Accuracy and Stability Issues for Randomized Matrix Algorithms: Sensitivity of Leverage Scores

Ilse Ipsen

Joint work with Thomas Wentworth

North Carolina State University Raleigh, NC, USA

Research supported by NSF CISE CCF and DARPA XData

Statistical Leverage Scores

Hoaglin & Welsch 1978 Velleman & Welsch 1981 Chatterjee & Hadi 1986

Given: Real $m \times n$ matrix A, $m \ge n$, rank(A) = nWant: Potential outliers in min_x ||Ax - b|| (two-norm)

• Hat matrix: Orthogonal projector onto range(A)

 $H = A \left(A^T A \right)^{-1} A^T$

Leverage scores of A

$$\ell_j(A) = H_{jj} \qquad 1 \le j \le m$$

• Least squares fit: $\hat{b} = Hb$

If $\ell_k(A) = 1$ then b_k has maximal leverage: $\hat{b}_k = b_k$ If $\ell_k(A) = 0$ then b_k has zero leverage over \hat{b}_k

- Computation, and use of leverage scores
- Oherence: Largest leverage score
- Sensitivity of leverage scores to subspace angles
 Coherence
 Large leverage scores
- Sensitivity of leverage scores to matrix perturbations

Computation, and Use of Leverage Scores

Computation of Leverage Scores

Real $m \times n$ matrix A with rank(A) = nHat matrix $H = A (A^T A)^{-1} A^T$ Leverage scores $\ell_j(A) = H_{jj}$ $1 \le j \le m$

• Singular Value Decomposition $A = U \Sigma V^T$ $U^T U = I_n$ Hat matrix $H = UU^T$

$$\ell_j(A) = \|e_j^T U\|^2 \qquad 1 \le j \le m$$

• QR decomposition A = QR $Q^TQ = I_n$ Hat matrix $H = QQ^T$

$$\ell_j(A) = \|e_j^T \mathbf{Q}\|^2 \qquad 1 \le j \le m$$

Leverage Scores for Randomized Algorithms

[Drineas, Mahoney et al. 2006-2013]

Use of leverage scores:

As sampling probabilities To analyze performance of uniform sampling strategies

Randomized subset selection [Boutsidis, Mahoney & Drineas 2010]

Given: $m \times n$ matrix A with rank(A) = nWant: k most important rows of A

Idea: Sample row j of A with probability $p_j = \ell_j(A)/n$

Coherence: Largest Leverage Score

Coherence

Donoho & Huo 2001: Mutual coherence of two bases Candés, Romberg & Tao 2006 Candés & Recht 2009: Matrix completion

Coherence of $m \times n$ matrix A with rank(A) = n

$$\mu(A) = \max_{1 \le j \le m} \ell_j(A)$$

Low coherence \Rightarrow uniform leverage scores

- $n/m \leq \mu(A) \leq 1$
- Maximal coherence: $\mu(A) = 1$

At least one basis vector for range(A) is a canonical vector

• Minimal coherence: $\mu(A) = n/m$

Orthonormal bases for range(A) are like columns of a Hadamard matrix

• Coherence measures correlation with a standard basis

Sensitivity of Leverage Scores to Subspace Angles

Exact and Perturbed Leverage Scores

• Exact matrix: A is $m \times n$ with rank(A) = nExact leverage scores

$$\ell_j(A) = \|e_j^T A\|^2 \qquad 1 \le j \le m$$

where A is orthonormal basis for range(A)

Perturbed matrix: B is m × n with rank(B) = n
 Perturbed leverage scores

$$\ell_j(B) = \|e_j^T B\|^2 \qquad 1 \le j \le m$$

where *B* is orthonormal basis for range(B)

Question: How close is $\ell_j(B)$ to $\ell_j(A)$?

Principal Angles between Column Spaces

A and B are $m \times n$ with orthonormal columns, $A^T A = B^T B = I_n$

• SVD of $n \times n$ matrix $A^T B = U \Sigma V^T$

$$\Sigma = \operatorname{diag} \begin{pmatrix} \cos \theta_1 & \cdots & \cos \theta_n \end{pmatrix}$$

- Principal angles θ_j between range(A) and range(B)
 - $1 \ge \cos \theta_1 \ge \ldots \ge \cos \theta_n \ge 0$ $0 \le \theta_1 \le \cdots \le \theta_n \le \pi/2$

Special cases

If
$$A = B$$
 then $\Sigma = I_n$ and all $\theta_j = 0$
If $A^T B = 0$ then $\Sigma = 0$ and all $\theta_j = \pi/2$

Sensitivity of Leverage Scores to Angles

• Angles between range(A) and range(B)

$$0 \leq \theta_1 \leq \cdots \leq \theta_n \leq \pi/2$$

• Leverage score bounds

$$\ell_j(B) \leq \left(\cos\theta_1 \sqrt{\ell_j(A)} + \sin\theta_n \sqrt{1 - \ell_j(A)}\right)^2$$

$$\ell_j(A) \leq \left(\cos\theta_1 \sqrt{\ell_j(B)} + \sin\theta_n \sqrt{1 - \ell_j(B)}\right)^2 \qquad 1 \leq j \leq m$$

Leverage scores of A and B are close, if all angles between range(A) and range(B) are small

Uniform Leverage Scores

 $\mathcal{A} \text{ is } m \times n \text{ Hadamard } m = 1024, n = 50, \text{ leverage scores are } n/m$ Angles: $\cos \theta_1 = 1 \sin \theta_n \approx 10^{-8}$ Relative error: $(\ell_i(B) - \ell_i(A))/\ell_i(A)$ Relative bound

Bound reflects behaviour of errors

20% Large Leverage Scores

Bound tighter for large leverage scores

Large Leverage Scores, and Angles

• Assume: Bounded angles

$$0 \leq \theta_1 \leq \cdots \leq \theta_n \leq \pi/4$$

- Large leverage score: $\ell_k(A) \ge 1/2$ for some k
- Bound for perturbed leverage scores

$$\left(1-\sqrt{2}\sin\theta_n\right)^2 \ell_k(A) \leq \ell_k(B) \leq \left(1+\sin\theta_n\right)^2 \ell_k(A)$$

Upper and lower bounds for large leverage scores

Coherence and Angles

• Angles between range(A) and range(B)

 $0 \leq \theta_1 \leq \cdots \leq \theta_n \leq \pi/2$

- Coherence: $\mu(A) = \max_{1 \le j \le m} \ell_j(A)$
- Bound for perturbed coherence

$$\mu(A)/\gamma \leq \mu(B) \leq \gamma \mu(A)$$

where

$$\gamma = \left(\cos\theta_1 + \sin\theta_n \sqrt{\frac{m}{n}}\right)^2$$

Coherence is sensitive if Large aspect ratio: $m \gg n$ Large angles between range(A) and range(B) Sensitivity of Leverage Scores to Matrix Perturbations

Bound for Angles in terms of Perturbations

- \mathcal{A} and $\mathcal{A} + \mathcal{E}$ are $m \times n$ of rank n
- Condition number and relative perturbation

$$\kappa = \|\mathcal{A}\| \|\mathcal{A}^{\dagger}\| \qquad \epsilon = \|\mathcal{E}\|/\|\mathcal{A}\|$$

- Largest angle between range(A) and range(A + E): θ_n
- Assume: Perturbation $\epsilon < .5/\kappa$
- Bound for largest angle

$$\sin \theta_n \leq 2 \kappa \epsilon$$

All angles between range(A) and range(A + E) are small if A is well-conditioned with respect to inversion

Perturbation of Coherence

- \mathcal{A} and $\mathcal{A} + \mathcal{E}$ are $m \times n$ of rank n
- Condition number and relative perturbation

 $\kappa = \|\mathcal{A}\| \|\mathcal{A}^{\dagger}\| \qquad \epsilon = \|\mathcal{E}\|/\|\mathcal{A}\|$

- Coherence: $\mu(\mathcal{A}) = \max_{1 \leq j \leq m} \ell_j(\mathcal{A})$
- Assume: Perturbation $\epsilon < .5/\kappa$
- Bound for perturbed coherence

$$\mu(A)/\gamma \leq \mu(B) \leq \gamma \, \mu(A) \qquad \gamma = \left(1 + 2 \, \sqrt{\frac{m}{n}} \, \kappa \, \epsilon \right)^2$$

Coherence is sensitive to perturbations if

Large aspect ratio: $m \gg n$ A is ill-conditioned with respect to inversion

Perturbation of Large Leverage Scores

- \mathcal{A} and $\mathcal{A} + \mathcal{E}$ are $m \times n$ of rank n
- Condition number and relative perturbation

$$\kappa = \|\mathcal{A}\| \|\mathcal{A}^{\dagger}\| \qquad \epsilon = \|\mathcal{E}\|/\|\mathcal{A}\|$$

- Large leverage scores: $\ell_k(\mathcal{A}) \geq 1/2$ for some k
- Assume: Perturbation $\epsilon < .3/\kappa$
- Relative error for large leverage scores

$$\left| rac{\ell_k(\mathcal{A} + \mathcal{E}) - \ell_k(\mathcal{A})}{\ell_k(\mathcal{A})}
ight| \ \leq \ 4 \, \kappa \epsilon \, (\kappa \epsilon + 1)$$

Large leverage scores are insensitive to perturbations if \mathcal{A} is well-conditioned with respect to inversion

Well-Conditioned Matrix

 $\mathcal{A} \text{ is } m \times n \quad m = 1000, n = 50$ Condition number: $\kappa \approx 23$ Relative perturbation: $\epsilon \approx 10^{-8}$ Relative error: $|\ell_j(B) - \ell_j(A)|/\ell_j(A)$ Bound

Bound informative even if matrix has no large leverage scores

Moderately Conditioned Matrix

 $\mathcal{A} \text{ is } m \times n \quad m = 1000, n = 50$

Condition number: $\kappa \approx 10^8$ Relative perturbation: $\epsilon \approx 10^{-8}$

Relative error: $|\ell_j(B) - \ell_j(A)|/\ell_j(A)$ Bound

Bound informative for all leverage scores (not just large ones)

Summary

Leverage scores

Two-norms of rows of $m \times n$ orthonormal matrices Sampling probabilities in randomized algorithms

Coherence

Largest leverage score Performance analysis of sampling strategies

Sensitivity analysis

Relative error bounds for leverage scores of exact and perturbed matrix

Angles between column spaces Condition number and matrix perturbation

Leverage scores insensitive if

Angles are small Matrix is well-conditioned

Coherence more sensitive if $m \gg n$

Future Work

- Sampling strategies only need the correct exponent Are relative error bounds too strong?
- Sampling strategies depend on large leverage scores Tighter bounds targeted at large leverage scores
- Extend sensitivity analysis to

Rank deficient matrices Low-rank approximations Large perturbations (missing data) Structured perturbations (categorical data)