kD

−1
k (ei − ej)

∥∥
1∥∥D−1

k (ei − ej)
∥∥
1

+
∥∥AT

m−k

∥∥
1
‖xm−k‖1

≤ (‖xk‖1 + ‖xm−k‖1) max

{
max
ij

∥∥AT
k D

−1
k (ei − ej)

∥∥
1∥∥D−1

k (ei − ej)
∥∥
1

,
∥∥AT

m−k

∥∥
1

}
.
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Now Theorem 6.8 and ‖xk‖1 + ‖xm−k‖1 = ‖x‖1 = 1 imply

τ1(w,A) ≤ max {τ1(w1:k, Ak), ‖Am−k‖∞} .
The reverse inequality follows, as in the proof of Theorem 6.8, by picking a vector y
whose leading k elements are PTD−1

k (ei − ej)/
∥∥D−1

k (ei − ej)
∥∥
1
for some 1 ≤ i, j ≤ k,

and whose trailing n− k elements are zero.
Tan extends the explicit expressions for τ1(π, S) for irreducible stochastic ma-

trices in Theorem 6.9 to the larger class of stochastic matrices S that have only a
single eigenvalue of modulus 1 [89, pp. 278-279]. For such matrices S there exists a
permutation matrix P so that

PSPT =

(
A 0
C B

)
,(6.1)

where the k×k matrix A represents the recurrent states, the (possibly empty) square
matrix B represents the transient states, and the stationary distribution π satisfies

Pπ =
(
πT
1:k 0

)T
with π1:k > 0. The ergodicity coefficients of such matrices S can be

expressed in terms of the ergodicity coefficient of the leading principal submatrix A.
Corollary 6.11 (Theorem 3 in [89]). If S is a stochastic matrix where 1 is the

only eigenvalue of modulus 1, and if S is permuted into the form (6.1), then

τ1 (π, S) = max {τ1 (π1:l, A) , ‖B‖∞} .
6.3. Explicit expressions for infinity-norm coefficients. We extend Theo-

rem 4.2 from stochastic matrices to real matrices.
Theorem 6.12 (section 3 in [78]). If A ∈ Rm×n and w ∈ Rm, and P is a

permutation matrix so that Pw =
(
wT

1:k 0
)T

with |w1:k| > 0, then

τ∞(w,A) = max
1≤i≤n

φ(Aei),

where the function φ is defined for a ∈ Rn with elements labeled a1/w1 ≥ · · · ≥ ak/wk,

l is the smallest integer such that
∑l

j=1 |wj | ≥
∑k

j=l+1 |wj |, and

φ(a) =

l−1∑
i=1

|wi|
wi

ai +

⎛⎝ k∑
j=l+1

|wj | −
l−1∑
j=1

|wj |
⎞⎠ al

|wl| −
k∑

i=l+1

|wi|
wi

ai +

n∑
i=k+1

|ai|.

Proof. We start as in the proof of Theorem 4.2. Let a be a column of A and x a
vector that together achieve the maximum in τ∞(w,A), i.e.,

τ∞(w,A) = max
‖z‖∞=1

zTw=0

∥∥AT z
∥∥
∞ = max

‖z‖∞=1

zTw=0

max
j

∣∣eTj AT z
∣∣ = |aTx|.

For any vector x with xTw = 0, permutation matrix P , and scalar θ, one shows as in
Lemma 3.2 that

|xT a| = |(Px)T (Pa− θPw)| ≤ ‖Px‖∞‖Pa− θPw‖1 = ‖Pa− θPw‖1.
Choose the permutation matrix P so that Pw =

(
wT

1:k 0
)T

with |w1:k| > 0, and

Pa =
(
a1 . . . an

)T
with a1/w1 ≥ · · · ≥ ak/wk. Then

‖Pa− θPw‖1 =
k∑

i=1

|wi|
∣∣∣∣ aiwi

− θ

∣∣∣∣+ n∑
i=k+1

|ai|.
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Set θ = al/wl, split the sum, and remove absolute values,∥∥∥∥Pa− al
wl

Pw

∥∥∥∥
1

=

l∑
i=1

|wi|
(
ai
wi

− al
wl

)
+

k∑
i=l+1

|wi|
(
al
wl

− ai
wi

)
+

n∑
i=k+1

|ai| = φ(a).

We have shown that τ∞(w,A) = |xT a| ≤ φ(a) ≤ max1≤i≤n φ(Aei).
To show the reverse inequality, let a be a column of A so that max1≤i≤n φ(Aei) =

φ(a). Define the vector y with elements

yi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−|wi|
wi

1 ≤ i ≤ l − 1,
1
wl

(∑l−1
i=1 |wi| −

∑k
i=l+1 |wi|

)
i = l,

|wi|
wi

l + 1 ≤ i ≤ k,

sign(ai) k + 1 ≤ i ≤ n.

Then φ(s) = |yT s| and yT 11 = 0. Clearly, |yi| = 1 for i �= l. Since l is the smallest

integer such that
∑l

j=1 |wj | ≥
∑k

j=l+1 |wj |, this implies
∑l−1

j=1 |wj | ≤
∑k

j=l |wj |. From
these two inequalities follows |yl| ≤ 1. Thus ‖y‖∞ = 1 so that max1≤i≤n φ(Aei) =
φ(a) = |yT s| ≤ τ∞(w,A).

In the special case when S is a stochastic matrix and w = 11, the expression for
τ∞(11, S) from Theorem 6.12 reduces to that for τ∞(S) from Theorem 4.2. Below is
the expression when w = π is the stationary distribution of S.

Corollary 6.13 (Theorem 1 in [89]). Let S be a stochastic matrix where 1 is
the only eigenvalue of modulus 1, and let S be permuted into the form (6.1). Then

τ∞ (π, S) = max
1≤i≤n

φ(Sei),

where the function φ is defined for s ∈ Rn with elements labeled s1/π1 ≥ · · · ≥ sk/πk,

l is the smallest integer such that
∑l

j=1 πj ≥ 1
2 , and

φ(s) =

l−1∑
i=1

si +

⎛⎝ k∑
j=l+1

πj −
l−1∑
j=1

πj

⎞⎠ sl
|πl| −

k∑
i=l+1

si +

n∑
i=k+1

si.

We can view τ∞(w,A) as the norm of an (oblique) projection of A, with the
projection being onto range(w)⊥. This is an extension of Corollary 4.4 from stochastic
matrices to real matrices.

Corollary 6.14. Let the assumptions of Theorem 6.12 hold. Then for some
1 ≤ k ≤ n

τ∞(w,A) =
∥∥AT

(
I −D−1ekw

T
)∥∥

∞ , where D ≡ PT

(
diag(w1:k) 0

0 In−k

)
P.

Proof. The proof is analogous to that of Corollary 4.4.

6.4. Explicit expressions for two-norm coefficients. We derive four differ-
ent expressions for τ2(w,A) and extend results in [76, 86, 89] for stochastic matrices to
real rectangular matrices. We start by representing τ2(w,A) as the norm of a matrix
with one row less.

Theorem 6.15 (first expression). Let A ∈ Rm×n, and w ∈ Rm with w �= 0. Let
Q ∈ Rm×m be an orthogonal matrix with leading column Qe1 = w/‖w‖2, and partition
ATQ =

(
a AT

m−1

)
, where Am−1 has m− 1 rows. Then τ2(w,A) = ‖Am−1‖2.
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Proof. Let z ∈ Rm be a vector with ‖z‖2 = 1 and zTw = 0. Because the first

column of Q is a multiple of w, QT z =
(
0 ẑT

)T
, where ẑ has m − 1 elements,

‖ẑ‖2 = 1, and

AT z = ATQQT z =
(
a AT

m−1

)(0
ẑ

)
= AT

m−1ẑ.

To obtain the expression for τ2(w,A), we take the maximum,

τ2(w,A) = max
‖z‖2=1

zTw=0

‖AT z‖2 = max
‖ẑ‖2=1

‖AT
m−1ẑ‖2 = ‖AT

m−1‖2 = ‖Am−1‖2.

With the help of Theorem 6.15 we represent a vector y that achieves the maximum
for τ2(w,A) as the solution of a linear system with right-hand side w.

Theorem 6.16 (second expression). In addition to the conditions of Theorem
6.15, let τ ≡ τ2(w,A) = ‖AT y‖2, where ‖y‖2 = 1 and yTw = 0. Then

(AAT − τ2I)y = γ w, where γ ≡ wTAAT y

‖w‖22
.

Proof. We represent the singular value problem ‖Am−1‖2 from the proof of The-
orem 6.15 as an eigenvalue problem,

QTAATQ =

(
aTa aTAT

m−1

Am−1a B

)
, where B ≡ Am−1A

T
m−1.

Since QTAATQ is real symmetric positive semidefinite, so is its leading principal
submatrix B. Thus, τ2 = ‖Am−1‖22 = ‖B‖22 is a dominant eigenvalue of B, and

τ2 = yTAAT y = yTQQTAATQQT y = ŷTBŷ, where QT y =

(
0
ŷ

)
.

This means that the (m − 1) × 1 vector ŷ is a unit-norm eigenvector of B for the
dominant eigenvalue τ2, i.e., (B − τ2I)ŷ = 0. Therefore

(AAT − τ2I)y = Q
[
QTAATQ− τ2I

]
QT y = Q

(
aT a− τ2 aTAT

m−1

Am−1a B − τ2I

)(
0
ŷ

)
= Q

(
aTAT

m−1ŷ
(B − τ2I)ŷ

)
= Q

(
aTAT

m−1ŷ
0

)
= aTAm−1ŷ Qe1.

It remains to express the last quantity in terms of A, y, and w. From ATQ =(
a AT

m−1

)
, QT y =

(
0
ŷ

)
, and Qe1 = w/‖w‖2 follows

aTAT
m−1ŷ =

(
aTa aTAT

m−1

)(0
ŷ

)
= aT

(
a AT

m−1

)(0
ŷ

)
= eT1 Q

TAATQQT y = eT1 Q
TAAT y = wTAAT y/‖w‖2.

Hence

aTAT
m−1ŷ Qe1 =

wTAAT y

‖w‖22
w.
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Theorem 6.16 in turn leads to a third characterization which was introduced by
Seneta and Tan [86, Proposition 1]. We replace the Lagrange multiplier based proof
by one that is matrix based and involves the adjugate.

Definition 6.17 (section 0.8.2 in [37]). The adjugate adj[A] of an n × n ma-
trix A is the n × n transposed matrix of cofactors. Its elements are (adj[A])ij =
(−1)i+j det(A(ji)), where A(ji) is obtained from A by deleting row j and column i,
1 ≤ i, j ≤ n. For nonsingular matrices A this implies A adj[A] = det(A) I.

Theorem 6.18 (third expression). Let A ∈ Rm×n, and w ∈ Rm with w �= 0.
Then (τ2(w,A))

2 is the largest root of the polynomial wT adj[AAT − λI]w of degree
m− 1 in λ.

Proof. As in Theorem 6.16, let τ ≡ τ2(w,A) = ‖AT y‖2, where ‖y‖2 = 1 and
yTw = 0. We distinguish two cases, depending on whether τ2 is an eigenvalue of AAT

or not.
• If τ2 is not an eigenvalue of AAT , then AAT − τ2I is nonsingular. From
Theorem 6.16, and the relation between inverse and adjugate, follows

y = γ (AAT − τ2I)−1w = γ
adj[AAT − τ2I]w

det(AAT − τ2I)
.

Multiplying by wT yields 0 = wT y = wT adj[AAT − τ2I]w. Hence τ2 is a root
of wT adj[AAT − τ2I]w.

• If τ2 is an eigenvalue of AAT , then one can choose y to be an eigenvector
associated with τ2. Let AAT = V ΩV T be an eigenvalue decomposition, where
V is real orthogonal, and Ω is diagonal. For any scalar λ, adj[AAT − λI] =
V adj[Ω − λI]V T , because adj(XY ) = adj(Y )adj(X) for square matrices X
and Y , and adj(V ) = det(V )V T for a real orthogonal matrix V . Thus

wT adj[AAT − λI]w = wTV adj[Ω− λI]V Tw.

Assume that the diagonal elements ω1, . . . , ωm of Ω are ordered so that ω1 =
τ2 and y = V e1. From 0 = yTw = eT1 V

Tw follows that the leading element

of V Tw is zero, i.e., V Tw =
(
0 w2 . . . wm

)T
. The matrix Ω − λI is a

diagonal matrix, and so is its adjugate,

adj[Ω− λI] =

⎛⎜⎝
∏

j 	=1 (ωj − λ)
. . . ∏

j 	=m (ωm − λ)

⎞⎟⎠ .

Substituting the expressions for V Tw and adj[Ω−λI] into wT adj[AAT −λI]w
gives

wT adj[AAT − λI]w =
m∑
i=2

|wi|2
m∏

j=1,j 	=i

(ωj − λ)

=

m∑
i=2

|wi|2(ω1 − λ)

m∏
j=2,j 	=i

(ωj − λ).

Therefore τ2 = ω1 is a root of wT adj[AAT − λI]w.
Since each product (ω1−λ)

∏m
j=2,j 	=i (ωj − λ) in wT adj[AAT −λI]w consists of m− 1

factors, the quantity wT adj[AAT − λI]w is a polynomial of degree m − 1 in λ. We
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still need to argue that ω1 = τ2 is the largest root of this polynomial. Applying the
partitioning in Theorem 6.15 to the adjugate gives

adj[AAT − λI] = Q adj

[(
aT a− λ aTAT

m−1

Am−1a B − λI

)]
QT .

From Qe1 = w/‖w‖2 follows

wT adj[AA∗ − λI]w = ‖w‖22eT1 adj

[(
aTa− λ aTAT

m−1

Am−1a B − λI

)]
e1 = ‖w‖22 det(B − λI).

Since τ2 is the largest root of det(B − λI), it must also be the largest root of
wT adj[AAT − λI]w.

The fourth and last expression below is an extension to real matrices of the expres-
sion [89, Theorem 2] where S is a stochastic matrix and w a stationary distribution
of S. The expression below suggests that τ2(w,A) is equal to the norm of A when
orthogonally projected onto the subspace range(w)⊥, and in this sense, it resembles
Theorem 6.15.

Theorem 6.19 (fourth expression). Let A ∈ Rm×n and w ∈ Rm with w �= 0.
Then

τ2(w,A) =

∥∥∥∥(I − wwT

‖w‖22

)
A

∥∥∥∥
2

.

Proof. Because the two-norm corresponds to a quadratic form, we can use the
constraint zTw = 0 to eliminate an element from z and reduce the dimension of the
maximization problem τ2(w,A) = maxzTw=0,‖z‖2=1 ‖AT z‖2.

Let P be a permutation that moves all nonzero elements in w to the top,

Pw =

(
w1:m

0

)
, where |w1:m| > 0.

Let z ∈ Rn be a vector with zTw = 0 and ‖z‖2 = 1. Applying the permutation to z
and A, and distinguishing the leading row gives

Pz =

(
z1
z2:n

)
, PA =

(
aT1
AT

2:n

)
.

From 0 = wT z = (Pw)T (Pz) = w1z1 + wT
2:nz2:n and w1 �= 0 follows z1 =

−wT
2:nz2:n/w1. Substituting this expression into AT z gives

AT z = (PA)T (Pz) = a1z1 +A2:nz2:n = Rz2:n, where R ≡ A2:n − a1w
T
2:n/w1.

Hence ‖AT z‖2 = ‖Rz2:n‖2. Furthermore, substituting the expression for z1 into the
other constraint 1 = ‖z‖22 = (Pz)T (Pz) gives

zT2:nQz2:n = 1, where Q ≡ In−1 + w2:nw
T
2:n/w

2
1 .

The matrix Q is real symmetric positive definite, and has a Cholesky factorization
Q = LTL, so that ‖Lz2:n‖2 = 1.

Thus the problem of maximizing ‖AT z‖2 for z ∈ Rn subject to zTw = 0 and
‖z‖2 = 1 is equivalent to maximizing ‖Rx‖2 for x ∈ Rn−1 subject to ‖Lx‖2 = 1. At
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last, since L is nonsingular we can set y = Lx, so that the maximization problem
becomes

τ2(w,A) = max
‖y‖2=1

‖RL−1y‖2 = ‖RL−1‖2.

Now we have reduced a constrained maximization problem of order n to an uncon-
strained maximization problem of order n − 1. Looking inside the expression on the
right gives

‖RL−1‖22 = ‖RQ−1RT ‖2 =
∥∥∥R (I + w2:nw

T
2:n/w

2
1

)−1
RT
∥∥∥
2
.

From Q−1 = I − w2:nw
T
2:n/‖w‖22 and RQ−1 = A2:n −ATwwT

2:n/‖w‖22 follows

‖RL−1‖22 =

∥∥∥∥AT

(
I − wwT

‖w‖22

)
A

∥∥∥∥
2

=

∥∥∥∥(I − wwT

‖w‖22

)
A

∥∥∥∥2
2

,

where the last equality is due to the fact that I −wwT /‖w‖22 is Hermitian and idem-
potent.

Note that the two-norm expression for τ2(w,A) in Theorem 6.19 represents an
equality, while the Frobenius norm expression in Theorem 6.3 is only a bound.

In the special case when w is a dominant singular vector of A the expression in
Theorem 6.19 reduces to the second largest singular value of A.

Corollary 6.20. Let A ∈ R
m×n have singular values σ1(A) ≥ σ2(A) ≥ · · · and

dominant singular vectors v and u so that Av = σ1(A) u and ‖u‖2 = ‖v‖2 = 1. Then

τ2(u,A) = τ2(v,A
T ) = σ2(A).

Proof. From uTA = σ1(A)v
T and Theorem 6.19 follows

τ2(u,A) =
∥∥(I − uuT

)
A
∥∥
2
= ‖A− σ1(A)uv

T ‖2.

Let A = UΣV T be a singular value decomposition where the leading diagonal element
of Σ is Σ11 = σ1(A), and the matrices U and V are real orthogonal. Then Ue1 = u,
V e1 = v and

‖A− σ1(A)uv
T ‖2 = ‖Σ− σ1(A)e1e

T
1 ‖2 = σ2(A).

Hence τ2(u,A) = σ2(A). The proof for τ2(v,A
T ) is analogous.

Corollary 6.20 is an extension of the expression

τ2(11, SD) = τ2
(
11, ST

D

)
= σ2(SD)

for doubly stochastic matrices SD in [86, p. 3].

6.5. Eigenvalue bounds for nonnegative matrices. We present bounds on
inclusion regions for subdominant eigenvalues of nonnegative irreducible matrices.

Let A ∈ Rn×n be a nonnegative irreducible matrix with eigenvalues λj and Perron
vector u > 0 so that

Au = λ1u, where λ1 > |λ2| ≥ · · · ≥ |λn|.(6.2)

Ergodicity coefficients τp(u,A) that are based on the Perron vector u bound the
modulus of all subdominant eigenvalues, real as well as complex. The p-norm bound
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for nonnegative matrices below is an extension of the bounds for stochastic matrices
in the one-norm in Theorem 3.6, and in the infinity-norm in Theorem 4.3.

Theorem 6.21 (Theorem 3.1 in [71]). If A ∈ Rn×n is a nonnegative irreducible
matrix as in (6.2), then

|λi| ≤ τp(u,A), 2 ≤ i ≤ n.

Proof. The proof consists of constructing a norm ‖ · ‖c on Cn whose restriction to
R

n is ‖ · ‖p and so that τp(u,A) = max ‖z‖c=1

zTu=0, z∈C
n

∥∥AT z
∥∥
c
.

An alternative option for eigenvalue bounds is to convert the matrix into one with
constant row sums.

Lemma 6.22 (page 293 in [6]). If A ∈ Rn×n is a nonnegative irreducible matrix
as in (6.2) and Du = diag(u), then (D−1

u ADu) 11 = λ111.
Since similarity transformations preserve the eigenvalues, one can bound the

eigenvalues of A in terms of an ergodicity coefficient based on D−1
u ADu and its Perron

vector 11.
Theorem 6.23 (page 63 in [71]). If A ∈ R

n×n is a nonnegative irreducible matrix
as in (6.2) and Du = diag(u), then

|λi| ≤ τp
(
11, D−1

u ADu

)
, 2 ≤ i ≤ n.

Remark 6.24 (page 346 in [77]). The bound in Theorem 6.23, when applied to
stochastic matrices, can be tighter than the bound in Theorem 6.21.

Consider the stochastic matrix S with stationary distribution π, where

S =

⎛⎜⎜⎝
1/2 5/16 3/32 3/32
1/2 5/16 3/32 3/32
0 5/8 3/16 3/16
0 5/8 3/16 3/16

⎞⎟⎟⎠ and π =

⎛⎜⎜⎝
5/13
5/13
3/26
3/26

⎞⎟⎟⎠ .

With Dπ = diag(π) we obtain

D−1
π SDπ =

⎛⎜⎜⎝
1/2 1/2 0 0
5/16 5/16 3/16 3/16
5/16 5/16 3/16 3/16
5/16 5/16 3/16 3/16

⎞⎟⎟⎠ .

The eigenvalues of S are λ1 = 1, λ2 = 3/16, λ3 = λ4 = 0, so that the modulus of the
largest subdominant eigenvalue is maxi≥2 |λi| = 3/16.

The ergodicity coefficients are

τ1(S) =
1

2
, τ1

(
ST
)
=

13

16
, τ∞(S) = 1, τ∞

(
ST
)
=

5

8
,

and

τ1
(
D−1

u SDu

)
=

3

8
, τ∞

(
D−1

u SDu

)
=

3

16
.

Thus τ1
(
D−1

u SDu

)
and τ∞

(
D−1

u SDu

)
represent tighter bounds for maxi≥2 |λi| =

3/16 than the other four coefficients.
Below we bound τp(u,A) by the norm of A deflated by its dominant spectral

projector.
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Corollary 6.25. If A ∈ Rn×n is a nonnegative irreducible matrix as in (6.2)
and vTA = λ1v

T , then

|λi| ≤ τp(u,A) ≤ ‖(A− λ1uv
T )T ‖p, 2 ≤ i ≤ n.

Proof. This follows from Theorem 6.21, and from Theorem 6.3 with x = λ1v.
In particular, Corollary 6.25 implies an inclusion interval for τp(u,A) in terms of

A deflated by its dominant spectral projector [78, (2)]

ρ
(
A− λ1uv

T
) ≤ τp(u,A) ≤ ‖(A− λ1uv

T )T ‖p,

where ρ(A) = max1≤i≤n |λi|.
7. Complex matrices and general subspaces. The most general form of

ergodicity coefficient [71, section 7], [32, section 3] is defined for complex matrices
A ∈ Cm×n, and the maximization takes place over subspaces of arbitrary dimension,

τp(W,A) ≡ max
‖z‖p=1
z∗W=0

‖A∗z‖p,

where the maximum ranges over z ∈ Cm. We discuss properties of general p-norm
coefficients in section 7.1, and consider the special case when W is an invariant sub-
space of A in section 7.2. Then we focus on the two-norm coefficient, for we which
derive explicit expressions in section 7.3, and establish its relation to singular values
in section 7.4. In section 7.5 we derive inclusion regions for eigenvalues, and illustrate
that for normal matrices, the two-norm coefficient is a Lehmann bound.

7.1. Properties common to all p-norm coefficients. A for real matrices,
the coefficients τp(W,A) are bounded, well-conditioned in the second argument, and
weakly submultiplicative in the second argument.

Theorem 7.1. If A,A1, A2 ∈ Cm×n and W ∈ Cm×k, then
1. 0 ≤ τp(W,A) ≤ ‖A∗‖p,
2. |τp (W,A1)− τp(W,A2)| ≤ τp (W,A1 −A2),
3. τp(W,BA) ≤ ‖A∗‖p τp(W,B).

Proof. The proof is analogous to that for real matrices in Theorem 6.1.
As in the case of real matrices in Theorem 6.3, we can represent τp(W,A) as the

norm of a downdated matrix.
Theorem 7.2. If A ∈ Cm×n and W ∈ Cm×k, then for all X ∈ Ck×n

τp(W,A) ≤ ‖A∗ −XW ∗‖p .

Proof. Let z ∈ C
n be a vector with z∗W = 0 and ‖z‖p = 1. Then

(A−WX∗)∗ z = A∗z −XW ∗z = A∗z

implies

τp(W,A) = max
‖z‖p=1
z∗W=0

∥∥(A−WX∗)∗ z
∥∥
p
= τp (W,A−WX∗) ≤ ∥∥(A−WX∗)∗

∥∥
p
,

where the last inequality follows from Theorem 7.1.
Theorem 7.2 represents an improvement over the bound in item 1 of Theorem 7.1

whenever ‖A∗ −XW ∗‖p < ‖A∗‖p.
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7.2. Invariant subspaces. If the columns of W happen to span an invariant
subspace of A, then a submultiplicative property holds for powers of A. We also show
that the ergodicity coefficients can determine eigenvalue inclusion regions.

Theorem 7.3. Let A ∈ Cn×n and W ∈ Cn×k with AW = WC for some C ∈
C

k×k. Then for l,m ≥ 1

τp
(
W,Al+m

) ≤ τp
(
W,Al

)
τp (W,Am) .

Proof. The proof is analogous to that for real matrices in Theorem 6.2.
If W spans a right invariant subspace associated with dominant eigenvalues, then

an eigenvalue bound holds that is similar to the one for stochastic matrices in Theorem
3.6 and for irreducible nonnegative matrices in Theorem 6.21.

Theorem 7.4. Let A ∈ Cn×n have eigenvalues λj, labeled |λ1| ≥ · · · ≥ |λn|. If the
columns of W ∈ Cn×k span a right invariant subspace of A associated with λ1, . . . , λk,
then

|λk+1| ≤ τp(W,A).

Proof. Let v ∈ Cn be a left eigenvector of A for an eigenvalue λi, k+1 ≤ i ≤ n, so
that v∗A = λiv

∗ and ‖v‖p = 1. It is clear that v∗W = 0 if λk �= λk+1, or if λk = λk+1

and λk is not defective. To see that it also holds if λk is defective, simply consider the
Jordan block

A =

⎛⎜⎜⎜⎜⎝
λ1 1

. . .
. . .

. . . 1
λ1

⎞⎟⎟⎟⎟⎠
of order k + 1, where λ1 = · · · = λk = λk+1. For W to be an invariant subspace,
it must be spanned by e1, . . . , el for some 1 ≤ l ≤ k. The only left eigenvector is
v = ek+1, so that v∗W = 0. Therefore we can conclude

|λk+1| = ‖A∗v‖p ≤ max
‖z‖p=1
z∗W=0

‖A∗z‖p = τp(W,A).

If the columns of W are actually vectors from a Jordan decomposition, then we
can say something about the tightness of τ2(W,A) as an eigenvalue bound. Denote a
Jordan decomposition of A by A = XΛX−1, where

Λ =

(
Λ1

Λ2

)
, X =

(
X1 X2

)
, X−1 =

(
Y ∗
1

Y ∗
2

)
,

and

Λ1 =

⎛⎜⎝λ1

. . .

λk

⎞⎟⎠ , Λ2 =

⎛⎜⎝λk+1

. . .

λn

⎞⎟⎠ .

Theorem 7.5. Let A ∈ C
n×n have eigenvalues λj, labeled |λ1| ≥ · · · ≥ |λn|. If

λk �= λk+1 for some 1 ≤ k < n, then

|λk+1| ≤ τp(X1, A) ≤ |λk+1| ‖X∗
2‖p ‖Y ∗

2 ‖p .
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Proof. The lower bound follows from Theorem 7.4.
With regard to the upper bound, let y be a vector with τp(W,A) = ‖A∗y‖p,

y∗W = 0, and ‖y‖p = 1. Then A∗y = Y2Λ
∗
2X

∗
2 y and

τp(W,A) = ‖A∗y‖p ≤ ‖X∗
2‖p ‖Λ∗

2‖p ‖Y ∗
2 ‖p .

Since Λ2 is a diagonal matrix, ‖Λ2‖p = |λk+1|.
Theorem 7.5 suggests that the tightness of τ2(W,A) as an eigenvalue bound for

the subdominant eigenvalues depends on the vectors in their Jordan decomposition.
An analogous bound based on the Schur decomposition will be presented in Theorem
7.11.

In the remaining sections we concentrate on two-norm coefficients.

7.3. Explicit expressions for two-norm coefficients. The four explicit ex-
pressions for two-norm coefficients of real matrices in section 6.4 also hold for complex
matrices. In particular, we extend Theorems 6.15 and 6.19 to complex matrices and
general subspaces. The following two bounds demonstrate that τ2(W,A) is the norm
of an orthogonally projected matrix, where the projection is onto range(W )⊥.

Theorem 7.6. Let A ∈ C
m×n, and let W ∈ C

m×k have orthonormal columns.
Let Q ∈ Cm×m be a unitary matrix with Q =

(
W Q2

)
, and partition A∗Q =(

Ak Am−k

)
, where Am−k has m− k columns. Then

τ2(W,A) = ‖Am−k‖2.
Proof. The proof is analogous to that of Theorem 6.15 for real matrices.
In contrast to the matrix Am−k in Theorem 7.6, which has fewer rows than A,

the projected matrix below has the same dimension as A.
Theorem 7.7. Let A ∈ Cm×n and W ∈ Cm×k with rank(W ) = k. Then

τ2(W,A) =
∥∥(I −W (W ∗W )−1W ∗)A∥∥

2
.

Proof. Let z be a vector with z∗W = 0 and ‖z‖2 = 1, and let P be a permutation
matrix so that

PW =

(
Wk

Wm−k

)
, P z =

(
zk

zm−k

)
,

where the k × k matrix Wk is nonsingular and zk has k elements. Then z∗W = 0
implies z∗k = −z∗m−kX , where X = Wm−kW

−1
k . We can incorporate the constraint

z∗W = 0 into z by writing

Pz =

(−X∗

Im−k

)
zm−k.

As a consequence,

A∗z = A∗P ∗
(−X∗

Im−k

)
, 1 = z∗z = z∗m−k(Im−k +XX∗)zm−k.

The matrix Im−k +XX∗ is Hermitian positive definite, and hence has a Hermitian
positive-definite square root (Im−k + XX∗)1/2. Setting y = (Im−k + XX∗)1/2zm−k

gives y∗y = 1 and

A∗z = A∗By, where B = P ∗
(−X∗

Im−k

)
(Im−k +XX∗)−1/2.
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Therefore, maximizing ‖A∗z‖2 over z ∈ Cm subject to z∗W = 0 and ‖z‖2 = 1 is
equivalent to maximizing ‖A∗By‖2 over y ∈ Cm−k subject to ‖y‖2 = 1. This means
τ2(W,A) = max‖y‖2=1 ‖A∗By‖2 = ‖A∗B‖2.

The m× (m− k) matrix B has orthonormal columns; thus ‖A∗B‖2 = ‖B∗A‖2 =
‖BB∗A‖2, and BB∗ is the orthogonal projector onto the space

range(B) = range

(
P ∗
(−X∗

Im−k

))
= range

(
P ∗
(
Ik
X

))⊥
.

Since

P ∗
(
Ik
X

)
= P ∗

(
Wk

Wm−k

)
W−1

k = W W−1
k ,

we obtain range(B) = range(W )⊥. The uniqueness of orthogonal projectors implies
BB∗ = I −W (W ∗W )−1W ∗.

7.4. Two-norm coefficients and singular values. We show that two-norm
ergodicity coefficients are closely related to singular values. In particular, two-norm
ergodicity coefficients based on dominant singular vectors can reproduce any singu-
lar value. This is in contrast to eigenvalues, where ergodicity coefficients yield only
bounds; see Theorem 7.5. The result below extends Corollary 6.20 from real matrices
to complex matrices and arbitrary subspaces.

Corollary 7.8. Let A ∈ Cm×n have singular values σ1 ≥ σ2 ≥ · · · , and let the
columns of Uj and Vj consist of the respective left and right singular vectors associated
with the j largest singular values σ1, . . . , σj. If 1 ≤ k < min{m,n}, then

τ2(Uk, A) = τ2(Vk, A
∗) = σk+1.

Proof. This follows from Theorem 7.7, and the proof is analogous to that of
Corollary 6.20.

More generally, for all matrices W with k columns, singular values σk+1 and σ1

represent the extreme values for τ2(W,A).
Theorem 7.9. Let A ∈ C

m×n have singular values σ1 ≥ σ2 ≥ · · · . If 1 ≤ k ≤
min{m,n}, then

min
W∈Cn×k

τ2(W,A) = σk+1, max
W∈Cn×k

τ2(W,A) = σ1.

Proof. The variational characterization of singular values [37, Theorem 7.3.10]
implies

σk+1 = min
X∈Cn×k

max
z∈C

n,‖z‖2=1
z∗X=0

‖A∗z‖2 ≤ max
‖z‖2=1
z∗W=0

‖A∗z‖2 = τ2(W,A).

Corollary 7.8 shows that the minimum is attained if the columns of W are the k left
singular vectors associated with the k largest singular values σj , 1 ≤ j ≤ k. The
maximum is attained if the columns of W are k left singular vectors associated with
singular values σj for j > 1.

7.5. Two-norm coefficients and eigenvalues. For a normal matrix, that is,
a matrix A with A∗A = AA∗, Theorems 7.5 and 7.9 readily imply that the two-norm
ergodicity coefficients based on dominant eigenvectors can reproduce the magnitude
of any eigenvalue.
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Theorem 7.10. Let A ∈ Cn×n be a normal matrix with eigenvalues λj, labeled
so that |λ1| ≥ · · · ≥ |λn|, and λk �= λk+1. If W ∈ Cn×k has orthonormal columns that
span an invariant subspace associated with λ1, . . . , λk, then

|λk+1| = τ2(W,A).

Proof. Since A is normal, it has singular values |λj |, and Theorem 7.9 implies
|λk+1| ≤ τ2(W,A). The matrices X in the Jordan decomposition A = XΛX−1 from
section 7.2 are unitary, so that the submatrices X2 and Y2 in Theorem 7.5 have
orthonormal columns and ‖X2‖2 = ‖Y2‖2 = 1. From Theorem 7.5 follows τ2(W,A) ≤
|λk+1|.

More generally, one can try to use τ2(W,A) as an inclusion region for subdominant
eigenvalues of nonnormal matrices A. In Theorem 7.5 this was done by choosing for
W those vectors from a Jordan decomposition that are associated with dominant
eigenvalues. Below we derive an analogous bound when W consists of vectors from a
Schur decomposition associated with dominant eigenvalues.

Let A = Q(Λ+N)Q∗ be a Schur decomposition, where Q is unitary, Λ is diagonal,
and N is strictly upper triangular.

Theorem 7.11. Let A ∈ Cn×n have eigenvalues λj , ordered so that |λ1| ≥ · · · ≥
|λk| and λk �= λk+1. Let W ∈ C

n×k have orthonormal columns that span an invariant
subspace associated with λ1, . . . , λk. Then

|λk+1| ≤ τ2(W,A) ≤ |λk+1|+ ‖N‖2.

Proof. The matrix W can be chosen as the leading k columns of Q; see [26, Lemma
7.1.2]. The remaining proof is similar to the proofs of Theorems 7.5 and 7.10.

Theorem 7.11 implies that τ2(W,A) based on dominant Schur vectors provides
good inclusion regions for subdominant eigenvalues if A is close to normal, that is, if
the departure of A from normality, ‖N‖2, is small.

Connection to Lehmann bounds. We illustrate that two-norm ergodicity
coefficients for normal matrices are special cases of Lehmann bounds.

So-called Lehmann bounds are a particular type of eigenvalue inclusion region.
They are expressed in terms of singular values of the matrix restricted to a subspace;
see [60, section 10.5] for Hermitian matrices and [7] for general matrices. Theorem
7.12 below presents Lehmann bounds for normal matrices. We use σi(B) to denote
the ith largest singular value of the matrix B.

Theorem 7.12 (Corollary 2.3 in [7]). Let A ∈ Cn×n be a normal matrix, X ∈
Cn×m have orthonormal columns, and γ be a complex scalar. Then each disk

{λ : |λ− γ| ≤ σi ((A− γI)X)} , 1 ≤ i ≤ m,

contains at least m− i+ 1 eigenvalues of A.
It turns out that for any full column rank matrix W , the ergodicity coefficient

τ2(W,A) is a Lehmann bound for a normal matrix A.
Theorem 7.13. Let A ∈ Cn×n be a normal matrix, let W ∈ Cn×k have linearly

independent columns, and let γ be a complex scalar. Then the disk

{λ : |λ− γ| ≤ τ2 (W,A− γI)}

contains at least n−k eigenvalues of A. That is, τ2 (W, (A− γI)) is a Lehman bound.
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Proof. Let X ∈ Cn×(n−k) have orthonormal columns with range(X) =
range(W )⊥. Then

σ1

(
(A− γI)

∗
X
)
= max

‖y‖2=1

∥∥(A− γI)
∗
Xy
∥∥
2
= max

‖Xy‖2=1

∥∥(A− γI)
∗
Xy
∥∥
2

= max
‖z‖2=1
z∗W=0

∥∥(A− γI)
∗
z
∥∥
2
= τ2 (W,A− γI) .

Now apply Theorem 7.12 with m = n− k and i = 1.

8. Summary and future work. Ergodicity coefficients were designed to es-
timate the rate at which a product of stochastic matrices converges to a rank-one
matrix. An ergodicity coefficient for a stochastic matrix S can be defined as

τp(S) = max
‖z‖p=1

zT11=0

∥∥ST z
∥∥
p
,

where the maximum ranges over real vectors z. One can interpret this coefficient as
the p-norm of the matrix S restricted to the subspace orthogonal to its dominant
right eigenvector 11. Our goal was to introduce ergodicity coefficients to the numerical
linear algebra community, and to present a coherent discussion of existing work.

Rhodius, Seneta, and Tan thoroughly analyzed ergodicity coefficients for real, and
in particular stochastic, matrices, mostly for p = 1 and p = ∞. They proved properties
like continuity and submultiplicativity, derived explicit expressions, and showed that
τp(S) defines an inclusion region for the eigenvalues λ �= 1 of S. Further work is
necessary, though, to determine how tight of a bound τp(S) is for the subdominant
eigenvalues closest to λ = 1.

In terms of applications, Kirkland, Meyer, and Seneta have shown how to use
τ1(S) as a condition number for the stationary distribution of S. In this context, it
would be useful to develop fast estimators for τ1(S).

Following Hartfiel, Rothblum, Seneta, and Tan, we extended ergodicity coeffi-
cients to complex rectangular matrices A ∈ Cm×n and subspaces W ∈ Cm×k,

τp(W,A) = max
‖z‖p=1
z∗W=0

‖A∗z‖p ,

where the maximum ranges over complex vectors z. Our discussion focused on p = 2.
In particular, we presented several explicit forms for τ2(W,A), illustrated relations
to Jordan and Schur forms, and demonstrated how to define inclusion regions for
singular values and eigenvalues. We showed that τ2(W,A) is bounded by singular
values of A. For normal matricesA we pointed out that the inclusion regions defined by
τ2(W,A− γI) are special cases of Lehmann bounds, and that for nonnormal matrices
A the tightness of the inclusion regions depends on the departure of A from normality.
Further work is necessary on explicit forms for τp(W,A) for general p and the tightness
of the inclusion regions defined by these coefficients.
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