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The problem

Given:

Nonsingular matrix A € R™"
Right hand side vector b € R”

Solve: Ax = b in floating point arithmetic

Numerical stability:

Quantifies amplification of roundoff errors by algorithm

Overview:
© Forward error: Perturbation bound (algorithm independent)
© Direct methods for solving Ax = b
© Backward error: Roundoff error bounds (algorithm dependent)

© Perturbation bound for numerical stability of direct methods



Forward error: Perturbation bound
(algorithm independent)



Vector p-norms

1/p X1

n
Ixllp = Z |x;|P for x=1: and p>1
Jj=1 X

@ p=1:0ne norm
lIx[ls = |xu| + - + |xn

@ p=2: Two (Euclidean) norm

Iz = y/bal? + -+ xaf?
@ p =00 : Infinity (max) norm

[IXlloo = max{[xil,. .., |xal}



Induced matrix p-norms

A
HAHp — max || XHP
<20 ||x|lp

@ p=1: Largest absolute column sum |[|A||1 = max; > _;|Aj|

@ p=o0: Largest absolute row sum [|Aljc = max;)_;|Aj]

@ p=2: Largest singular value [|A]|2 = max;+/|\(ATA)]

Condition number with respect to inversion of nonsingular A

kp(A) = AL lIAll



Perturbation bound for forward error

Input: Nonsingular A € R"™" b e R"

Want: Solution to Ax=b

Computed solution: z # 0 with residual r = Az — b
How close is z to x?

P
Izl —— Alpllzllp
—— Conditioning ~———~—

Relative error of z Stability

Problem sensitivity (conditioning):
A well-conditioned if 1< k(A) <n
A numerically singular if xp(A) > 10° {IEEE double precision}

Algorithm: Backward stable if ke < 10-16

_rilp
[Allllzllp ~



Derivation of perturbation bound

© Residual

@ A is invertible

© Take norms

- I
Iz=xllp <A plirlle = A I6llAllL Ap
tip(A)

@ Divide by ||z||,



Direct methods for solving Ax = b



Popular direct methods

Gaussian elimination without pivoting (if it exists)
© Factor A=LU  where Lisunit\ and Uis
Q Solve N system Ly=b {(y=L"15}
© Solve \ system Ux=y {x=U"1ly=uU"1L"1p=A"1p}



Popular direct methods

Gaussian elimination without pivoting (if it exists)
© Factor A=LU  where Lisunit\ and Uis
Q Solve N system Ly=b {(y=L"15}
© Solve \ system Ux=y {x=U"1ly=uU"1L"1p=A"1p}

Gaussian elimination with partial pivoting (GEPP)

Factor A= (PTL)U where permutation P reorders the rows

Cholesky decomposition (for symmetric positive definite A)

Factor A= LLT where L is I\

QR decomposition

Factor A= QR where QT = Q! and R is V



Example: Worst case GEPP A= (PTL)U

n=4:
1 0 0 1 1 0 0O O 1 0 0 1
-1 1 0 1l _|-1 1 0o 0 0 1 0 2
-1 -1 1 1] -1 -1 1 0 0O 0 1 4
-1 -1 -1 1 -1 -1 -1 1 0 0 0 8
A PTL U

Elements of L are bounded: ||PTL|s < n
Growth factor for elements of U:

" max,-d- ‘A,J|

(Largest element in factorization / largest element of A)

Question: Why is element growth bad?
Answer: See roundoff error analysis, next



Backward error: Roundoff error bounds



Roundoff error analysis for direct methods

James H. Wilkinson
Rounding Errors in Algebraic Processes
(1963)

Nicholas J. Higham
Accuracy and Stability of Numerical Algorithms
Second edition (2002)

Roundoff error for elementary operations op € {+, —,*, }

fi(aop B) = (op B)(1 + )

where |5| <uw= 10710 in IEEE double precision



4 POSTERIORI ERROR BOUNDS 383

Lastly, suppose that i k21 and j > k+1. Corresponding to (3.8) and (3.9) we
have

) =

and

) =

adlys ap (madly e).
Addition of &’ to both sides followed by abbreviation of the right member to rp (7)
yields

—a a3 = E V5 ap ((madl+a My e 613)
‘compare the first of (2.6). A further application of the exponential rule yields
|+ 1 < | e +12 en < Gy e, 6.14)
where
Salf = mad+laf} O, ij> k1 6.15)

As mdnzmd in (3.14), in computing afj - © we assume that the product my,af}| and
rm af} ] are abbreviated separately from 4 to £ and then added.t Using the
qu\nhry 7 < v and subsituting (3.14) in (3.13), we obtain

— i +a) = a5 ap (@al Dy e). (3.16)
“Then by use of (3.6) we may recast this relation in the form
Pl = AP A, 6> k1, @17)
‘where.
18}* 1 < gafy Dy . (318)
In a similar manner we derive
BB = B ABEY, i3 kel - (19
where
1851 < by n, (3.20)
and
Gb Y = mu b1+ b, P> kL [ER0)
Equations (3.6), (3.11), (3.17) aad (3.19) may be combined into matrix form:
TR 2 A pghen,  [WRAeD - B apasn o)
‘where
o} o
B “ERE
aweno| ! . B
o1 H
[

| 10 e s th o of e prdocs e b et o s s compunions
¢ pexded rlaion 016) would emain vl if 3957 wee o b compuid by ading
Ty and Y i 4 and b sbreating e et 10



Gaussian elimination with partial pivoting
in floating pOint arithmetic [Higham, Wilkinson]

Solve: Ax = b where A € R"™" nonsingular

Perturbation bound for computed solution z:

< koolA) lirll

oo
[[Allool12[l o0

Backward error for GEPP in floating point (v~ 10-16)

[[rlloo
[[Allocl12[lo0

§3n3upn

max; j k \Afk)|
Growth factor: p, = —=—1—

max; j |Aj]

Large growth factor = GEPP backward unstable



Perturbation bound for numerical stability
of direct methods



General view of direct methods

Exact arithmetic:
@ Factor A= 515,  where square S; and S, are "simple” to solve
©Q Solve S1y=b {y=57'h}
©Q Solve Sox=y {x=Sly=5,'S'b=A"1b}



General view of direct methods

Exact arithmetic:
@ Factor A= 515,  where square S; and S, are "simple” to solve
©Q Solve S1y=b {y=57'h}
© Solve Sox=y {(x=S7'y=5;'5""b=A"1b}

Perturbation model for floating point arithmetic:

Q Factor A+ E =515, where s = Hin
- _ nls

Q Solve S1y =b+r where ¢ = =5
- _ el

Q Solve Sz=y+r where & = 55

Splits backward error into 3 major steps



Perturbation bound for numerical stability

Model:
IEllp
A+E = 55 €aq=
Al
lrllp
S5y = b+n €=
[S1llpllyllo
Sz = y+n €= _ralle__
IS1lp1lzl1p

Perturbation bound for computed solution z:

|z = x]|p Irllp
=417 P 1A blIz
Stability of direct method:
Irllp 15111521l
< ep + ————— (e2 + €1(1 + €2))
1Allpllzllp 1Al

Stability Factor



Easy derivation

@ Determine residual

of numerical stability bound

r=Az—b=—Ez+nr+5n

Follows from

(A+E) z
———

Factorization

= 55z

= 51 Sz =Si(y+n)=Sy+Sin
~—
2. system

= Siy +Sin=b+n+Sin
~—

1. system



Easy derivation of numerical stability bound

@ Determine residual

r=Az—b=—Ez+nr+5n
Follows from
(A+E)z = 5%z
~—

Factorization
= S Sz :51(y+r2):51y+51r2
~—
2. system
= Sy +Sn=b+n+Sn
~~

1. system

@ Bound relative residual norm

Irllp eq+ 151lollS2llp
1Allpllz[l, 1Al

Stability Factor

(e2+€e1(1+¢)



Stability factors for popular direct methods

o Gaussian elimination with partial pivoting A= (PTL)U

[P L|oo [|U]loo Ul
s 000 e S n——
[[Alls [[Alloo

@ Cholesky decomposition (forspd A) A= LLT

ILl20L 2 _

1A]l2

@ QR decomposition A= QR
IQLIRI> _

1All2



Example: Stability factor captures growth

n=4:
1 0 0 1 1 0 0O O 1 0 0 1
-1 1 0 1l _|-1 1 0o 0 0 1 0 2
-1 -1 1 1 |1-1 -1 1 0 0O 0 1 4
-1 -1 -1 1 -1 -1 -1 1 0 0 0 8
A PTL U

Traditional growth factor (from roundoff error analysis)

k
max; i | A} |

— -1
Pn = = 2”
T maxi Ayl
Our stability factor (from perturbation bound)
IPTLllool|Ulloo _ n yn-1 _ )
= = Pn
[[Alloo "

Stability factor equal to growth factor



Summary

Solving systems of linear equations Ax = b

Contribution: Easy and intuitive perturbation bound for
numerical stability of direct methods A = 515,

@ Model: Splits backward error into 3 major steps

(factorization A = 5155, solution of systems with S; and Sp)

@ Individual backward errors amplified by stability factor

1521111521l /11All

@ Captures instability due to element growth

@ General: Applies to any factorization, in any p-norm

lise C.F. Ipsen: Numerical Matrix Analysis, SIAM, 2009



