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Randomized algorithms

Solve a deterministic problem by statistical sampling

Monte Carlo methods
Von Neumann & Ulam, Los Alamos, 1946

Simulated annealing: global optimization



This talk

Given: Real matrix A with more columns than rows
Want: Monte Carlo algorithm for matrix product AAT

Why is this important?

Monte Carlo algorithm produces approximation X = BBT



Overview

Deterministic conditions for exact representation
When is BBT = AAT possible?

Monte Carlo algorithm
Samples B so that E[BBT ] = AAT

Probabilistic bounds
Error BBT − AAT , and number of columns in B

Matrices with orthonormal rows, and singular values
How close is B to having orthonormal rows?

Coherence
Quantifying the difficulty of sampling: For which A can we get a good B?

Leverage scores
Improving on coherence

Condition numbers with respect to inversion
Departure of a basis from orthonormality



Deterministic conditions
for exact representation



Gram product: AAT

Real matrix A =
(

A1 . . . An

)

with n columns

Exact computation

AAT = A1A
T
1 + · · · + AnA

T
n

Monte Carlo algorithm [Drineas, Kannan & Mahoney]

Sample c columns

X = w1 At1A
T
t1 + · · ·+ wc AtcA

T
tc

wj ≥ 0 chosen so that X is unbiased estimator

E[X ] = AAT





Gram product: AAT

Real matrix A =
(

A1 . . . An

)

with n columns

Exact computation

AAT = A1A
T
1 + · · · + AnA

T
n

Monte Carlo algorithm [Drineas, Kannan & Mahoney]

Sample c columns

X = w1 At1A
T
t1 + · · ·+ wc AtcA

T
tc

Weights wj ≥ 0 chosen so that X is unbiased estimator

E[X ] = AAT



Existing work

Randomized matrix multiplication

Cohen & Lewis 1997, 1999
Rudelson 1999, Drineas & Kannan 2001
Frieze, Kannan & Vempala 2004
Drineas, Kannan & Mahoney 2006, Sarlós 2006
Rudelson & Vershynin 2007
Belabbas & Wolfe 2008
Magdon-Ismail 2010, Drineas & Zouzias 2010, Magen & Zouzias 2010
Pagh 2011
Hsu, Kakade & Zhang 2012, Li, Miller & Peng 2012
Liberty 2013

Connections to
Matrix concentration (Minsker, Tropp, ...)
Low-rank approximations, subset selection (Boutsidis, ...)
Nyström approximations (Gittens, ...)
Graph sparsification (Spielman, Srivastava, ...)
Compressed sensing (Donoho, Candés, ...)
Matrix completion (Recht, ...)



Why is this a good idea?

Want:
AAT = A1A

T
1 + · · · + AnA

T
n

Monte Carlo algorithm:

X = w1 At1A
T
t1 + · · · + wc AtcA

T
tc

Why should c columns produce a good approximation?

How to determine the columns and weights?

Use the SVD



Singular Value Decomposition (SVD)

Real m × n matrix A with rank(A) = r

A = U Σ V T

Left singular vector matrix
U is m × r with orthonormal columns: UTU = Ir

Right singular vector matrix
V is n × r with orthonormal columns: V TV = Ir

Singular values

Σ =







σ1
. . .

σr






σ1 ≥ · · · ≥ σr > 0



SVD of a short & fat matrix



Deterministic conditions for exact representation

[Holodnak & II 2013]

Given: Real matrix A and c ≥ rank(A)

There exist indices t1 ≤ · · · ≤ tc and weights wj ≥ 0 so that

w1 At1A
T
t1 + · · · + wc AtcA

T
tc = AAT

if and only if
(√

w1 et1 . . .
√
wc etc

)T
V

has orthonormal columns

Exact representation depends on right singular vectors

Indices not necessarily distinct

Columns of A can occur repeatedly



Proof of principle

Exact representation

w1 At1A
T
t1 + · · · + wc AtcA

T
tc = AAT

Necessary & sufficient conditions for existence

Conditions depend on right singular vector matrix V

There are matrices that do not satisfy these conditions

Connections to rank-constrained matrix approximation
[Friedland & Torokhti 2007]



Monte Carlo algorithm



Monte Carlo algorithm [Drineas et al. 2006, 2010]

Input: Real matrix A with n columns
Sampling amount c ≥ 1
Probabilities pj ≥ 0 with

∑n
j=1 pj = 1

for j = 1 to c do
Sample tj from {1,. . . ,n} with probability ptj

independently and with replacement
wj ≡ 1/(cptj )

end for

Output: X = w1 At1A
T
t1 + · · ·+ wc AtcA

T
tc



How to sample

Given: Probabilities 0 ≤ p1 ≤ · · · ≤ pn with
∑n

j=1 pj = 1

Want: Sample index t = j from {1,. . . ,n} with probability pj

Inversion by sequential search [Devroye 1986]

1 Determine partial sums

Sk ≡
k

∑

i=1

pi 1 ≤ k ≤ n

2 Pick uniform [0, 1] random variable U

3 Determine integer j with Sj−1 < U ≤ Sj

4 Sampled index: t = j with probability pj = Sj − Sj−1



Expected value (mean)

X = 1
c pt1

At1A
T
t1 + · · · + 1

c ptc
AtcA

T
tc

Expected value of a single sample

E

[

1
c ptj

AtjA
T
tj

]

=

n
∑

k=1

pk
1

c pk
AkA

T
k = 1

c

n
∑

k=1

AkA
T
k = 1

c AAT

Sampling independently & with replacement:

E[X ] = E

[

1
c pt1

At1A
T
t1

]

+ · · · + E

[

1
c ptc

AtcA
T
tc

]

= cE
[

1
c ptj

AtjA
T
tj

]

= AAT

Unbiased estimator: E[X ] = AAT



Concentration around the mean

X = 1
c pt1

At1A
T
t1 + · · · + 1

c ptc
AtcA

T
tc

Unbiased estimator: E[X ] = AAT

Column norm probabilities [Drineas, Kannan & Mahoney 2006]

pj = ‖Aj‖22/‖A‖2F 1 ≤ j ≤ n

minimize E
[

‖X − AAT‖2F
]

We want: For any δ > 0 with probability at least 1− δ

‖X − AAT‖2
‖AAT‖2

≤ f (δ, c , . . .)

Idea: X is sum of c matrix-valued random variables



8× 4177 Abalone matrix [Bache & Lichman 2013]
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Monte Carlo algorithm has low relative accuracy



Probabilistic bounds



Matrix Bernstein concentration inequality [Tropp 2011]

Independent random real symmetric m ×m matrices Xj

E[Xj ] = 0 {zero mean}

‖Xj‖2 ≤ τ {bounded}
∥

∥

∥

∑

j E[X
2
j ]
∥

∥

∥

2
≤ ρ {“variance”}

For any ǫ > 0

P





∥

∥

∥

∑

j

Xj

∥

∥

∥

2
≥ ǫ



 ≤ m exp

(

− ǫ2/2

ρ+ τ ǫ/3

)

{deviation from the mean}



Relative error due to randomization [Holodnak & II]

Given: Real matrix A =
(

A1 . . . An

)

Stable rank: sr(A) ≡ ‖A‖2F /‖A‖22
Monte Carlo algorithm (with probabilities pj = ‖Aj‖

2
2/‖A‖

2
F )

X = 1
c pt1

At1A
T
t1 + · · · + 1

c ptc
AtcA

T
tc

For any δ > 0, with probability at least 1− δ

‖X − AAT‖2
‖AAT‖2

≤ γ +
√

γ (6 + γ)

where

γ ≡ ln (rank(A)/δ)

3 c
sr(A)



Lower bound on number of samples [Holodnak & II]

Given: Real matrix A =
(

A1 . . . An

)

Monte Carlo algorithm (with probabilities pj = ‖Aj‖
2
2/‖A‖

2
F )

X = 1
c pt1

At1A
T
t1 + · · · + 1

c ptc
AtcA

T
tc

If 0 < ǫ < 1, 0 < δ < 1 and

c ≥ 8
3

ln (rank(A)/δ)

ǫ2
sr(A)

then with probability at least 1− δ

‖X − AAT‖2
‖AAT‖2

≤ ǫ



Summary of probabilistic bounds

Upper bound on 2-norm relative error due to randomization
Lower bound on number of samples

Bounds

depend on the rank and stable rank

do not depend on matrix dimensions

informative even for small matrix dimensions and
stringent success probabilities (99 percent)

Not discussed

Sampling with replacement, Bernoulli sampling

Probabilities based on leverage scores

Tightness of bounds



Special case:
Matrices with orthonormal rows



From matrix multiplication to singular values

Given: Real m × n matrix Q with QQT = Im
Singular values: σj(Q) = 1, 1 ≤ j ≤ m

Monte Carlo algorithm: X = Q̃Q̃T where Q̃ has c ≥ m columns

‖Q̃Q̃T − I‖2 ≤ ǫ

Matrix multiplication bounds imply singular value bounds

Singular values of Q̃

√
1− ǫ ≤ σj(Q̃) ≤

√
1 + ǫ 1 ≤ j ≤ m

Condition number of Q̃ with respect to inversion

‖Q̃‖2‖Q̃†‖2 =
σ1(Q̃)

σm(Q̃)
=

√

1 + ǫ

1− ǫ



Singular value bounds [Holodnak & II]

Given: Real matrix Q =
(

Q1 . . . Qn

)

with QQT = Im

Monte Carlo algorithm (with probabilities pj = ‖Qj‖
2
2/m)

X = Q̃Q̃T Q̃ ≡
(√

1
c pt1

Qt1 . . .
√

1
c ptc

Qtc

)

If 0 < ǫ < 1, 0 < δ < 1 and

c ≥ 2(1 + ǫ
3)m

ln (m/δ)

ǫ2

then with probability at least 1− δ

√
1− ǫ ≤ σj(Q̃) ≤

√
1 + ǫ 1 ≤ j ≤ m



Uniform sampling [Holodnak & II]

Given: Real matrix Q =
(

Q1 . . . Qn

)

with QQT = Im

Largest column norm µ ≡ max1≤j≤n ‖Qj‖22

Monte Carlo algorithm (with probabilities pj = 1/n)

X = Q̃Q̃T Q̃ ≡
(√

1
c pt1

Qt1 . . .
√

1
c ptc

Qtc

)

If 0 < ǫ < 1, 0 < δ < 1 and

c ≥ 2(1 + ǫ
3) n µ

ln (m/δ)

ǫ2

then with probability at least 1− δ

√
1− ǫ ≤ σj(Q̃) ≤

√
1 + ǫ 1 ≤ j ≤ m



Summary: Matrices with orthonormal rows

Probabilistic singular value bounds

√
1− ǫ ≤ σj(Q̃) ≤

√
1 + ǫ 1 ≤ j ≤ m

Column norm probabilities pj = ‖Qj‖22/m
Number of samples c = Ω

(

m lnm/ǫ2
)

Uniform probabilities pj = 1/n

Number of samples c = Ω
(

nµ lnm/ǫ2
)

µ ≡ maxj ‖Qj‖22

Connections to

Coupon collector’s problem (Halko, Martinsson & Tropp)

Compressed sensing (Donoho, Candés, ...)



Coherence



Properties of Coherence

Real matrix Q =
(

Q1 . . . Qn

)

with QQT = Im

Coherence µ ≡ max1≤j≤n ‖Qj‖22

m/n ≤ µ ≤ 1

Maximal coherence: µ = 1
At least one row of Q is a canonical vector

Minimal coherence: µ = m/n
Rows of Q are rows of a Hadamard matrix

Coherence measures “correlation with standard basis”

Quantifies difficulty of recovering matrix from sampling



Coherence in General

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix

by sampling its entries

Mori & Talwalkar 2010, 2011

Estimation of coherence

Avron, Maymounkov & Toledo 2010
Meng, Saunders & Mahoney 2011

Randomized preconditioners for least squares

Drineas, Magdon-Ismail, Mahoney & Woodruff 2011

Fast approximation of coherence



Leverage scores



Leverage scores

Q =
(

Q1 . . . Qn

)

with QQT = Im

Idea: Use all column norms

Leverage scores = squared column norms of Q

ℓj = ‖Qj‖22 1 ≤ j ≤ n

Coherence = largest leverage score

µ = max
1≤j≤n

ℓj

Low coherence ⇐⇒ uniform leverage scores

Leverage scores: Importance sampling in randomized algorithms
[Drineas & Mahoney 2006, ...]



Leverage scores are ubiquitous

Statistics
[Hoaglin & Welsch 1978,Velleman & Welsch 1981, Chatterjee & Hadi 1986]

Leverage scores: Outliers in regression problems

Astronomy
[Yip, Mahoney, Szalay, Csabai, Budavári, Wyse & Dobos 2013]

Leverage scores: Important wave lengths in galaxy evolution

Electronic structure calculations
[Bekas, Kokiopoulou & Saad 2008]

Leverage scores: Charge densities

Graph Theory
[Drineas & Mahoney 2010]

Leverage scores: Effective resistance of edges



Condition Number Bound [II & Wentworth]

m × n matrix Q with orthonormal rows

Leverage scores ℓj = ‖Qj‖22

L = diag
(

ℓ1 . . . ℓn
)

Coherence µ = ‖L‖2 = max1≤j≤n ℓj

Uniform sampling, number of sampled columns c ≥ 1

Error tolerance 0 < ǫ < 1

Failure probability

δ = 2m exp

(

−3
2

c ǫ2

m (3 ‖QLQT ‖2 + µ ǫ)

)

With probability at least 1− δ: ‖Q̃‖2‖Q̃†‖2 ≤
√

1+ǫ
1−ǫ



What to do about ‖QLQT‖2

Failure probability

δ = 2m exp

(

−3
2

c ǫ2

m (3 ‖QLQT ‖2 + µ ǫ)

)

where
µ2 ≤ ‖QLQT‖2 ≤ µ

Want: Simple accurate approximation of ‖QLQT‖2
How: Derive bound for general scaled matrices

Connections to
Majorization, lattice superadditive maps

Inverse eigenvalue problems [Dhillon et al. 2005]



General scaled matrices [Wentworth & II]

m × n matrix Z with rank(Z ) = m

Largest squared column norm µz ≡ max1≤j≤n ‖Zj‖22
Diagonal matrix D = diag

(

d1 · · · dn
)

d[1] ≥ · · · ≥ d[n]

Bound ‖Z D‖2 in terms of µz and largest elements of D

If t =
⌊

1/(‖Z †‖22 µz)
⌋

then

‖Z D‖22 ≤ µz

t
∑

j=1

d2
[j ] +

(

‖Z‖22 − t µz

)

d2
[k]

where k = 1 or t + 1



Bound for ‖QLQT‖2

m × n matrix Q with QQT = Im

Coherence µ ≡ max1≤j≤n ‖Qj‖22
Leverage scores ℓ[1] ≥ · · · ≥ ℓ[n]

If t = ⌊1/µ⌋ then

‖Q L QT‖2 = ‖Q L1/2‖22 ≤ µ

t
∑

j=1

ℓ[j ] + (1− t µ) ℓ[t+1]

If t = 1/µ is an integer then

‖Q L QT‖2 ≤ µ
t

∑

j=1

ℓ[j ] ≤ µ

Bound for ‖QLQT‖2 tighter than coherence µ



Simpler probabilistic bound [Wentworth & II]

m × n matrix Q with QQT = Im

Leverage scores µ ≡ ℓ[1] ≥ · · · ≥ ℓ[n]

Uniform sampling of columns

Approximation to ‖QLQT ‖2

τ ≡ µ

t
∑

j=1

ℓ[j ] + (1− t µ) ℓ[t+1] t = ⌊1/µ⌋

If
c ≥ 2

3 (3 τ + ǫ µ) n ln(2m/ δ)/ ǫ2

then with probability at least 1− δ

‖Q̃‖2‖Q̃†‖2 ≤
√

1 + ǫ

1− ǫ



Summary

Monte Carlo algorithm for Gram product AAT

Deterministic conditions for exact representation
Depend on right singular vector matrix

Probabilistic bounds for 2-norm relative error, number of
sampled columns
Depend on rank and stable rank of A, but not dimension

Probabilistic singular value bounds
Matrices with orthonormal rows

Uniform sampling: Bounds depend on coherence

Probabilistic condition number bounds
Matrices with orthonormal rows

Uniform sampling: Tighter bounds in terms of leverage scores

Bound for 2-norm of scaled matrices
In terms of largest column norm, and elements of diagonal matrix



Why randomized algorithms?

Reduction of massive data sets, for low-accuracy requirements
Least squares/regression, SVD/PCA, subspace approximation, model reduction

Advantages
“Easy” to analyze, forgiving, probabilistic bounds more optimistic

Applications
Machine learning, population genomics, astronomy, nuclear engineering

Survey papers

Halko, Martinsson & Tropp 2011
Mahoney 2011


