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Randomized algorithms

Solve a deterministic problem by statistical sampling

@ Monte Carlo methods
Von Neumann & Ulam, Los Alamos, 1946
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@ Simulated annealing: global optimization



This talk

Given: Real matrix A with more columns than rows
Want: Monte Carlo algorithm for matrix product AAT

A = AANT

ANT

Why is this important?

@ Monte Carlo algorithm produces approximation X = BBT



Overview

Deterministic conditions for exact representation
When is BBT = AAT possible?

Monte Carlo algorithm
Samples B so that E[BBT] = AAT

Probabilistic bounds

Error BBT — AAT, and number of columns in B

Matrices with orthonormal rows, and singular values

How close is B to having orthonormal rows?

Coherence
Quantifying the difficulty of sampling: For which A can we get a good B?

Leverage scores

Improving on coherence

Condition numbers with respect to inversion

Departure of a basis from orthonormality



Deterministic conditions
for exact representation



Gram product: AAT

Real matrix A = (Al A,,) with n columns

@ Exact computation
AAT = A AT + -+ AAT

@ Monte Carlo algorithm [Drineas, Kannan & Mahoney]

Sample ¢ columns

X = wi Ag AL + -+ we A AL
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Gram product: AAT

Real matrix A = (A1 A,,) with n columns

@ Exact computation
AAT = MA] + -+ AAT

@ Monte Carlo algorithm [Drineas, Kannan & Mahoney]

Sample ¢ columns
X =wi Ag Al + -+ we A AL
Weights w; > 0 chosen so that X is unbiased estimator

E[X] = AAT



Existing work

Randomized matrix multiplication

Cohen & Lewis 1997, 1999

Rudelson 1999, Drineas & Kannan 2001

Frieze, Kannan & Vempala 2004

Drineas, Kannan & Mahoney 2006, Sarlés 2006

Rudelson & Vershynin 2007

Belabbas & Wolfe 2008

Magdon-Ismail 2010, Drineas & Zouzias 2010, Magen & Zouzias 2010
Pagh 2011

Hsu, Kakade & Zhang 2012, Li, Miller & Peng 2012

Liberty 2013

Connections to

Matrix concentration (Minsker, Tropp, ...)

Low-rank approximations, subset selection (Boutsidis, ...)
Nystrém approximations (Gittens, ...)

Graph sparsification (Spielman, Srivastava, ...)
Compressed sensing (Donoho, Candés, ...)

Matrix completion (Recht, ...)



Why is this a good idea?

Want:
AAT = MAT 4+ AAT

Monte Carlo algorithm:

X =wi AgAl + -+ we A AL

@ Why should ¢ columns produce a good approximation?

@ How to determine the columns and weights?

Use the SVD



Singular Value Decomposition (SVD)

Real m x n matrix A with rank(A) = r
A=Ux V'’

o Left singular vector matrix
U is m x r with orthonormal columns: UTU = I,

@ Right singular vector matrix
V is n x r with orthonormal columns: VTV = |,

@ Singular values
01
Yy = o1>-->0,>0

Or



SVD of a short & fat matrix

B



Deterministic conditions for exact representation

[Holodnak & 11 2013]

Given: Real matrix A and ¢ > rank(A)
There exist indices t; < --- < t. and weights w; > 0 so that
wi Ag AL+ we A AL = AAT

if and only if
-
(\/W]_ €y .. W We etc) 74

has orthonormal columns

Exact representation depends on right singular vectors
Indices not necessarily distinct
Columns of A can occur repeatedly



Proof of principle

Exact representation

wi Ag AL+ 4 we A AL = AAT

@ Necessary & sufficient conditions for existence
@ Conditions depend on right singular vector matrix V/

@ There are matrices that do not satisfy these conditions

@ Connections to rank-constrained matrix approximation
[Friedland & Torokhti 2007]



Monte Carlo algorithm



Monte Carlo algorithm [prineas et al. 2006, 2010]

Input: Real matrix A with n columns
Sampling amount ¢ > 1
Probabilities p; > 0 with Zle pj=1

for j =1 to c do

Sample t; from {1,...,n} with probability p;,

independently and with replacement
w; = 1/(cpy))
end for

Output: X = wy AtlAZI— 4+ 4w AtCAZC—



How to sample

Given: Probabilities 0 < p1 < - < p, with 37, pj =1

Want: Sample index t = j from {1,...,n} with probability p;

Inversion by sequential search [Devroye 1986]

@ Determine partial sums
k
S«=Yp 1<k<n
i=1
@ Pick uniform [0,1] random variable U

© Determine integer j with ;1 < U < §5;
@ Sampled index: t = j with probability p; = 5; — 5;_1



Expected value (mean)

X = AL AL

T
cpt AtlAfl cpt

Expected value of a single sample

n

n
AGAT| =3 pe b AAT = L S AAT = L aaT
k=1 k=1

B[

Cpt

Sampling independently & with replacement:

AAL] = cE | L AyAT]

E[X] — [Cpt AtlAtTl] .+IE[C T

= AAT

Ptc

Unbiased estimator: E[X] = AAT



Concentration around the mean

X = An Al +

T
Cpt AtCAtc

CPt

@ Unbiased estimator: E[X] = AAT
@ Column norm probabilities [Drineas, Kannan & Mahoney 2006]
pi=Al3/1AIE  1<j<n
minimize E [| X — AAT||Z]

@ We want: For any § > 0 with probability at least 1 — §

IX — AAT|,
I2Z =22 12 < f(5,c, ...
AaaT, S f0e)

@ ldea: X is sum of ¢ matrix-valued random variables



8 x 4177 Abalone matrix [Bache & Lichman 2013]
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Monte Carlo algorithm has low relative accuracy



Probabilistic bounds



Matrix Bernstein concentration inequality [tropp 2011

@ Independent random real symmetric m x m matrices X;

o E[XJ] =0 {zero mean}
o ||XJH2 <rT {bounded}
e PR —
HZJ [ J] 27[) { “variance” }
For any ¢ > 0

€2 /2
F Hzxjuzzf < mexp Cp471¢/3
J

{deviation from the mean}



Relative error due to randomization [Holodnak & 11]

Given: Real matrix A = (A1 A,,)
Stable rank: sr(A) = || All%/]|Al13

Monte Carlo algorithm (with probabilities p; = [|A;[[3/]|Al|%)

X = An Al +

CPt AtCAtc

CPt

For any § > 0, with probability at least 1 — ¢

IX — AAT]l,

1AaT, S HVr(eE)

where In (rank(A)/5)
n(ran
vE——ag (A



Lower bound on number of samples [Holodnak & 11]

Given: Real matrix A = (A1 A,,)

Monte Carlo algorithm (with probabilities p; = [|A;[[3/]|Al|)

X="L A A+ -+ 2 A AL

cpy cpr. [t

fo<e<1, 0<d<1and
In (rank(A)/9)

c>

wloo

sr(A)
then with probability at least 1 — §

IX ~AATIl _
X = AT, _
[AAT],



Summary of probabilistic bounds

Upper bound on 2-norm relative error due to randomization
Lower bound on number of samples

Bounds
@ depend on the rank and stable rank
@ do not depend on matrix dimensions

@ informative even for small matrix dimensions and
stringent success probabilities (99 percent)

Not discussed
@ Sampling with replacement, Bernoulli sampling

@ Probabilities based on leverage scores
@ Tightness of bounds



Special case:
Matrices with orthonormal rows



From matrix multiplication to singular values

Given: Real m x n matrix Q with QQT = 1,,
Singular values: ¢;(Q) =1, 1<;<m

Monte Carlo algorithm: X = O(:)T where @ has ¢ > m columns

1QRT — 12 < ¢

Matrix multiplication bounds imply singular value bounds

@ Singular values of Q

Ve <oi(Q<Vite 1<j<m

@ Condition number of @ with respect to inversion

e’ (R [1+e
IQIRIQ = 22 8 =\



Singular value bounds [Holodnak & 1]

Given: Real matrix Q = (Q1 Q,,) with QQT =
Monte Carlo algorithm (with probabilities p; = || Q;[|3/m)

Q QE( Ty Qt1

Qz

L Q)

If0<e<1l, 0<d<1and
In(m/d)

c>21+435)m 2

then with probability at least 1 — §

VI-e<o(Q<Vifte 1<j<m



Uniform sampling [Holodnak & 11]

Given: Real matrix Q = (Ql Qn) with QQT =

Largest column norm = maxi<j<n || QI3

Monte Carlo algorithm (with probabilities p; = 1/n)

Qz

QT Q=(/& Qu L a.)

f0<e<1l, 0<d<1and
In(m/d)

>2(1+ < ]
c> (—|—3)n;1 2

then with probability at least 1 — §

VI—e <oi(Q)<V1+e 1<j<m



Summary: Matrices with orthonormal rows

Probabilistic singular value bounds

VIi-e<oi(Q<vVifte 1<j<m

@ Column norm probabilities p; = ||@;||3/m

Number of samples ¢ = Q (m In m/€?)

@ Uniform probabilities p;j = 1/n

Number of samples ¢ = Q (ni Inm/€e?)  p = max; || Q|3

Connections to
@ Coupon collector’s problem (Halko, Martinsson & Tropp)
@ Compressed sensing (Donoho, Candés, ...)



Coherence



Properties of Coherence

Real matrix Q = (Q1 Q,,) with QQT = I,
Coherence 1 = maxi<j<n| Q|3

em/n<pu<l

Maximal coherence: p=1
At least one row of @ is a canonical vector

@ Minimal coherence: p = m/n
Rows of @ are rows of a Hadamard matrix

@ Coherence measures “correlation with standard basis”

(]

Quantifies difficulty of recovering matrix from sampling
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Coherence in General

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix
by sampling its entries

Mori & Talwalkar 2010, 2011
Estimation of coherence

Avron, Maymounkov & Toledo 2010
Meng, Saunders & Mahoney 2011

Randomized preconditioners for least squares

Drineas, Magdon-Ismail, Mahoney & Woodruff 2011

Fast approximation of coherence



Leverage scores



Leverage scores

Q=(Q ... Q) with QQT = I,
Idea: Use all column norms
@ Leverage scores = squared column norms of @
2 .
4= 11Qili2 1<j<n
@ Coherence = largest leverage score

= max {;
o= 0

@ Low coherence <= uniform leverage scores

Leverage scores: Importance sampling in randomized algorithms
[Drineas & Mahoney 2006, ...]



Leverage scores are ubiquitous

o Statistics
[Hoaglin & Welsch 1978,Velleman & Welsch 1981, Chatterjee & Hadi 1986]
Leverage scores: Outliers in regression problems

@ Astronomy
[Yip, Mahoney, Szalay, Csabai, Budavéri, Wyse & Dobos 2013]
Leverage scores: Important wave lengths in galaxy evolution

@ Electronic structure calculations
[Bekas, Kokiopoulou & Saad 2008]
Leverage scores: Charge densities

@ Graph Theory
[Drineas & Mahoney 2010]
Leverage scores: Effective resistance of edges



Condition Number Bound [i1 & wentwortn]

® m X n matrix @ with orthonormal rows

® Leverage scores (; = HQJH%
L = diag (61 - E,,)
@ Coherence = ||L[j2 = maxi<j<n¥;

@ Uniform sampling, number of sampled columns ¢ >1

@ Error tolerance 0<e<1

Failure probability

§=2mexp | -3 ce
P\ T2 mBIQLQT ] + o)

With probability at least 1 —d: || Q][2]| QT2 < Vo



What to do about ||QLQT ||,

Failure probability

§=2mexp | -3 ce?
P\ T2 mBTQRLAT L + e

where
P <QLQT |2 < g

@ Want: Simple accurate approximation of [[QLQ ||
@ How: Derive bound for general scaled matrices
@ Connections to

Majorization, lattice superadditive maps
Inverse eigenvalue problems [Dhillon et al. 2005]



General scaled matrices [wentworth & 11]

@ m x n matrix Z with rank(Z) = m
o Largest squared column norm u, = maxi<j<n || Z;|13

@ Diagonal matrix D = diag (dl d,,)

Iy = -+ = dpo

Bound ||Z D||» in terms of i, and largest elements of D
IF ¢ = [1/(121]3 1) then
t
1Z D13 < = Y dfy + (1213 = t1e) oy
j=1

where k =1lort+1



Bound for ||QLQT ||

@ m x n matrix Q with QQT = I,
o Coherence 1 = maxi<j<n ||Q;lI3

@ Leverage scores {[y) > -+ > L[

If t = |1/u] then

t
QLR =[1QLY?3 < >l + (1= tp) fesy
=1

If t =1/u is an integer then
t
IQLQ 2 <> fyy<n
j=1

Bound for ||QLQT || tighter than coherence



Simpler probabilistic bound [wentworth & 1]

@ m x n matrix Q with QQT = I,

@ Leverage scores =Ly > - > Ly
@ Uniform sampling of columns

@ Approximation to ||QLQT |

t
TEp Y b+ (- tp) ey t=[1/p]
j=1
c> % (37 +ep)nin(2m/d)/ e
then with probability at least 1 — §

P = 1+e¢
1Q1211@T||2 <




Summary
Monte Carlo algorithm for Gram product AAT

@ Deterministic conditions for exact representation

Depend on right singular vector matrix

@ Probabilistic bounds for 2-norm relative error, number of
sampled columns

Depend on rank and stable rank of A, but not dimension

@ Probabilistic singular value bounds
Matrices with orthonormal rows

Uniform sampling: Bounds depend on coherence

@ Probabilistic condition number bounds
Matrices with orthonormal rows

Uniform sampling: Tighter bounds in terms of leverage scores

@ Bound for 2-norm of scaled matrices

In terms of largest column norm, and elements of diagonal matrix



Why randomized algorithms?

Reduction of massive data sets, for low-accuracy requirements

Least squares/regression, SVD/PCA, subspace approximation, model reduction

Advantages

“Easy” to analyze, forgiving, probabilistic bounds more optimistic

Applications

Machine learning, population genomics, astronomy, nuclear engineering

Survey papers

Halko, Martinsson & Tropp 2011
Mahoney 2011



