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Probabilistic Numerics

Statistical treatment of approximation errors in
deterministic numerical methods:

Assign probability distributions to quantities of interest
Express methods as probabilistic inference

Model uncertainty due to limited computational resources
(Truncation errors in discretizations, termination of iterative methods)

But why??? Want error measures that

are more informative than traditional, pessimistic bounds

can be propagated through computational pipelines

Probabilistic numerical methods have been developed for:
Approximation, quadrature, numerical solution of ordinary and
partial differential equations, optimization

Here: Computational kernels and linear algebra



Probabilistic Numerics

Statistical treatment of approximation errors in
deterministic numerical methods:

Assign probability distributions to quantities of interest
Express methods as probabilistic inference

Model uncertainty due to limited computational resources
(Truncation errors in discretizations, termination of iterative methods)

But why??? Want error measures that

are more informative than traditional, pessimistic bounds

can be propagated through computational pipelines

Probabilistic numerical methods have been developed for:
Approximation, quadrature, numerical solution of ordinary and
partial differential equations, optimization

Here: Computational kernels and linear algebra



Probabilistic Numerics

Statistical treatment of approximation errors in
deterministic numerical methods:

Assign probability distributions to quantities of interest
Express methods as probabilistic inference

Model uncertainty due to limited computational resources
(Truncation errors in discretizations, termination of iterative methods)

But why??? Want error measures that

are more informative than traditional, pessimistic bounds

can be propagated through computational pipelines

Probabilistic numerical methods have been developed for:
Approximation, quadrature, numerical solution of ordinary and
partial differential equations, optimization

Here: Computational kernels and linear algebra



Our Focus: Accurate Error Estimation
for Iterative Solution of Linear Systems

[Disclaimer: Research still at proof-of-concept stage]

Given: Nonsingular real matrix A, vector b
Want: Solution x∗ of linear system Ax∗ = b

Iterative solver:

From user-specified initial guess x0

computes iterates x1, x2, . . . , xm → x∗

Prior Distribution
Reflects initial knowledge about x∗

Posterior Distribution at iteration m
Reflects knowledge about x∗ after m iterations



What We Can Do So Far (Details Later)
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Traditional error bounds ≥ 1, not informative
Our estimates from posterior distribution ≈ exact error
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1. Probabilistic Numerics: The Big Picture

http://probabilistic-numerics.org/

http://probabilistic-numerics.org/


Early Probabilistic Numerics

H. Poincaré (1896, 1912): Calcul des Probabilités

A.V. Sul’din (1959): Wiener Measure and its Application to
Approximation Methods, I. Izv. Vys̆s. Učben. Zayed. Mat.

F. M. Larkin (1972): Gaussian Measure in Hilbert space and
Applications in Numerical Analysis, Rocky Mountain J. Math.

G.S. Kimeldorf, G. Wahba (1970): A Correspondence between
Bayesian Estimation on Stochastic Processes and Smoothing
by Splines, Ann. Math. Stat.

P. Diaconis (1988): Bayesian Numerical Analysis, Stat. Decis.
Theory Relat. Top. IV

A. O’Hagan (1992): Some Bayesian Numerical Analysis,
Bayesian. Stat.



Perspectives on Modern Probabilistic Numerics

Bayesian inference in inverse problems
A.M. Stuart (2010): Inverse Problems: A Bayesian
Perspective, Acta Numer.

‘A call to arms for probabilistic numerical methods’
P. Hennig, M.A Osborne, M. Girolami (2015): Probabilistic
Numerics and Uncertainty in Computations, Proc. R. Soc. A

Statistical foundations for non-linear, non-Gaussian problems
J. Cockayne, C.J. Oates, T.J. Sullivan, M. Girolami (2019):
Bayesian Probabilistic Numerical Methods, SIAM Rev.

Historical development of probabilistic numerics
C.J. Oates, T.J. Sullivan (2019): A Modern Retrospective on
Probabilistic Numerics, Stat. Comput.

Probabilistic Numerics at SIAM Conference on UQ
http://probabilistic-numerics.org/meetings/SIAMUQ2020/

http://probabilistic-numerics.org/meetings/SIAMUQ2020/


Application: Global Optimization



Application: Numerical Integration for Rendering
of Glossy Surfaces

(RMSE = 0.039, time = 2m18s) (RMSE = 0.026, time = 2m20s)
(a) Reference (b) LDIS (c) BMC

Fig. 1. Indirect radiance component for the Room scene rendered with low discrepancy Monte Carlo Importance
Sampling (LDIS, (b)) and BMC (c). The shown images have been multiplied by a factor of 4. The RMSE and the time
are computed by considering only the glossy component. 16 ray samples per visible point were used for the materials
with a glossy BRDF (teapot, tea cup and fruit-dish), while 64 samples were used for the diffuse BRDFs.

R. Marques, C. Bouville, M. Ribardiere, L.P. Santos, K. Bouatouch
(2013), IEEE Trans. Vis. Comput. Graph.



Probabilistic Numerics & Other Areas

Connections to

Information-based complexity
[Traub, Wasilkowski, Woźniakowski 1983]

Average-case analysis
[Novak 1988], [Ritter 2000]

Data assimilation, Kalman filters
[Law, Stuart, Zygalakis 2015], [Reich, Cotter 2015]

Statistical learning
[Hastie, Tibshirani, Friedman 2009], [Rasmussen, Williams 2006]

Difference to Uncertainty Quantification [Smith 2014]

UQ: Problems usually ill-posed, uncertainties from all sources:
model, parameter, experimental, measurement

PN: Problems are well-posed, algorithmic uncertainty due to
limited computational resources



Probabilistic Numerics in Linear Algebra

P. Hennig (2015): Probabilistic Interpretation of Linear
Solvers, SIAM J. Optim.

S. Bartels, P. Hennig (2015): Probabilistic Approximate
Least-Squares, Proc. Machine Learning Research

F. Schäfer, T.J. Sullivan, H. Owhadi (2017): Compression,
Inversion, and Approximate PCA of Dense Kernel Matrices at
Near-Linear Computational Complexity, arXiv

J. Cockayne, C.J. Oates, I.C.F. Ipsen, M. Girolami (2019): A
Bayesian Conjugate Gradient Method, Bayesian Anal.

S. Bartels, J. Cockayne, I.C.F. Ipsen, P. Hennig (2019):
Probabilistic Linear Solvers: A Unifying View, Stat. Comput.



2. Gaussian Probability Distributions

[The MathWorks R2020a]



Our Probability Distributions are Gaussians

Gaussian = multi-variate normal distribution
Gaussian random vector x ∼ N (µ0, Σ0)

Mean µ0 ∈ Rd

Covariance Σ0 ∈ Rd×d symmetric positive semi-definite

If Σ0 also positive definite, then probability density function is

p(x) = 1√
det(Σ0) (2π)d

exp
(
−1

2‖x − µ0‖2
Σ

−1
0

)
where ‖x − µ0‖2

Σ
−1
0

= (x − µ0)T Σ
−1
0 (x − µ0) and T is transpose

Why Gaussians?
Stability: Linear transformations preserve Gaussianity
If x ∼ N (µ0, Σ0) then B x + z ∼ N (B µ0 + z , B Σ0 BT )

[Muirhead 1982], [Stuart 2010]



Stability of Gaussians for Computing Posteriors

If x ∼ N (µ0, Σ0) then z + B x ∼ N (z + B µ0, B Σ0 BT )

Prior: x ∼ N (µ0,Σ0)

Condition on linear information y = Bx

Bayesian inference
Posterior: x | y ∼ N (µ, Σ) with

µ = µ0 + Σ0BT (B Σ0 BT )−1(y − Bµ0)

Σ = Σ0 − Σ0BT (B Σ0 BT )−1 B Σ0

Connections to: Schur complements, projectors

Conditioning Gaussian random vector x ∼ N (x0,Σ0)
on linear information y = Bx

gives another Gaussian random vector x | y ∼ N (µ, Σ)



Stability of Gaussians for Computational Sampling

Want: Sample X ∼ N (µ,Σ)

Stability: If x ∼ N (0, I ) then µ + L x ∼ N (µ, LLT )

Possible factorizations Σ = LLT

Square root L = Σ1/2

Cholesky factorization, if Σ nonsingular
Thin Cholesky: L has rank(Σ) columns

Matlab

X = µ + L ∗ randn(size(L, 2), 1)︸ ︷︷ ︸
vector ∼ N (0,I )



3. BayesCG, a Probabilistic Numerical Linear Solver



Probabilistic Linear System Solution

Given: Symmetric positive-definite A ∈ Rd×d , vector b ∈ Rd

Want: Solution of Ax∗ = b
Initial guess x0: A(x∗ − x0) = b − Ax0

Solver: Computes iterates x1, x2, . . . , xm → x∗

Solution-based inference

Probability distribution over solution space x ∈ Rd

Keeping it simple: xm = µm, m ≥ 0
Iterates coincide with means of probability distribution

User specifies Gaussian prior N (x0, Σ0)
Prior reflects initial knowledge about x∗

Solver computes Gaussian posteriors N (xm, Σm)
Posteriors reflect knowledge about x∗ after m iterations



Computing the Posteriors in Iteration m ≥ 1
[Cockayne, Oates, Sullivan, Girolami 2019]

Information about x∗ provided by m search directions

Sm =
(
s1 · · · sm

)
∈ Rd×m rank(Sm) = m

Condition on ym = ST
mAx∗ = ST

mb
Exists unique Bayesian method that outputs posterior distribution

x | ym ∼ N (xm, Σm)

with

xm = x0 + Σ0ASm

(
ST
mAΣ0ASm

)−1
ST
m (b − Ax0)

Σm = Σ0 − Σ0ASm

(
ST
mAΣ0ASm

)−1
ST
mAΣ0

Choose AΣ0A-orthogonal search directions: ST
mAΣ0ASm = Im



Bayesian Conjugate Gradient Method (BayesCG)
[Cockayne, Oates, Ipsen, Girolami 2019]

r0 = b − Ax0 {initial residual}
s1 = r0/

√
r0

TA Σ0A r0 {initial search direction}
m = 1
while not converged do

Σm = Σm−1 − (Σ0Asm) (Σ0Asm)T {next posterior}
xm = xm−1 + Σ0Asm (rTm−1sm) {next iterate}
rm = b − Axm {next residual}
s̃m+1 = rm− sm (rTmA Σ0Asm) {next search direction}
sm+1 = s̃m+1/

√
s̃Tm+1A Σ0A s̃m+1 {normalize search dir}

end while



Properties of BayesCG

Krylov space for iterates: xm ∈ K∗m

K∗m = x0 +Km

(
Σ0A2, Σ0A (b − Ax0)

)
Error minimization in Σ−1

0 norm

‖xm − x∗‖Σ
−1
0

= min
x∈K∗

m

‖x − x∗‖Σ
−1
0

Convergence in Σ−1
0 norm depends on conditioning of Σ0 A2

‖xm − x∗‖Σ
−1
0
≤ 2

(√
κ2(Σ0 A2)−1√
κ2(Σ0 A2)+1

)m

‖x0 − x∗‖Σ
−1
0

Prior: If Σ0 = A−1 then BayesCG = CG

CG = Bayesian inference with prior N (x0,A−1)



Summary: BayesCG

Solve symmetric positive-definite system Ax∗ = b

BayesCG = probabilistic extension of Conjugate Gradient
Models uncertainty in solution x∗ due to early termination

Input: Gaussian prior N (x0,Σ0)
Models initial uncertainty about solution x∗
Mean x0 identical to initial guess for iterates

Output: Gaussian posterior N (xm,Σm) at iteration m
Models uncertainty about solution x∗ after m iterations
Mean identical to iterate xm ≈ x∗

Next: How to use the BayesCG posteriors?



4. Errors, and
Metrics on Probability Distributions



Metric on Set of Probability Distributions

Measure distance between two probability distributions

Any two Gaussian distributions
Gm = N (xm,Σm) and G∗ = N (x∗,Σ∗)

Wasserstein 2-norm metric: Distance between Gm and G∗

[W2(Gm, G∗)]2 = ‖xm − x∗‖2
2 + trace

(
Σm + Σ∗ − 2 (ΣmΣ∗)

1/2
)

[Dowson, Landau 1982]

Extension to general weighted norms (B is spd)

[WB(Gm, G∗)]2 = ‖xm − x∗‖2
B

+ trace
(
B(Σm + Σ∗)− 2 (B1/2ΣmBΣ∗B1/2)1/2

)



Application of Wasserstein Metric to BayesCG

Input: Prior G0 = N (x0,Σ0)
Output: Posteriors Gm = N (xm,Σm)
Errors: ‖xm − x∗‖Σ

−1
0

Represent solution x∗ as point distribution N (x∗, 0)[
W

Σ
−1
0

(Gm, x∗)
]2

= ‖xm − x∗‖2
Σ

−1
0

+ trace
(

Σ−1
0 Σm

)
= ‖xm − x∗‖2

Σ
−1
0

+ (d −m)

Σ−1
0 distance of posterior Gm to solution x∗ equals

Σ−1
0 norm error + dimension of unexplored space

Computational error estimation with “S-statistic”

‖xm − x∗‖2
Σ

−1
0

≈ ‖xm − X‖2
Σ

−1
0

where X ∼ Gm



Possible Prior Distributions

“Noninformative”: Σ0 = I d
Inverse: Σ0 = A−1, BayesCG = CG

Natural: Σ0 = A−2, convergence in 1 iteration

Preconditioner: Σ0 = (PTP)−1 ≈ A−2

Krylov1: Σ0 = V ΦV T , where columns of V are basis for
Krylov space

Hierarchical: Σ0 = ν Σ̂0 with Jeffrey’s improper p(ν) ∼ ν−1

Priors that reproduce CG: Inverse and Krylov1

Impractical“academic” priors that already contain all
information to compute solution immediately

But: We study them to calibrate our expectations
In order to: Develop practical, low-rank approximations

1Different from Krylov prior in [Cockayne, Oates, Ipsen, Girolami 2019]



5a. Priors that Reproduce CG
Inverse Prior



Wasserstein Metric for BayesCG under Inverse Prior

Prior G0 = N (x0,Σ0) with Σ0 = A−1

BayesCG under inverse prior = CG + posteriors

Posteriors Gm = N (xm,Σm) with Σm = Σm−1 − smsTm
Down dating with search directions

Distance between posterior and solution

[WA(Gm, x∗)]2 = ‖xm − x∗‖2
A + (d −m)

Error estimation with S statistic

‖xm − x∗‖2
A ≈ ‖xm − X‖2

A where X ∼ Gm

Experiments: Ax∗ = b

Dimension d = 100, x∗ = 11, κ2(A) ≈ 4 · 104

S statistic samples per iteration: 10



BayesCG under Inverse Prior
Absolute Error, Two-norm Bound, S Statistic
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BayesCG under Inverse Prior
Preliminary Conclusions

Pros

Iterates and convergence identical to that of CG

Samples from S statistic more accurate than norm-wise
forward error bounds

Cons

Preserving semi-definiteness of posterior during down dates
Σm = Σm−1 − smsTm
Prior is not practical



Existing Work on A-Norm Errors in CG

Estimation approaches:
Ritz values, Gauss-Radau rules, incremental norm estimation,
maximal attainable accuracy estimates

Golub, Strakoš 1994
Greenbaum 1997
Meurant 1998
Golub, Meurant 1997
Strakoš, Tichý 2002
Strakoš, Tichý 2005
Meurant, Tichý 2013
Liesen, Strakoš 2016
Meurant, Tichý 2019

Probabilistic numerical solvers:
Designed to capture computational uncertainty



5b. Priors that Reproduce CG
Krylov Priors



Krylov Priors Γ0 = V ΦV T

Columns of V are A-orthonormal basis
{V TAV = I n, normalized CG search directions}

for Krylov space of maximal dimension n ≤ d

Kn (A, r0) = span{r0,Ar0, . . . ,An−1r0}

Φ is any diagonal matrix Φ with positive diagonal

Advantages

BayesCG under Krylov prior = CG + posteriors

Trailing submatrices: No explicit downdating of posteriors

Γm = Vm+1:n Φm+1:n,m+1:n V T
m+1:n

Γ0 singular for n < d
=⇒ cannot use Γ0 to define norm for Wasserstein distance



Wasserstein Metric for BayesCG
under Specific Krylov Prior

Specific Krylov prior: Γ0 = V ΦV T has diagonal elements

Φmm = (vT
mr0)2 1 ≤ m ≤ n

{Computed automatically in our CG implementation}

A-norm error with specific Krylov prior

‖xm − x∗‖2
A = trace (AΓm)

Wasserstein A-norm metric for BayesCG under Γ0

[WA(Gm, x∗)]2 = ‖xm − x∗‖2
A + trace (A Γm)

Wasserstein A-norm metric , A-norm error in iterate

[WA(Gm, x∗)]2 = 2 ‖xm − x∗‖2
A



S Statistic for Specific Krylov Prior

Krylov posterior Gm = N (xm, Γm)

Distance of posterior to solution , absolute error

[WA(Gm, x∗)]2 = 2 ‖xm − x∗‖2
A

Absolute error , mean of S statistic

2 ‖xm − x∗‖2
A = EX∼Gm

[
‖xm − X‖2

A
]

Empirical mean of S statistic from 10 samples

EX∼Gm
[
‖xm − X‖2

A
]
≈ 1

10

10∑
j=1

1
2‖xm − Xj‖2

A Xj ∼ Gm

Experiments: Ax∗ = b
Dimension d = 100, x∗ = 11, same A as before
Condition number κ2(A) ≈ 4 · 104

S statistic samples per iteration: 10



BayesCG under Specific Krylov Prior
Empirical Mean of S Statistic ≈ Absolute Error
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BayesCG under Specific Krylov Prior
Relative Error, Bounds, S Statistic
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BayesCG under Specific Krylov Prior
Preliminary Conclusions

Pros:

Errors in iterates , distances of posteriors to solution

Errors in iterates , mean of S statistic

S statistic produces exact magnitude of errors

Cons: BayesCG under Krylov priors requires

1 Running maximal number n of CG iterations

2 Storing all n search directions V (for factored form Γ0 = V ΦVT )

3 Matvecs with Γm ∈ Rd×(n−m+1) in iteration m

Again, this is not practical

Next: Low-rank approximations of Krylov priors are promising



6. Low-Rank Approximations of Krylov Priors



Low-Rank Approximation via Look-Ahead

Run k iterations of CG

Look-ahead: Run ` = 5 more CG iterations

Prior has rank k + ` = k + 5

Estimate errors em = ‖xm − x∗‖2
A at iteration 1 ≤ m ≤ k

with empirical mean of 5 samples from S statistic

σm = 1
5

5∑
j=1

1
2‖xm − Xmj‖2

A Xmj ∼ N (xm, Γ̂m)

Error of empirical mean in last iteration is |σk − ek |/ek

3 numerical examples: Ax∗ = b of dimension d
A = QΛQT with Q random orthogonal [Stewart 1980]

Eigenvalue distributions from [Liesen, Strakoš 2013]



Uniformly Distributed Eigenvalues, Dimension d = 103

k = 80 Iterations, Prior of Rank 85

κ2(A) = 105, Eigenvalues λj = 1 + j−1
d−1 (105 − 1), 1 ≤ j ≤ d
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Large Eigenvalue Cluster, Dimension d = 103

k = 30 Iterations, Prior of Rank 35

κ2(A) = 105, Eigenvalues λj = 1 + j−1
d−1 (105 − 1) 0.65d−j
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Smoothly Increasing Eigenvalues, Dimension d = 100
k = 12 Iterations, Prior of Rank 17

κ2(A) ≈ 7 · 1016, Eigenvalues λj = log(j)/log(d), 1 ≤ j ≤ d
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Relative Errors for Previous Problem
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Accuracy of Low-Rank Prior Approximations

Experiments: Error estimates have correct magnitude
especially where traditional bounds are not informative

Exact prior G0 = N (x0, Γ0)

Γ0 = V Φ V T rank(Γ0) = n

Rank k + ` approximation Ĝ0 = N (x0, Γ̂0)

Γ̂0 = V 1:k+` Φ1:k+`,1:k+`V T
1:k+` rank(Γ̂0) = k + `

Distance between low-rank and exact distributions

[WA(Gm, Ĝm)]2 = ‖V T
k+`+1:nr0‖2

2 0 ≤ m ≤ k

Distance ≈ contribution of r0 in search directions ignored by Γ̂0



Practical Procedure: Error Estimate for Last Iterate

1 Run CG until convergence, at some iteration k
2 Run ` more CG iterations, store ` search directions V k+1:k+`

3 Normalize factor for low-rank posterior Γ̂k = LkLT
k

Lk = V k+1:k+` Φ
1/2
k+1:k+` ∈ Rd×`

4 S statistic samples σj = ‖xk − Xj‖2
A, 1 ≤ j ≤ ns

Xj = xk + Lk randn(`, 1)

5 Error estimate = empirical mean of S statistic samples

1
ns

ns∑
j=1

1
2σj ≈ ‖xk − x∗‖2

A

Work in addition to CG: ` iterations, c ns matvecs
Additional storage: ` search directions



Take-Home Message

Solution of Ax∗ = b with real symmetric positive definite matrix A

BayesCG: Probabilistic extension of Conjugate Gradient (CG)
BayesCG under low-rank Krylov prior = CG

Accurate error estimates with a few more iterations & matvecs
S statistic: Produces error estimates of correct magnitude

especially where traditional bounds are not informative

Distance of posterior to solution , absolute error in iterate

Not discussed here

Numerical implementation
(reducing re-orthogonalizations, numerical accuracy of posteriors)

Rigorous & meaningful statistical setting
(nonlinear dependence of CG on solution, degenerate distributions)



Future Work

Systematic low-rank approximation of priors

Error bars/variance for S statistic and other statistics

Hardwiring termination criteria into posteriors

Probabilistic numerical Krylov solvers for
indefinite/non-symmetric systems, and least squares

Priors and posteriors designed for
capturing numerical uncertainty (roundoff)

Disintegration: Non-Gaussian distributions


