A (personally biased) introduction to randomized matrix computations

In honour of Olga Taussky-Todd

Ilse C.F. Ipsen

Based on joint work with Jocelyn Chi, John Holodnak, Arnel Smith, and Thomas Wentworth

North Carolina State University Raleigh, NC, USA

Algebraic number theory Class field theory
Group theory Matrix theory
Numerical analysis

Olga Taussky-Todd

lived from 1906 to 1995

Randomized algorithms

Solution of a deterministic problem via statistical sampling
Example: Monte Carlo methods (von Neumann \& Ulam, Los Alamos, 1946)

$$
\text { circle area }=4 \mathbb{E}\left[\frac{\# \text { hits }}{\# \text { darts }}\right]
$$

Play/Pause

Randomization for matrix computations

How to use it:

- Dimension reduction: Sample to solve a smaller subproblem
- Acceleration: Compute a 'preconditioner' via sampling
- Analysis: Iterative methods applied to random starting guesses

Advantages:

- Fast computation of approximate solutions
- Easy implementation
- Reduction of data movement (communication)
- Solution of large-scale problems
- RandBLAS and RandLAPACK under development ${ }^{1}$
${ }^{1}$ Murray, Demmel, Mahoney, ..., Dongarra: Randomized numerical linear algebra: A perspective on the field with an eye to software

This talk

Caveat: This is not a comprehensive review We focus on a few fundamental ideas, to convey insight

- What is sampling?
- Case study: Monte Carlo Gram matrix multiplication Why matrix multiplication???
This is such a basic, old, worked-over problem
Answer: It gives insight and is needed for the next case study
- Matrices with orthonormal columns

Do we really need such a special case?
Answer: Yes, we need this for the next case study

- Case study: Randomized least squares/regression problems
(1) Dimension reduction
(2) Convergence acceleration
- Summary and future research

What is Sampling?

Sampling rows from a matrix

Sampling rows $=$ picking rows from a matrix

Dimension reduction: Sampled matrix has fewer rows

Data-oblivious sampling

- Matrix S samples, uniformly and independently, c rows from identity matrix

$$
\boldsymbol{I}_{m}=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{e}_{1}^{T} \\
\vdots \\
\boldsymbol{e}_{m}^{T}
\end{array}\right] \in \mathbb{R}^{m \times m} \quad S=\sqrt{\frac{m}{c}}\left[\begin{array}{c}
\boldsymbol{e}_{k_{1}}^{T} \\
\vdots \\
e_{k_{c}}^{T}
\end{array}\right] \in \mathbb{R}^{c \times m}
$$

In expectation: $\mathbb{E}\left[S^{T} S\right]=\boldsymbol{I}_{m}$

- SA samples, uniformly and independently, c rows from \boldsymbol{A}

$$
\boldsymbol{S A}=\sqrt{\frac{m}{c}}\left[\begin{array}{c}
\boldsymbol{e}_{k_{1}}^{T} \boldsymbol{A} \\
\vdots \\
\boldsymbol{e}_{k_{c}}^{T} \boldsymbol{A}
\end{array}\right]
$$

In expectation: $\mathbb{E}\left[(S \boldsymbol{A})^{T}(S \boldsymbol{A})\right]=\boldsymbol{A}^{T} \boldsymbol{A}$

$$
\left\{(S \boldsymbol{A})^{T}(S \boldsymbol{A}) \text { is unbiased estimator of } \boldsymbol{A}^{T} \boldsymbol{A}\right\}
$$

Uniform sampling, with replacement of c indices from $\{1, \ldots, m\}$

Repeat c times:
Sample k_{t} from $\{1, \ldots, m\}$ with probability $\frac{1}{m}$
Example: $m=8, c=4$

Implementation [Devroye]

$$
\begin{aligned}
& v=\operatorname{rand} \quad\{\text { uniform }[0,1] \text { random variable }\} \\
& k_{t}=\lfloor 1+m v\rfloor
\end{aligned}
$$

Matlab: randi, datasample Julia, R: sample Python: random.choice

Uniform sampling with replacement, in action

Repeat m times:
Sample index from $\{1, \ldots, m\}$ with probability $1 / m$

$\mathbb{E}[\#$ samples required to pick each index $]=m H_{m}=m \ln m+\mathcal{O}(m)$

Summary: Uniform sampling with replacement

+ Simple implementation of data-oblivious sampling
+ Convenient probabilistic analysis (samples are independent)
- Repeated indices and rows
+ For practical (small to moderate) amounts of sampling: sampling with replacement as good as sampling without replacement

Case Study:
 Monte Carlo Gram Matrix Multiplication

Idea behind Monte Carlo Matrix Multiplication

Given: Tall and skinny matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ Instead of computing the Gram matrix $\boldsymbol{A}^{T} \boldsymbol{A}$

Do a dimension reduction:
Sample a few rows from \boldsymbol{A}, and compute an approximation

Monte Carlo Gram Matrix Multiplication

[Drineas, Kannan, Mahoney]

Input: $\boldsymbol{A} \in \mathbb{R}^{m \times n}, c \geq 1 \quad$ \{sampling amount $\}$
Output: $(\boldsymbol{S A})^{T}(\boldsymbol{S A}) \approx \boldsymbol{A}^{T} \boldsymbol{A}$
$\boldsymbol{S}=0_{c \times m} \quad\{$ Initialize sampling matrix $\}$
for $t=1$: c do Sample k_{t} uniformly with replacement from $\{1, \ldots, m\}$ $\boldsymbol{S}(t,:)=\sqrt{\frac{m}{c}} \boldsymbol{e}_{k_{t}}^{T} \quad\{$ row t of sampling matrix $\}$
end for
$\boldsymbol{X}=\boldsymbol{S A} \quad\{$ Sample rows from $\boldsymbol{A}\}$
Return $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$

Relative error: $\frac{\left\|(\boldsymbol{S A})^{T}(\boldsymbol{S A})-\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}} \quad\{$ in the spectral/two-norm $\}$

What kind of accuracy to expect from Monte Carlo matrix multiplication

Relative error $\frac{\left\|(\boldsymbol{S A})^{T}(\boldsymbol{S A})-\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}$ versus number of rows of $\boldsymbol{S A}$
3 different matrices $\boldsymbol{A} \in \mathbb{R}^{2048 \times 16}$

> Play/Pause

Error due to randomization for Monte Carlo Gram matrix multiplication

[Holodnak, Ipsen], [Ipsen, Smith]

Largest (squared) normalized row-norm of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$

$$
\mu \equiv \max _{1 \leq i \leq m}\left(\frac{\left\|\boldsymbol{e}_{i}^{T} \boldsymbol{A}\right\|_{2}}{\|\boldsymbol{A}\|_{2}}\right)^{2}
$$

Matrix S samples c rows uniformly with replacement
For any $0<\delta<1$ with probability at least $1-\delta$

$$
\frac{\left\|(\boldsymbol{S} \boldsymbol{A})^{T}(\boldsymbol{S} \boldsymbol{A})-\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}} \leq \tau+\sqrt{\tau(6+\tau)}
$$

where

$$
\tau \equiv \frac{m}{c} \mu \frac{\ln (n / \delta)}{3}
$$

Interpretation of error bound

For any $0<\delta<1$ with probability at least $1-\delta$

$$
\underbrace{\frac{\left\|(\boldsymbol{S A})^{T}(\boldsymbol{S} \boldsymbol{A})-\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}}_{\text {Relative deviation from expectation }} \leq \tau+\sqrt{\tau(6+\tau)}
$$

where

$$
\tau \equiv \frac{m}{c} \mu \frac{\ln (n / \delta)}{3}
$$

$\frac{m}{c}$: inverse proportion of \# rows sampled $\mu=\max _{1 \leq i \leq m}\left(\frac{\left\|\boldsymbol{e}_{\boldsymbol{e}}^{T} \boldsymbol{A}\right\|_{2}}{\|\boldsymbol{A}\|_{2}}\right)^{2}$: 'distribution of mass' in the matrix

Foundation for the proof:
 Matrix Bernstein concentration inequality

[Recht], [Tropp]

Given

- Independent matrix-valued random variables $\boldsymbol{X}_{j} \in \mathbb{R}^{n \times n}$
- Symmetric: $\boldsymbol{X}_{j}^{T}=\boldsymbol{X}_{j}$
- Bounded norms: $\max _{j}\left\|\boldsymbol{X}_{j}\right\|_{2} \leq \beta$
- Zero expectation: $\mathbb{E}\left[\boldsymbol{X}_{j}\right]=0$
- Bounded 'variance': $\left\|\sum_{j} \mathbb{E}\left[X_{j}^{2}\right]\right\|_{2} \leq v$

Then for any $\epsilon \geq 0$

$$
\mathbb{P}\left[\left\|\sum_{j} \boldsymbol{X}_{j}\right\|_{2} \geq \epsilon\right] \leq n \exp \left(-\frac{3 \epsilon^{2}}{6 v+2 \beta \epsilon}\right)
$$

Error bound in action

Relative error $\frac{\left\|(\boldsymbol{S A})^{T}(\boldsymbol{S} \boldsymbol{A})-\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}}$ versus number of rows of $\boldsymbol{S A}$

Play/Pause
$\boldsymbol{A} \in \mathbb{R}^{2048 \times 10}$ uniform (0,1), $\kappa(\boldsymbol{A})=1.13, \mu=.0137$

Summary: Monte Carlo Gram matrix multiplication

- Low accuracy (1 digit for small matrix dimensions)
- More sampling does not help:

Error decreases slowly with increasing sampling amounts

- Appropriate for tall and skinny matrices (many rows, few columns)
+ Error bound reflects qualitative behaviour of error
+ Error bound informative even for matrices of small dimension
- This is a risky approach for randomization: Sampling produces loss of information and accuracy

Matrices with Orthonormal Columns

$$
Q \in \mathbb{R}^{m \times n} \text { with } Q^{T} Q=I_{n}
$$

Sampling rows from matrices with orthonormal columns

$$
\boldsymbol{Q} \in \mathbb{R}^{8 \times 2} \text { with } \boldsymbol{Q}^{\boldsymbol{T}} \boldsymbol{Q}=\boldsymbol{I}_{2}, \quad \mu \equiv \max _{1 \leq i \leq 8}\left\|\boldsymbol{e}_{i}^{\boldsymbol{T}} \boldsymbol{Q}\right\|_{2}^{2}
$$

Sample 2 rows of \boldsymbol{Q} so that $\operatorname{rank}(\boldsymbol{S Q})=2$

$$
\begin{array}{r}
\boldsymbol{Q}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \quad \boldsymbol{Q}=\frac{1}{\sqrt{8}}\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & -1 \\
1 & -1
\end{array}\right] \\
\mu=1
\end{array} \quad \begin{aligned}
& \mu=\frac{1}{4}
\end{aligned}
$$

Sampling is hard
Largest row norm μ of \boldsymbol{Q} quantifies difficulty of sampling

Coherence $=$ Largest row norm of matrix with orthonormal columns

Coherence of $\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ with $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I} \quad$ \{orthonormal columns $\}$

$$
\mu \equiv \max _{1 \leq i \leq m}\left\|\boldsymbol{e}_{j}^{T} \boldsymbol{Q}\right\|_{2}^{2}
$$

- $n / m \leq \mu(\boldsymbol{Q}) \leq 1$
- Maximal coherence: $\mu(\boldsymbol{Q})=1$

At least one column of \boldsymbol{Q} is column of identity

- Minimal coherence: $\mu(\boldsymbol{Q})=n / m$

Columns of \boldsymbol{Q} are columns of Hadamard matrix
Coherence [Donoho, Huo]

- Measures correlation with standard basis
- Reflects difficulty of recovering matrix from sampling

Elements of different 128×7 matrices with orthonormal columns

good coherence
Hadamard
$\mu=0.0625$

Hartley
$\mu=0.10469$

bad coherence
Identity
$\mu=1$

Monte Carlo Gram matrix multiplication for orthonormal matrices Q with different coherence

Error $\left\|(\mathbf{S Q})^{T}(\mathbf{S Q})-\boldsymbol{I}_{n}\right\|_{2}$ versus number of rows of $\boldsymbol{S Q}$

Coherence: $\mu=1 \quad \mu=.0074 \quad \mu=.002=n / m$

Play/Pause

Error due to randomization for matrices with orthonormal columns

$\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns

$$
\text { Coherence } \mu \equiv \max _{1 \leq i \leq m}\left\|\boldsymbol{e}_{i}^{T} \boldsymbol{Q}\right\|_{2}^{2}
$$

S samples c rows uniformly with replacement
For any $0<\delta<1$ with probability at least $1-\delta$

$$
\left\|(\boldsymbol{S Q})^{T}(\boldsymbol{S Q})-\boldsymbol{I}\right\|_{2} \leq \tau+\sqrt{\tau(6+\tau)} \quad \text { where } \quad \tau=m \mu \frac{\ln (n / \delta)}{3 c}
$$

Error depends on coherence of \boldsymbol{Q}

- Good coherence $\mu=n / m \quad$ \{mass of \boldsymbol{Q} uniformly distributed $\}$
$\tau=n \frac{\ln (n / \delta)}{3 c}$ depends on smallest matrix dimension
- Bad coherence $\mu=1 \quad$ \{mass of \boldsymbol{Q} highly concentrated\}
$\tau=m \frac{\ln (n / \delta)}{3 c}$ depends on largest matrix dimension

Probabilistic error bound in action

With probability at least $1-\delta=.99$
$\left\|(\boldsymbol{S Q})^{T}(\mathbf{S Q})-\boldsymbol{I}\right\|_{2} \leq \tau+\sqrt{\tau(6+\tau)} \quad$ where $\quad \tau=m \mu \frac{\ln (n / \delta)}{3 c}$

Play/Pause
$\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ Hadamard with $m=2048, n=8, \mu=n / m=.0039$

Summary: Matrices with orthonormal columns

$\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns, $\boldsymbol{Q}^{\top} \boldsymbol{Q}=\boldsymbol{I}_{n}$ Monte Carlo matrix multiplication: $(S Q)^{T}(S Q) \approx \boldsymbol{I}_{n}$

- Coherence $\mu \equiv \max _{1 \leq i \leq m}\left\|\boldsymbol{e}_{i}^{T} \boldsymbol{Q}\right\|_{2}^{2}$ reflects distribution of 'mass' in the matrix \boldsymbol{Q} determines the difficulty of sampling rows from \boldsymbol{Q}
- Good coherence $\mu=n / m$: Sampling is easy Error depends on small matrix dimension n
- Bad coherence $\mu=1$: Sampling is hard Error depends on large matrix dimension m
- Error bound reflects qualitative behaviour of error, and is informative even for matrices of small dimension

Case Study:
 Randomized Solution of
 Least Squares/Regression Problems

Well-posed least squares/regression problems

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\boldsymbol{A})=n, \boldsymbol{b} \in \mathbb{R}^{m}$
Solve $\min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$
Unique solution: $\quad \boldsymbol{x}_{*}=\boldsymbol{A}^{\dagger} \boldsymbol{b}, \quad \boldsymbol{A}^{\dagger} \equiv\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$

Two randomization approaches:
(1) Dimension reduction
(2) Convergence acceleration

First randomization approach:
 Dimension reduction [Drineas, Mahoney, Muthukrishnan, Sarlós]

Approach: Random sampling of rows from \boldsymbol{A} and \boldsymbol{b}

- Matrix S samples c rows uniformly and with replacement
- Replace $\min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ by smaller-dimensional problem

$$
\min _{\tilde{x}}\|S(\boldsymbol{A} \tilde{x}-\boldsymbol{b})\|_{2}
$$

- Minimal norm solution $\tilde{\boldsymbol{x}}_{*}=(S \boldsymbol{A})^{\dagger}(S \boldsymbol{b})$

Perspective of regression:
How does row sampling affect the statistical model uncertainty?

Model uncertainty in regression problems

Gaussian linear model

$$
\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{\epsilon} \quad \boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] \quad \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}_{4}\right)
$$

$\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ has unique solution

$$
\boldsymbol{x}_{*}=\boldsymbol{A}^{\dagger} \boldsymbol{b} \quad \boldsymbol{A}^{\dagger}=\left[\begin{array}{llll}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Maximum likelihood estimator

$$
\mathbb{E}_{\epsilon}\left[\boldsymbol{x}_{*}\right]=\boldsymbol{A}^{\dagger} \mathbb{E}_{\epsilon}[\boldsymbol{b}]=\boldsymbol{A}^{\dagger} \boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{x}_{0}
$$

with variance $\operatorname{Var}_{\epsilon}\left[\boldsymbol{x}_{*}\right]=\sigma^{2}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}=\sigma^{2}\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right]$

Effect of row sampling on model uncertainty

$$
\min _{\tilde{\tilde{x}}}\|S(\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b})\|_{2}
$$

has minimal norm solution $\tilde{\boldsymbol{x}}_{*}=(S \boldsymbol{A})^{\dagger}(S \boldsymbol{b})$
Example:

$$
\boldsymbol{S A}=\underbrace{\sqrt{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]}_{\boldsymbol{S}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]
$$

- Unbiased estimator: $\mathbb{E}_{\epsilon}\left[\tilde{\boldsymbol{x}}_{*}\right]=(\boldsymbol{S A})^{\dagger} \boldsymbol{S} \mathbb{E}_{\epsilon}[\boldsymbol{b}]=\boldsymbol{x}_{0}$
- Variance changes:

$$
\operatorname{Var}_{\epsilon}\left[\tilde{\boldsymbol{x}}_{*}\right]=\sigma^{2}\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \neq \sigma^{2}\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right]=\operatorname{Var}_{\epsilon}\left[\boldsymbol{x}_{*}\right]
$$

Effect of row sampling on model uncertainty

[Chi, Ipsen]

$$
\min _{\tilde{x}}\|S(\boldsymbol{A} \tilde{x}-\boldsymbol{b})\|_{2}
$$

has minimal norm solution $\tilde{\boldsymbol{x}}_{*}=(S \boldsymbol{A})^{\dagger}(\boldsymbol{S b})$

- Define oblique projector: $\Pi \equiv \boldsymbol{A}(\boldsymbol{S A})^{\dagger} \boldsymbol{S}$
- Expectation: $\mathbb{E}_{\epsilon}\left[\tilde{\boldsymbol{x}}_{*} \mid \boldsymbol{S}\right]=\boldsymbol{A}^{\dagger} \sqcap \boldsymbol{A} \boldsymbol{x}_{0}$ If $\operatorname{rank}(\boldsymbol{S A})=\operatorname{rank}(\boldsymbol{A})$, then $\mathbb{E}_{\epsilon}\left[\tilde{\boldsymbol{x}}_{*} \mid \boldsymbol{S}\right]=\boldsymbol{x}_{0}$ (unbiased estimator)
- Variance: $\operatorname{Var}_{\epsilon}\left[\tilde{\boldsymbol{x}}_{*} \mid \boldsymbol{S}\right]=\sigma^{2}\left(\boldsymbol{A}^{\dagger} \Pi\right)\left(\boldsymbol{A}^{\dagger} \Pi\right)^{T}$ If $\operatorname{rank}(\boldsymbol{S A})<\operatorname{rank}(\boldsymbol{A})$, then $\operatorname{Var}_{\boldsymbol{e}}\left[\tilde{\boldsymbol{x}}_{*} \mid \boldsymbol{S}\right]$ singular

This is only a partial analysis: \boldsymbol{S} is a fixed sampling matrix No accounting for the uncertainty due to randomization

Change in variance under randomization

$\boldsymbol{A} \in \mathbb{R}^{2048 \times 16}$ has orthonormal columns 30 different sampling matrices \boldsymbol{S} that sample $\frac{m}{10}=204$ rows uniformly with replacement

Elements of $\operatorname{Var}_{\boldsymbol{\epsilon}}[\boldsymbol{A}]$ versus elements of $\operatorname{Var}_{\boldsymbol{\epsilon}}[\boldsymbol{S} \boldsymbol{A}]$

Summary: First randomization approach for least squares/regression problems

Dimension reduction: Random sampling of rows from

$$
\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}_{0}+\mathbf{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}\right)
$$

Statistical perspective:

- Row sampling changes statistical properties of underlying linear model
- Simultaneous analysis of uncertainties from both, model and randomization leads to results that are difficult to interpret

Computational perspective:

- If $\operatorname{rank}(S A)<\operatorname{rank}(\boldsymbol{A})$, the sampled least squares problem is ill-posed
- Even if $\operatorname{rank}(S A)=\operatorname{rank}(\boldsymbol{A})$, the sampled least squares problem can be more ill conditioned, due to worse matrix condition number: $\kappa(\boldsymbol{S A})>\kappa(\boldsymbol{A})$ larger least squares residual: $\left\|\boldsymbol{S}\left(\boldsymbol{A} \tilde{\boldsymbol{x}}_{*}-\boldsymbol{b}\right)\right\|_{2}>\left\|\boldsymbol{A} \boldsymbol{x}_{*}-\boldsymbol{b}\right\|_{2}$

Conclusion: Row sampling is a risky approach for randomization

Second randomization approach: Convergence acceleration

[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]

- Iterative Krylov space method LSQR [Paige, Saunders]

Iterates x_{k} converge to \boldsymbol{x}_{*} as

$$
\underbrace{\left\|\boldsymbol{A}\left(\boldsymbol{x}_{*}-\boldsymbol{x}_{k}\right)\right\|_{2}^{2}}_{\text {error in iteration } k} \leq 2\left(\frac{\kappa(\boldsymbol{A})-1}{\kappa(\boldsymbol{A})+1}\right)^{k} \underbrace{\left\|\boldsymbol{A}\left(\boldsymbol{x}_{*}-\boldsymbol{x}_{0}\right)\right\|_{2}^{2}}_{\text {initial error }}
$$

Fast convergence, if condition number $\kappa(\boldsymbol{A}) \equiv\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{\dagger}\right\|_{2} \approx 1$

- Accelerate convergence via right preconditioning \{change of variables\}

$$
\min _{\boldsymbol{y}}\|\boldsymbol{A} \boldsymbol{P}^{-1} \underbrace{(\boldsymbol{P x})}_{\boldsymbol{y}}-\boldsymbol{b}\|_{2}
$$

The ideal preconditioner

QR factorization $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ \{basis transformation to orthonormal basis\}

- Use \boldsymbol{R} as preconditioner
- Preconditioned matrix $\boldsymbol{A} \boldsymbol{R}^{-1}=\boldsymbol{Q}$ has $\kappa(\boldsymbol{Q})=1$
- LSQR solves pre-conditioned problem in 1 iteration

But: Construction of preconditioner is too expensive Operation count: $\mathcal{O}\left(m n^{2}\right)$ flops \quad \{floating point operations\}

A cheaper randomized preconditioner

```
[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]
```

QR factorization from a few rows of matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
(1) Sample $c \geq n$ rows of $\boldsymbol{A}: S \boldsymbol{A}$
(2) Factor sampled matrix: $\boldsymbol{S A}=\boldsymbol{Q}_{s} \boldsymbol{R}_{\boldsymbol{s}}$
(3) Randomized preconditioner \boldsymbol{R}_{s}

Operation count: $\mathcal{O}\left(c n^{2}\right)$ flops \{independent of large dimension m \}

Blendenpik (simplified version)

[Avron, Maymounkov, Toledo]

Input: $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\boldsymbol{A})=n, \boldsymbol{b} \in \mathbb{R}^{m \times n}$ Sampling amount $c \geq n$
Output: Solution \boldsymbol{x}_{*} to $\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$
\{Construct preconditioner\}
Sample c rows of $\boldsymbol{A} \rightarrow \boldsymbol{S A} \quad\{$ fewer rows $\}$
Factor $\boldsymbol{S A}=\boldsymbol{Q}_{s} \boldsymbol{R}_{S}$
\{Solve preconditioned problem\}
Solve $\min _{\boldsymbol{y}}\left\|\boldsymbol{A} R_{s}^{-1} \boldsymbol{y}-\boldsymbol{b}\right\|_{2}$ with LSQR
Solve $\quad \boldsymbol{R}_{s} \boldsymbol{x}_{*}=\boldsymbol{y} \quad\{\Delta$ system $\}$

Convergence analysis of preconditioned LSQR

[Avron, Maymounkov, Toledo], [Ipsen, Wentworth]

$$
\min _{\boldsymbol{y}}\left\|\boldsymbol{A} \boldsymbol{R}_{s}^{-1} \boldsymbol{y}-\boldsymbol{b}\right\|_{2}
$$

(1) Two QR factorizations

- Conceptual factorization of original matrix: $A=Q R$
- Computed factorization of sampled matrix: $S A=Q_{s} R_{s}$
(2) Condition number of preconditioned matrix $=$ Condition number of sampled orthonormal matrix

$$
\kappa\left(\boldsymbol{A} \boldsymbol{R}_{s}^{-1}\right)=\kappa(S Q)
$$

(3) Next: Bound $\kappa(S Q)$ with Monte Carlo matrix multiplication

From matrix multiplication error to condition numbers

- Given: \boldsymbol{X} with $\boldsymbol{X}^{\top} \boldsymbol{X} \approx \boldsymbol{I}$
- Eigenvalues of $\boldsymbol{X}^{T} \boldsymbol{X}: \lambda_{\text {max }} \geq \cdots \geq \lambda_{\text {min }}>0$
- Condition number: $\kappa(\boldsymbol{X})^{2}=\kappa\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$
(1) Monte Carlo matrix multiplication:

With probability at least $1-\delta$

$$
\left\|\boldsymbol{X}^{T} \boldsymbol{X}-\boldsymbol{I}\right\|_{2} \leq \epsilon
$$

(2) Weyl's monotonicity theorem:

$$
\left|\lambda_{\min }-1\right| \leq \epsilon \quad \text { and } \quad\left|\lambda_{\max }-1\right| \leq \epsilon
$$

(3) Condition number:

With probability at least $1-\delta$

$$
\kappa(\boldsymbol{X})=\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \leq \sqrt{\frac{1+\epsilon}{1-\epsilon}}
$$

Condition number bound for row-sampled matrices with orthonormal columns

[Avron, Maymounkov, Toledo], [Ipsen, Wentworth], [Ipsen, Smith]

Assume:
$\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ with $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}_{n}$ and $\mu \equiv \max _{1 \leq i \leq m}\left\|\boldsymbol{e}_{i}^{T} \boldsymbol{Q}\right\|_{2}^{2}$
\boldsymbol{S} samples c rows uniformly with replacement
Condition number of sampled matrix:
For any $0<\delta<1$ and $0<\epsilon<1$, if $c \geq m \mu \frac{\ln (n / \delta)}{\epsilon^{2}}$ then with probability at least $1-\delta$

$$
\kappa(\boldsymbol{S Q}) \leq \frac{1+\epsilon}{1-\epsilon}
$$

Condition number bound in action

Orthonormal matrix $\boldsymbol{Q} \in \mathbb{R}^{2048 \times 16}$, perfect coherence $\mu=\frac{n}{m}=.0162$ Success probability $\delta=.99$

Choose $\epsilon=99 / 101$ so that $\kappa(S Q) \leq \frac{1+\epsilon}{1-\epsilon}=10$

Play/Pause

Need $c \geq 2 m \mu \frac{\ln (n / \delta)}{\epsilon^{2}} \approx 322=16 \%$ of rows

Summary: Second randomization approach for least squares/regression problems

Convergence acceleration:
Randomized construction of preconditioner

+ Only need correct magnitude of condition number
+ Actual condition number close to optimal
- Need good coherence for small sampling amounts
+ Improve coherence by fast premultiplication with random orthogonal matrix [Avron, Maymounkov, Toledo]
+ Safe approach for randomization, no loss of information

Summary

- Sampling without replacement

Viable in practice, and 'easy' to analyse

- Monte Carlo Gram matrix multiplication

Dimension reduction to smaller-dimensional matrices
Risky randomization: Loss of information and accuracy

- Matrices with orthonormal columns

Coherence reflects the difficulty of sampling rows

- Randomized least squares/regression problems

Dimension reduction to smaller-dimensional matrices Risky randomization: Can change statistical properties, destroy well-posedness, and worsen numerical accuracy Convergence acceleration via randomized preconditoner Safe randomization: Faster speed, no loss of accuracy

Future Research

- Tighter, more practical matrix concentration inequalities
- Analysis of randomized algorithms in finite precision:

Numerical error due to randomization Notion of conditioning (e.g. coherence) Notion of numerical stability of randomized algorithms

- Robust implementations (e.g. choice of failure probability)
- Opportunities for safe randomization:

Dynamic randomized preconditioners in inner loops

- Randomization in mixed/lower arithmetic precision
- Propagating errors due to randomization through computational pipelines (probabilistic numerics)

Thank you very much for your attention

