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Motivation

Given: Differentiable function f : R™ — R where m large
Want: Influential parameters of f

@ Detect active subspace S C R™ where
f most sensitive to change (varies strongly)

© Approximate f by response surface over S

Existing Work:

Active subspaces [Russi 2010]

Stochastic PDEs [Constantine et al. 2012, 2014], [Stoyanov et al. 2014]
Reduced-order nonlinear models [Bang et al. 2012]

Airfoil design and manufacturing [Namura et al. 2015], [Chen et al. 2011]
Combustion [Bauernheim et al. 2014], [Constantine et al. 2011]

Solar cells [Constantine et al. 2014]



Idea

Given: Function f: R™ - R

© From Vf(x) construct "sensitivity” matrix E € R™*™

© Dominant eigenvectors of E = active subspace §

Problem: Elements of E too expensive to compute

(high-dimensional integrals)

© Approximate E by Monte Carlo: E c Rmxm

© Dominant eigenvectors of E = approximate subspace S

~

Our contribution: Probabilistic bound for sin Z(S,S)

Large eigenvalue gap
E has low numerical rank



Setting the Stage

What's coming next

© Assumptions
© The matrix E

© Active subspace S
© Monte Carlo approximation E

© Approximate subspace S



Assumptions

The function is somewhat nice
o f: R™— R continuously differentiable

@ Lipschitz constant ||[Vf(x)|| <L (2 norm)

Monte Carlo sampling
@ Random vectors X € R™ with probability density p(x)

@ Expected value of function h with respect to X

E[h(X)] = /R () ()



The Matrix E

"Uncentered covariance” of the gradient

E = - VF(x)(VF(x)T p(x)dx

@ E € R™™ symmetric positive semi-definite

Eigenvalue decomposition E = VAVT

(]

(]

Eigenvectors V = (vi ... vp)

v; is direction of sensitivity (variability) of f

Eigenvalues A = diag (/\1 )\m)
A= E |:(VjTVf(X))2} amount of sensitivity along v;



Active Subspace S

Dominant eigenvalues of E = VAVT

A=diag(M - A Ake1 o0 Am)

@ Large eigenvalue gap
M= > A > M1 > > A
® k dominant eigenvalues \;: Indicators of high sensitivity

® k dominant eigenvectors v;: Directions of high sensitivity

Orthonormal basis for active subspace

S = range(vl vk)



Monte Carlo for Approximate Subspace

@ Sample n < m training points x; € R™ according to p(x)

E=1 va(xj)(Vf(Xj))T

~

@ Eigenvalue decomposition E = VAVT

~

K:diag</)\\1 /)\\k /):k—i-l )\m)
@ Assume: Eigenvalue gap in same location as for E

XlZ"'ZXk >>/):k+12"'2/):m

Orthonormal basis for approximate subspace

~

S = range (1, - vk)



Approximate Subspace Computation: ldea

@ Monte Carlo approximation is Gram matrix

E=1% Vi) (Vf(x)T = L1667
j=1

Compute factor G = (Vf(x1) -+ Vf(xa))

Compute thin SVD G = vEwT

~

Eigenvalue decomposition E = VAVT with A = 132

n

(]

Approximate subspace: Dominant left singular vectors of G

Relative gaps independent of sampling amount n

- s
Ak = Akt1l Ok = Ok 1<i<k
~ = 5 <j<

Aj 7




Accuracy of Approximate Subspace

Approach
@ Structural (deterministic) bound
Bound sin A(S,g) in terms of ||E — E||

@ Probabilistic bound

Bound HE — E|| in terms of sampling amount n

© Combine the two bounds

~

Sampling amount n so that sin Z(S,S) < e



Structural Bound: Subspace Perturbation

@ Eigenvaluesof E: A1 > --- 2> X > M1 22 Ay

@ Active subspace of E
‘P is orthogonal projector onto S = range (v1 vk)

@ Approximate subspace of E

P is orthogonal projector onto S= range (?1 Vk)
e Small enough perturbation:  ||E — E|| < L% = Akt1)

Then N
. . E—E

sin/(8,8) = |[P—P| < aJEZEIL

Ak — Akg1

If Axkir1 — Ak > 0 then active subspace & well-conditioned



Probabilistic Bound: Matrix Perturbation

@ Want: Probabilistic bound for ||E — E||

o Exact: E =[5, VF(x)(VF(x))T p(x)dx

@ Monte Carlo approximation: E = 1 > i1 VE(x)) (V)T
o Idea: E is sum of n matrix-valued random variables

LVf(x) (V)T

Next: Apply matrix concentration inequality to E



Matrix Bernstein Concentration [Minsker 2011, Tropp 2015]

Given
@ Independent random matrices: Symmetric X;, 1< <n
@ Bounded norm: maxi<j<n || Xil]| < B
@ Zeromean: E[Xj] = 0, 1<,<n
@ Bounded variance: ZJ’-’:IIE[XJ?] =< P for some spds P

@ Tolerance bound: ¢ > ||P||Y2 + 3

Probability that the sum is "large”

2 trace(P) < —e2/2 >
Pl x| >e] <42 exp (ot
= 1Pl 1P| + Be/3



Interpretation of Concentration Inequality

! trace (P) ( —€2/2 >
P Xl||l>e| <4——— exp| 0
JZ; ! 1Pl 1Pl + Be/3

® Sum = Deviation from the mean

n n n

doX =) [ X-— E[X] ZX E|> X

j=1 j=1 e j=t

@ Numerical rank* of variance P = Stable rank of P/2

2
trace(P) _ S M(P) _ (|IPY2¢
1Pla ~ magN(P) — \ 1P

* Intrinsic dimension, effective rank



Apply the Matrix Concentration Inequality

What's coming next

@ Check the assumptions
@ Apply concentration inequality to ||[E — E||

© Derive 3 different bounds, with a focus on

@ Failure probability §
@ Relative error ||[E — E||/| E|
© Number of Monte Carlo samples n



Matrix Concentration: Check Assumptions

o Independent random: X; =1 (Vf(x;)(Vf(x))" — E)
sothat 37 Xj=E—E
@ Zero mean: E[Xj] =0
E[Vf(x) (VF(x))"]= [ VE(x)(VF(x)T p(x)dx = E
@ Bounded norm: | X;|| < L?/n
X1 < 3 max{[[VF ()%, | ElI} where [Vf(x)|| < L and [[E]| < L?
o Variance: E[X?] = L [f (Vf(x)(Vf(x))T)2 p(x)dx — E]
S EDG] <4 S (VFOAVI())T)” plx)dx

. 2
@ Bounded variance: P = LTE

J(VECNVFENT) p()dx = VAP /Vf(X)(Vf(X))Tp(X)dX
——

12

E



Matrix Concentration: Apply the Inequality

Absolute error

R 2
]P’{HE—EHE€} < 4trace(E) exp< n i)

IE]l L2 E] +¢/3
Relative error: Set ¢ = ||E|| e
IE - E| trace (E) ( IE]| /2 )
Plm—m———">¢| < 44— exp|—n—
[ IE]l IE]l [2 1+¢/3

Advantage: No explicit dependence on problem dimension m

Next: Three different versions of the bound



Failure Probability

Given0<e<1

IE - E| trace (E) ( IE| €2/2 )
Pl——=—2¢| <4 ——— exp|-—n—5

[ IE] IE] 2 1+¢/3

stable rank of E1/2

Small failure probability: E unlikely to have large relative error, if
e trace (E)/||E|| is small: E'/? has small stable rank
@ nis large: Many samples for computing E

@ ||E||/L? =~ 1: Function f is smooth (||£| < L2)



Relative Error for Monte Carlo Approximation

For any § > 0, with probability at least 1 — ¢

E-E
S <+ vVibTe)

I <4trace(E))
vz o gp(2tEcelE)
3n [[E - \o  [IE]

where

E is accurate with high probability, if
@ nis large: Many samples for computing E
@ [?/||E|| = 1: Function f is smooth (1< 12/|E|))

o trace (E)/||E|| is small: E'/2 has small stable rank



Number of Monte Carlo Samples

For any § > 0, with probability at least 1 — ¢

IE-El _
IEr =

if number of Monte Carlo samples is

. 3 12 In <4 trace(E)>
e el T\ [E]

With high probability, need only few samples to compute E, if

@ ¢ large: Required accuracy for E is low
@ [?/||E|| =~ 1: Function f is smooth (1 < 12/||E])

o trace (E)/||E|| is small: E/2 has small stable rank



Combining the Deterministic and Probabilistic
Bounds

Ingredients

o Eigenvalues of E

Mz 2 > Mz 2 A 20

Active subspace S &aP

@ Lipschitz constant ||[Vf(x)|| <L (M =E| < 1)
—Akt1
IOV

@ User-specified error tolerance 0 < e <2

@ User-specified failure probability 0 < 4§ <1



Number of Monte Carlo Samples for
Subspace Approximation

With probability at least 1 — §
: a A1
sin/(S,S) <4e ————
(5.5) Ak — Ak+1
if number of samples for approximating E is
312 " <g A1+~~~+Am>

n_6—2)\—1 1) A1

With high probability, only few samples needed to compute
accurate subspace S, if

@ ¢ is large: Required accuracy for E is low

® N\ /(A — Akr1) is small: Subspace S is well-conditioned
@ [?/\; ~ 1. Function f is smooth (1< 12/))

® (A + -+ Ap)/Asis small:  EY/2 has small stable rank



Summary

Want: Active subspace S of function f : R — R

Dominant eigenspace of "sensitivity” matrix E € R™*™

Compute: Subspace S from Monte Carlo approximation of E

-~

Contribution: Probabilistic bounds for sin Z(S,S)
@ No explicit dependence on problem dimension m
@ Number of samples to achieve user-specified error
at user-specified probability
@ Monte Carlo efficient if

Stable rank of E/2 <«'m
Subspace S well-conditioned (large eigenvalue gap)

@ Application: Construction of response surfaces

System of elliptic PDEs, coefficients are log-Gaussian random fields
Sensitivity matrix E has dimension m = 3,495

Active subspace S has dimension k = 10

Response surface accurate to 1-2 digits



