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What are Leverage Scores and Coherence?

Diagonal elements of (orthogonal) projector

Orthogonal projector
Square matrix P with P2 = P and PT = P

Leverage scores
`j = Pjj

Coherence = largest leverage score

µ = max `j

Leverage scores of m × n matrix A with m ≥ n

`j(A) = Pjj 1 ≤ j ≤ m

where P orthogonal projector onto range(A)
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Applications

Statistics
Astronomy
Physics
Graph theory
Compressed sensing, matrix completion
Randomized algorithms



Statistical Leverage Scores

[Hoaglin & Welsch 1978, Velleman & Welsch 1981, Chatterjee & Hadi 1986]

Purpose: Regression diagnostics

minx ‖Ax − b‖2 where A is m × n with rank(A) = n

Hat matrix: Orthogonal projector onto range(A)

H = A (ATA)−1 AT

Leverage scores of A

`j(A) = Hjj 1 ≤ j ≤ m

Least squares fit: b̂ = Hb
If `k (A) = 1 then bk has maximal leverage: b̂k = bk
If `k (A) = 0 then bk has zero leverage over b̂k

Leverage scores determine potential outliers



Astronomy

[Yip, Mahoney, Szalay, Csabai, Budavári, Wyse & Dobos 2013]

Purpose: Evolution of galaxies

Informative wave length regions

Matrix A
Row i: Wavelength λi
Column j: Spectrum of jth Simple Stellar Population
Given rank parameter k: Truncated SVD Ak

Importance of wavelength λi : `i (Ak)

Importance of wavelength region [λs , λe ]

Lick index
e∑

i=s

`i (Ak)

Leverage scores determine important wave lengths



Physics

[Bekas, Kokiopoulou & Saad 2008]

Purpose: Physical properties of complex materials

Electronic structure calculations (DFT)

Discretization of Hamiltonian: Symmetric matrix A

Invariant subspace V associated with n smallest eigenvalues
V is m × n with VTV = In

Functional density matrix P = VV T

Charge density at jth point `j = Pjj

Leverage scores yield charge densities



Graph Theory

[Drineas & Mahoney 2010]

Purpose: Analyse diffusion processes and random walks on graphs
Detect clusters and community structure in large networks

Undirected unweighted graph with n vertices and m edges

m × n edge incidence matrix B
If edge between vertices i and j then bij = 1 and bji = −1

Graph Laplacian L = BTB

Effective resistance matrix R = BL†BT

Effective resistance of edge j `j(B) = Rjj

Leverage scores yield effective resistance



Compressed Sensing and Matrix Completion

[Donoho & Huo 2001, Candés, Romberg & Tao 2006, Candés & Recht 2009]

Coherence of m × n matrix A with rank(A) = n

µ(A) = max
1≤j≤m

`j(A)

Low coherence ⇒ uniform leverage scores

n/m ≤ µ(A) ≤ 1

Maximal coherence: µ(A) = 1
At least one basis vector for range(A) is a canonical vector

Minimal coherence: µ(A) = n/m
Orthonormal bases for range(A) are columns of a Hadamard matrix

Coherence reflects difficulty of recovering matrix from sampling



Randomized Algorithms

Leverage scores for analysis
Randomized preconditioners for least squares
[Avron, Maymounkov & Toledo 2010]

Sampling rows from from orthonormal matrices
[Ipsen & Wentworth 2012]

Leverage scores for importance sampling
Randomized subset selection
[Boutsidis, Mahoney & Drineas 2010]

Low rank approximation
[Drineas, Mahoney & Muthukrishnan 2008, Mahoney & Drineas 2009]

Randomized least squares
[Drineas, Mahoney & Muthukrishnan 2007, 2008]

[Drineas, Mahoney, Muthukrishnan & Sarlós 2007]



Computation of Leverage Scores

Dense matrices
Other approaches



Computation: Dense Matrices

Given: Real m × n matrix A with rank(A) = n

Want: Leverage scores `j(A) = Pjj 1 ≤ j ≤ m

Projector P = A (ATA)−1 AT

Singular Value Decomposition A = U ΣV T UTU = In

Projector P = UUT

`j(A) = ‖eTj U‖2
2 1 ≤ j ≤ m

QR decomposition A = Q R QTQ = In

Projector P = QQT

`j(A) = ‖eTj Q‖2
2 1 ≤ j ≤ m



Computation: Other Approaches

Sparse matrices: Estimating diagonal elements of P by probing
[Bekas, Kokiopoulou & Saad 2007, Coleman & Moré 1983]

Fast randomized approximations
[Mori & Talwalkar 2010, 2011]

[Drineas, Magdon-Ismail, Mahoney & Woodruff 2011]

Connections to

Eigenvector and invariant subspace localization
[Vömel & Parlett 2011, Slanina & Konopásek 2010]

Diagonal elements of matrix functions

CS decomposition



Sensitivity of Leverage Scores
to Subspace Angles



Exact and Perturbed Leverage Scores

Exact matrix: A is m × n with rank(A) = n

Exact leverage scores

`j(A) = ‖eTj A‖2 1 ≤ j ≤ m

where A is orthonormal basis for range(A)

Perturbed matrix: B is m × n with rank(B) = n

Perturbed leverage scores

`j(B) = ‖eTj B‖2 1 ≤ j ≤ m

where B is orthonormal basis for range(B)

Question: How close is `j(B) to `j(A)?
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Principal Angles between Column Spaces

A and B are m × n with orthonormal columns, ATA = BTB = In

SVD of n × n matrix ATB = U ΣV T

Σ = diag
(
cos θ1 · · · cos θn

)
Principal angles θj between range(A) and range(B)

1 ≥ cos θ1 ≥ . . . ≥ cos θn ≥ 0

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

Special cases

If A = B then Σ = In and all θj = 0

If ATB = 0 then Σ = 0 and all θj = π/2



Sensitivity of Leverage Scores to Angles

Angles between range(A) and range(B)

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

Leverage score bounds

`j(B) ≤
(

cos θ1

√
`j(A) + sin θn

√
1− `j(A)

)2

`j(A) ≤
(

cos θ1

√
`j(B) + sin θn

√
1− `j(B)

)2

1 ≤ j ≤ m

Leverage scores of A and B are close,
if all angles between range(A) and range(B) are small



Uniform Leverage Scores

A is m × n Hadamard m = 1024, n = 50, leverage scores are n/m

Angles: cos θ1 = 1 sin θn ≈ 10−8

Relative error: (`j (B)− `j (A))/`j (A) Relative bound
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Bound reflects behaviour of errors



20% Large Leverage Scores

A is m × n m = 1000, n = 50, and 200 large leverage scores

Angles: cos θ1 = 1 sin θn ≈ 10−8

Relative error: (`j (B)− `j (A))/`j (A) Relative bound
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Bound tighter for large leverage scores



Large Leverage Scores, and Angles

Assume: Bounded angles

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/4

Large leverage score: `k(A) ≥ 1/2 for some k

Bound for perturbed leverage scores(
1−
√

2 sin θn
)2

`k(A) ≤ `k(B) ≤ (1 + sin θn)2 `k(A)

Upper and lower bounds for large leverage scores



Coherence and Angles

Angles between range(A) and range(B)

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

Coherence: µ(A) = max1≤j≤m `j(A)

Bound for perturbed coherence

µ(A)/γ ≤ µ(B) ≤ γ µ(A)

where

γ =
(

cos θ1 + sin θn

√
m
n

)2

Coherence is sensitive if

Large aspect ratio: m� n
Large angles between range(A) and range(B)



Sensitivity of Leverage Scores
to Matrix Perturbations



Bound for Angles in terms of Perturbations

A and A+ E are m × n of rank n

Condition number and relative perturbation

κ = ‖A‖ ‖A†‖ ε = ‖E‖/‖A‖

Largest angle between range(A) and range(A+ E): θn

Assume: Perturbation ε < .5/κ

Bound for largest angle

sin θn ≤ 2 κ ε

All angles between range(A) and range(A+ E) are small
if A is well-conditioned with respect to inversion



Perturbation of Coherence

A and A+ E are m × n of rank n

Condition number and relative perturbation

κ = ‖A‖ ‖A†‖ ε = ‖E‖/‖A‖

Coherence: µ(A) = max1≤j≤m `j(A)

Assume: Perturbation ε < .5/κ

Bound for perturbed coherence

µ(A)/γ ≤ µ(A+ E) ≤ γ µ(A) γ =
(

1 + 2
√

m
n κ ε

)2

Coherence is sensitive to perturbations if

Large aspect ratio: m� n
A is ill-conditioned with respect to inversion



Perturbation of Large Leverage Scores

A and A+ E are m × n of rank n

Condition number and relative perturbation

κ = ‖A‖ ‖A†‖ ε = ‖E‖/‖A‖

Large leverage scores: `k(A) ≥ 1/2 for some k

Assume: Perturbation ε < .3/κ

Relative error for large leverage scores∣∣∣∣`k(A+ E)− `k(A)

`k(A)

∣∣∣∣ ≤ 4κε (κε+ 1)

Large leverage scores are insensitive to perturbations
if A is well-conditioned with respect to inversion



Well-Conditioned Matrix

A is m × n m = 1000, n = 50

Condition number: κ ≈ 23 Relative perturbation: ε ≈ 10−8

Relative error: |`j (B)− `j (A)|/`j (A) Bound
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Bound informative even if matrix has no large leverage scores



Moderately Conditioned Matrix
A is m × n m = 1000, n = 50

Condition number: κ ≈ 108 Relative perturbation: ε ≈ 10−8

Relative error: |`j (B)− `j (A)|/`j (A) Bound
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Bound informative for all leverage scores (not just large ones)



Summary

Leverage scores

Diagonal elements of m ×m orthogonal projectors
Sampling probabilities in randomized algorithms

Coherence
Largest leverage score
Performance analysis of sampling strategies

Sensitivity analysis
Relative error bounds for leverage scores of exact and perturbed matrix

Angles between column spaces
Condition number and matrix perturbation

Leverage scores insensitive if

Angles are small
Underlying m × n matrix well-conditioned

Coherence more sensitive if m� n



Future Work

Sampling strategies only need the correct exponent
Are relative error bounds too strong?

Sampling strategies depend on large leverage scores
Tighter bounds targeted at large leverage scores

Extend sensitivity analysis to

Rank deficient matrices
Low-rank approximations
Large perturbations (missing data)
Structured perturbations (categorical data)


