Introduction to Randomized Matrix Algorithms

Ilse Ipsen

Students: John Holodnak, Thomas Wentworth

Research supported by NSF CISE CCF, NSF DMS, DARPA XData

Randomized algorithms

Solve a deterministic problem by statistical sampling

• Monte Carlo methods

Von Neumann & Ulam, Los Alamos, 1946

• Simulated annealing: global optimization

This talk

Given: Real matrix A with more columns than rows Want: Monte Carlo algorithm for matrix product AA^{T}

Why is this important?

• Monte Carlo algorithm produces approximation $X = BB^T$

Overview

- Deterministic conditions for exact representation
 When is BB^T = AA^T possible?
- Monte Carlo algorithm
 Samples B so that E[BB^T] = AA^T
- Probabilistic bounds

Error $BB^T - AA^T$, and number of columns in B

• Matrices with orthonormal rows, and singular values

How close is B to having orthonormal rows?

Coherence

Quantifying the difficulty of sampling: For which A can we get a good B?

Leverage scores

Improving on coherence

• Condition numbers with respect to inversion

Departure of a basis from orthonormality

Deterministic conditions for exact representation

Gram product: AA^T

Real matrix $A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$ with *n* columns

• Exact computation

$$AA^{T} = A_{1}A_{1}^{T} + \cdots + A_{n}A_{n}^{T}$$

• Monte Carlo algorithm [Drineas, Kannan & Mahoney] Sample *c* columns

$$X = \mathbf{w}_1 A_{t_1} A_{t_1}^T + \dots + \mathbf{w}_c A_{t_c} A_{t_c}^T$$

	1.	-	
-			

Gram product: AA^T

Real matrix $A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$ with *n* columns

• Exact computation

$$AA^{T} = A_{1}A_{1}^{T} + \cdots + A_{n}A_{n}^{T}$$

• Monte Carlo algorithm [Drineas, Kannan & Mahoney] Sample *c* columns

$$X = \mathbf{w_1} A_{t_1} A_{t_1}^T + \dots + \mathbf{w_c} A_{t_c} A_{t_c}^T$$

Weights $w_i \ge 0$ chosen so that X is unbiased estimator

 $\mathbb{E}[X] = AA^T$

Existing work

Randomized matrix multiplication

Cohen & Lewis 1997, 1999 Rudelson 1999, Drineas & Kannan 2001 Frieze, Kannan & Vempala 2004 Drineas, Kannan & Mahoney 2006, Sarlós 2006 Rudelson & Vershynin 2007 Belabbas & Wolfe 2008 Magdon-Ismail 2010, Drineas & Zouzias 2010, Magen & Zouzias 2010 Pagh 2011 Hsu, Kakade & Zhang 2012, Li, Miller & Peng 2012 Liberty 2013

Connections to

Matrix concentration (Minsker, Tropp, ...) Low-rank approximations, subset selection (Boutsidis, ...) Nyström approximations (Gittens, ...) Graph sparsification (Spielman, Srivastava, ...) Compressed sensing (Donoho, Candés, ...) Matrix completion (Recht, ...)

Why is this a good idea?

Want:

$$AA^{T} = A_{1}A_{1}^{T} + \cdots + A_{n}A_{n}^{T}$$

Monte Carlo algorithm:

$$X = w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T$$

• Why should *c* columns produce a good approximation?

• How to determine the columns and weights?

Use the SVD

Singular Value Decomposition (SVD)

Real $m \times n$ matrix A with rank(A) = r

 $A = U \Sigma V^{T}$

• Left singular vector matrix

U is $m \times r$ with orthonormal columns: $U^T U = I_r$

• Right singular vector matrix

V is $n \times r$ with orthonormal columns: $V^T V = I_r$

Singular values

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{pmatrix} \qquad \sigma_1 \ge \cdots \ge \sigma_r > 0$$

SVD of a short & fat matrix

Deterministic conditions for exact representation

[Holodnak & II 2013]

Given: Real matrix A and $c \ge \operatorname{rank}(A)$

There exist indices $t_1 \leq \cdots \leq t_c$ and weights $w_j \geq 0$ so that

$$w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T = A A^T$$

if and only if

$$\left(\sqrt{w_1} e_{t_1} \ldots \sqrt{w_c} e_{t_c}\right)^T V$$

has orthonormal columns

Exact representation depends on right singular vectors Indices not necessarily distinct Columns of A can occur repeatedly

Proof of principle

Exact representation

$$w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T = A A^T$$

- Necessary & sufficient conditions for existence
- Conditions depend on right singular vector matrix V
- There are matrices that do not satisfy these conditions
- Connections to rank-constrained matrix approximation [Friedland & Torokhti 2007]

Monte Carlo algorithm

Monte Carlo algorithm [Drineas et al. 2006, 2010]

Input: Real matrix A with n columns Sampling amount $c \ge 1$ Probabilities $p_j \ge 0$ with $\sum_{i=1}^{n} p_i = 1$

for j = 1 to c do Sample t_j from $\{1, ..., n\}$ with probability p_{t_j} independently and with replacement $w_j \equiv 1/(cp_{t_j})$ end for

Output: $X = \mathbf{w}_1 A_{t_1} A_{t_1}^T + \cdots + \mathbf{w}_c A_{t_c} A_{t_c}^T$

How to sample

- Given: Probabilities $0 \le p_1 \le \cdots \le p_n$ with $\sum_{j=1}^n p_j = 1$
- Want: Sample index t = j from $\{1, ..., n\}$ with probability p_j

Inversion by sequential search [Devroye 1986]

Determine partial sums

$$S_k \equiv \sum_{i=1}^k p_i \qquad 1 \le k \le n$$

- 2 Pick uniform [0,1] random variable U
- **③** Determine integer j with $S_{j-1} < U \leq S_j$
- Sampled index: t = j with probability $p_j = S_j S_{j-1}$

Expected value (mean)

$$X = \frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T + \dots + \frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T$$

Expected value of a single sample

$$\mathbb{E}\left[\frac{1}{c\,p_{t_j}}\,A_{t_j}A_{t_j}^{\mathsf{T}}\right] = \sum_{k=1}^n p_k\,\frac{1}{c\,p_k}\,A_kA_k^{\mathsf{T}} = \frac{1}{c}\,\sum_{k=1}^n A_kA_k^{\mathsf{T}} = \frac{1}{c}\,AA^{\mathsf{T}}$$

Sampling independently & with replacement:

$$\mathbb{E}[X] = \mathbb{E}\left[\frac{1}{c \rho_{t_1}} A_{t_1} A_{t_1}^T\right] + \dots + \mathbb{E}\left[\frac{1}{c \rho_{t_c}} A_{t_c} A_{t_c}^T\right] = c \mathbb{E}\left[\frac{1}{c \rho_{t_j}} A_{t_j} A_{t_j}^T\right]$$
$$= AA^T$$

Unbiased estimator: $\mathbb{E}[X] = AA^T$

Concentration around the mean

$$X = \frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T + \dots + \frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T$$

- Unbiased estimator: $\mathbb{E}[X] = AA^T$
- Column norm probabilities [Drineas, Kannan & Mahoney 2006]

$$p_j = ||A_j||_2^2 / ||A||_F^2 \qquad 1 \le j \le n$$

minimize $\mathbb{E}\left[\|X - AA^T\|_F^2\right]$

• We want: For any $\delta > 0$ with probability at least $1 - \delta$

$$\frac{\|X - AA^{\mathsf{T}}\|_2}{\|AA^{\mathsf{T}}\|_2} \le f(\delta, c, \ldots)$$

• Idea: X is sum of c matrix-valued random variables

8×4177 Abalone matrix [Bache & Lichman 2013]

Monte Carlo algorithm has low relative accuracy

Probabilistic bounds

Matrix Bernstein concentration inequality [Tropp 2011]

- Independent random real symmetric $m \times m$ matrices X_j
- $\mathbb{E}[X_j] = 0$ {zero mean}
- $\|X_j\|_2 \le \tau$ {bounded}
- $\left\|\sum_{j} \mathbb{E}[X_{j}^{2}]\right\|_{2} \leq \rho$ {"variance"}

For any $\epsilon > 0$

$$\mathbb{P}\left[\left\|\sum_{j} X_{j}\right\|_{2} \geq \epsilon\right] \leq m \exp\left(-\frac{\epsilon^{2}/2}{\rho + \tau \epsilon/3}\right)$$

 $\{$ deviation from the mean $\}$

Relative error due to randomization [Holodnak & II]

Given: Real matrix $A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$ Stable rank: $sr(A) \equiv ||A||_F^2 / ||A||_2^2$

Monte Carlo algorithm (with probabilities $p_j = ||A_j||_2^2 / ||A||_F^2$)

$$X = \frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T + \dots + \frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T$$

For any $\delta >$ 0, with probability at least $1-\delta$

$$\frac{\|X - AA^{\mathsf{T}}\|_2}{\|AA^{\mathsf{T}}\|_2} \leq \gamma + \sqrt{\gamma \left(6 + \gamma\right)}$$

where

$$\gamma \equiv \frac{\ln\left(\operatorname{rank}(\mathcal{A})/\delta\right)}{3\,c}\,\operatorname{sr}(\mathcal{A})$$

Lower bound on number of samples [Holodnak & II]

Given: Real matrix $A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$

Monte Carlo algorithm (with probabilities $p_j = ||A_j||_2^2 / ||A||_F^2$)

$$X = \frac{1}{c \, \rho_{t_1}} \, A_{t_1} A_{t_1}^T + \dots + \frac{1}{c \, \rho_{t_c}} \, A_{t_c} A_{t_c}^T$$

If 0 $<\epsilon<$ 1, 0 $<\delta<$ 1 and

$$c \geq rac{8}{3} rac{\ln (\operatorname{rank}(A)/\delta)}{\epsilon^2} \operatorname{sr}(A)$$

then with probability at least $1-\delta$

$$\frac{\|\boldsymbol{X} - \boldsymbol{A}\boldsymbol{A}^{\mathsf{T}}\|_2}{\|\boldsymbol{A}\boldsymbol{A}^{\mathsf{T}}\|_2} \le \epsilon$$

Summary of probabilistic bounds

Upper bound on 2-norm relative error due to randomization Lower bound on number of samples

Bounds

- depend on the rank and stable rank
- do not depend on matrix dimensions
- informative even for small matrix dimensions and stringent success probabilities (99 percent)

Not discussed

- Sampling with replacement, Bernoulli sampling
- Probabilities based on leverage scores
- Tightness of bounds

Special case: Matrices with orthonormal rows

From matrix multiplication to singular values

Given: Real $m \times n$ matrix Q with $QQ^T = I_m$ Singular values: $\sigma_j(Q) = 1$, $1 \le j \le m$

Monte Carlo algorithm: $X = \tilde{Q}\tilde{Q}^T$ where \tilde{Q} has $c \ge m$ columns

$$\|\tilde{Q}\tilde{Q}^{T} - I\|_{2} \leq \epsilon$$

Matrix multiplication bounds imply singular value bounds

• Singular values of \tilde{Q}

$$\sqrt{1-\epsilon} \le \sigma_j(ilde{Q}) \le \sqrt{1+\epsilon} \qquad 1 \le j \le m$$

• Condition number of \tilde{Q} with respect to inversion

$$\| ilde{Q}\|_2 \| ilde{Q}^{\dagger}\|_2 = rac{\sigma_1(ilde{Q})}{\sigma_m(ilde{Q})} = \sqrt{rac{1+\epsilon}{1-\epsilon}}$$

Singular value bounds [Holodnak & II]

Given: Real matrix $Q = (Q_1 \dots Q_n)$ with $QQ^T = I_m$ Monte Carlo algorithm (with probabilities $p_j = ||Q_j||_2^2/m$)

$$X = \tilde{Q}\tilde{Q}^{T} \qquad \tilde{Q} \equiv \left(\sqrt{\frac{1}{c\,\rho_{t_1}}}\,Q_{t_1} \quad \dots \quad \sqrt{\frac{1}{c\,\rho_{t_c}}}\,Q_{t_c}\right)$$

If 0 $<\epsilon<$ 1, 0 $<\delta<$ 1 and

$$c \geq 2(1+rac{\epsilon}{3}) \ m \ rac{\ln{(m/\delta)}}{\epsilon^2}$$

then with probability at least $1-\delta$

$$\sqrt{1-\epsilon} \le \sigma_j(\tilde{Q}) \le \sqrt{1+\epsilon} \qquad 1 \le j \le m$$

Uniform sampling [Holodnak & II]

Given: Real matrix $Q = (Q_1 \dots Q_n)$ with $QQ^T = I_m$ Largest column norm $\mu \equiv \max_{1 \le j \le n} \|Q_j\|_2^2$

Monte Carlo algorithm (with probabilities $p_j = 1/n$)

$$X = \tilde{Q}\tilde{Q}^{T} \qquad \tilde{Q} \equiv \left(\sqrt{\frac{1}{c\,p_{t_1}}}\,Q_{t_1} \quad \dots \quad \sqrt{\frac{1}{c\,p_{t_c}}}\,Q_{t_c}\right)$$

If $0 < \epsilon < 1$, $0 < \delta < 1$ and

$$c \geq 2(1+rac{\epsilon}{3}) \ n \ \mu \ rac{\ln \left(m/\delta
ight)}{\epsilon^2}$$

then with probability at least $1-\delta$

$$\sqrt{1-\epsilon} \le \sigma_j(\tilde{Q}) \le \sqrt{1+\epsilon} \qquad 1 \le j \le m$$

Summary: Matrices with orthonormal rows

Probabilistic singular value bounds

$$\sqrt{1-\epsilon} \le \sigma_j(\tilde{Q}) \le \sqrt{1+\epsilon} \qquad 1 \le j \le m$$

- Column norm probabilities $p_j = ||Q_j||_2^2/m$ Number of samples $c = \Omega (m \ln m/\epsilon^2)$
- Uniform probabilities $p_j = 1/n$ Number of samples $c = \Omega \left(n\mu \ln m/\epsilon^2\right)$ $\mu \equiv \max_j \|Q_j\|_2^2$

Connections to

- Coupon collector's problem (Halko, Martinsson & Tropp)
- Compressed sensing (Donoho, Candés, ...)

Coherence

Properties of Coherence

Real matrix $Q = \begin{pmatrix} Q_1 & \dots & Q_n \end{pmatrix}$ with $QQ^T = I_m$

Coherence $\mu \equiv \max_{1 \le j \le n} \|Q_j\|_2^2$

- $m/n \le \mu \le 1$
- Maximal coherence: μ = 1 At least one row of Q is a canonical vector
- Minimal coherence: μ = m/n Rows of Q are rows of a Hadamard matrix
- Coherence measures "correlation with standard basis"
- Quantifies difficulty of recovering matrix from sampling

Coherence in General

- Donoho & Huo 2001 Mutual coherence of two bases
- Candés, Romberg & Tao 2006
- Candés & Recht 2009 Matrix completion: Recovering a low-rank matrix by sampling its entries
- Mori & Talwalkar 2010, 2011 Estimation of coherence
- Avron, Maymounkov & Toledo 2010 Meng, Saunders & Mahoney 2011

Randomized preconditioners for least squares

• Drineas, Magdon-Ismail, Mahoney & Woodruff 2011 Fast approximation of coherence

Leverage scores

Leverage scores

$$Q = \begin{pmatrix} Q_1 & \dots & Q_n \end{pmatrix}$$
 with $QQ^T = I_m$

Idea: Use all column norms

• Leverage scores = squared column norms of Q

$$\ell_j = \|Q_j\|_2^2 \qquad 1 \le j \le n$$

• Coherence = largest leverage score

 $\mu = \max_{1 \le j \le n} \ell_j$

• Low coherence \iff uniform leverage scores

Leverage scores: Importance sampling in randomized algorithms [Drineas & Mahoney 2006, ...]

Leverage scores are ubiquitous

Statistics

[Hoaglin & Welsch 1978, Velleman & Welsch 1981, Chatterjee & Hadi 1986] Leverage scores: Outliers in regression problems

Astronomy

[Yip, Mahoney, Szalay, Csabai, Budavári, Wyse & Dobos 2013] Leverage scores: Important wave lengths in galaxy evolution

• Electronic structure calculations

[Bekas, Kokiopoulou & Saad 2008] Leverage scores: Charge densities

• Graph Theory

[Drineas & Mahoney 2010] Leverage scores: Effective resistance of edges

Condition Number Bound [II & Wentworth]

- $m \times n$ matrix Q with orthonormal rows
- Leverage scores $\ell_j = \|Q_j\|_2^2$

$$L = \operatorname{diag} \begin{pmatrix} \ell_1 & \dots & \ell_n \end{pmatrix}$$

- Coherence $\mu = \|L\|_2 = \max_{1 \le j \le n} \ell_j$
- ullet Uniform sampling, number of sampled columns $\ c\geq 1$
- Error tolerance $0 < \epsilon < 1$

Failure probability

$$\delta = 2m \exp\left(-\frac{3}{2} \frac{c \epsilon^2}{m \left(3 \|QLQ^T\|_2 + \mu \epsilon\right)}\right)$$

With probability at least $1-\delta$: $\| ilde{Q}\|_2 \| ilde{Q}^\dagger\|_2 \leq \sqrt{rac{1+\epsilon}{1-\epsilon}}$

What to do about $||QLQ^T||_2$

Failure probability

$$\delta = 2m \exp\left(-\frac{3}{2} \frac{c \epsilon^2}{m \left(3 \|QLQ^T\|_2 + \mu \epsilon\right)}\right)$$

where

$$\mu^2 \le \|QLQ^T\|_2 \le \mu$$

- Want: Simple accurate approximation of $\|QLQ^T\|_2$
- How: Derive bound for general scaled matrices
- Connections to

Majorization, lattice superadditive maps Inverse eigenvalue problems [Dhillon et al. 2005]

General scaled matrices [Wentworth & II]

- $m \times n$ matrix Z with rank(Z) = m
- Largest squared column norm $\mu_z \equiv \max_{1 \le j \le n} \|Z_j\|_2^2$
- Diagonal matrix $D = \text{diag} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix}$

$$d_{[1]} \geq \cdots \geq d_{[n]}$$

Bound $||Z D||_2$ in terms of μ_z and largest elements of D If $t = |1/(||Z^{\dagger}||_2^2 \mu_z)|$ then

$$\|Z D\|_2^2 \le \mu_z \sum_{j=1}^t d_{[j]}^2 + (\|Z\|_2^2 - t \mu_z) d_{[k]}^2$$

where k = 1 or t + 1

Bound for $||QLQ^T||_2$

- $m \times n$ matrix Q with $QQ^T = I_m$
- Coherence $\mu \equiv \max_{1 \le j \le n} \|Q_j\|_2^2$
- Leverage scores $\ell_{[1]} \geq \cdots \geq \ell_{[n]}$

If $t = \lfloor 1/\mu \rfloor$ then

$$\|Q L Q^{T}\|_{2} = \|Q L^{1/2}\|_{2}^{2} \le \mu \sum_{j=1}^{t} \ell_{[j]} + (1 - t \mu) \ell_{[t+1]}$$

If $t = 1/\mu$ is an integer then

$$\| \boldsymbol{Q} \boldsymbol{L} \boldsymbol{Q}^{\mathsf{T}} \|_2 \leq \mu \sum_{j=1}^t \boldsymbol{\ell}_{[j]} \leq \mu$$

Bound for $||QLQ^T||_2$ tighter than coherence μ

Simpler probabilistic bound [Wentworth & II]

- $m \times n$ matrix Q with $QQ^T = I_m$
- Leverage scores $\mu \equiv \ell_{[1]} \geq \cdots \geq \ell_{[n]}$
- Uniform sampling of columns
- Approximation to $\|QLQ^T\|_2$

$$\tau \equiv \mu \sum_{j=1}^{t} \ell_{[j]} + (1 - t \mu) \ell_{[t+1]} \qquad t = \lfloor 1/\mu \rfloor$$

lf

$$c \geq rac{2}{3} \left(3 \, au + \epsilon \, \mu
ight) n \, \ln(2m/\,\delta) / \, \epsilon^2$$

then with probability at least $1-\delta$

$$\| ilde{Q}\|_2 \| ilde{Q}^{\dagger}\|_2 \leq \sqrt{rac{1+\epsilon}{1-\epsilon}}$$

Summary

Monte Carlo algorithm for Gram product AA^{T}

- Deterministic conditions for exact representation Depend on right singular vector matrix
- Probabilistic bounds for 2-norm relative error, number of sampled columns

Depend on rank and stable rank of A, but not dimension

• Probabilistic singular value bounds

Matrices with orthonormal rows Uniform sampling: Bounds depend on coherence

• Probabilistic condition number bounds

Matrices with orthonormal rows Uniform sampling: Tighter bounds in terms of leverage scores

• Bound for 2-norm of scaled matrices

In terms of largest column norm, and elements of diagonal matrix

Why randomized algorithms?

 Reduction of massive data sets, for low-accuracy requirements Least squares/regression, SVD/PCA, subspace approximation, model reduction

Advantages

"Easy" to analyze, forgiving, probabilistic bounds more optimistic

Applications

Machine learning, population genomics, astronomy, nuclear engineering

Survey papers

Halko, Martinsson & Tropp 2011 Mahoney 2011