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Algebraic number theory
Class field theory

Group theory

Matrix theory

Numerical analysis

Olga Taussky-Todd
lived from 1906 to 1995

https://mathshistory.st-andrews.ac.uk/Biographies/Taussky-Todd/


https://mathshistory.st-andrews.ac.uk/Biographies/Taussky-Todd/

Randomized algorithms

Solution of a deterministic problem via statistical sampling

Example: Monte Carlo methods (von Neumann & Ulam, Los Alamos, 1946)
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Randomization for matrix computations

How to use it:
@ Dimension reduction: Sample to solve a smaller subproblem
@ Acceleration: Compute a ‘preconditioner’ via sampling

@ Analysis: Iterative methods applied to random starting guesses

Advantages:

Fast computation of approximate solutions

Easy implementation

Reduction of data movement (communication)
Solution of large-scale problems

RandBLAS and RandLAPACK under development!

"Murray, Demmel, Mahoney, ..., Dongarra: Randomized numerical linear
algebra: A perspective on the field with an eye to software



This talk

Caveat: This is not a comprehensive review
We focus on a few fundamental ideas, to convey insight

What is sampling?

Case study: Monte Carlo Gram matrix multiplication
Why matrix multiplication???

This is such a basic, old, worked-over problem

Answer: It gives insight and is needed for the next case study

Matrices with orthonormal columns
Do we really need such a special case?

Answer: Yes, we need this for the next case study

Case study: Randomized least squares/regression problems

@ Dimension reduction
@ Convergence acceleration

Summary and future research



What is Sampling?



Sampling rows from a matrix

Sampling rows = picking rows from a matrix

N\

—
—

Dimension reduction: Sampled matrix has fewer rows



Data-oblivious sampling

@ Matrix S samples, uniformly and independently,
¢ rows from identity matrix

1 elT ele
Im = = | erRm™"” S=./21 | eRX™
1 el el

In expectation: E[STS] =1,

@ SA samples, uniformly and independently, ¢ rows from A

-
eklA

SA:\/g :
eT

KA

In expectation: E[(SA)T(SA)]=ATA
{(SA)T(SA) is unbiased estimator of AT A}



Uniform sampling, with replacement
of ¢ indices from {1,..., m}

Repeat ¢ times:
Sample k; from {1,..., m} with probability #

Example: m=8, c =4

MQ
T

Implementation [Devroye]

v = rand {uniform [0, 1] random variable}
ke = |1+ mu]
Matlab: randi, datasample Julia, R: sample Python: random.choice



Uniform sampling with replacement, in action

Repeat m times:
Sample index from {1,..., m} with probability 1/m

Index

3 4 5

o 1 2
Frequency same index is sampled out of m indices
Indices not sampled: 37 percent
Indices sampled once: 38 percent

Play/Pause

E[# samples required to pick each index] = mHyn = mInm 4+ O(m)



Summary: Uniform sampling with replacement

Simple implementation of data-oblivious sampling
Convenient probabilistic analysis (samples are independent)
Repeated indices and rows

For practical (small to moderate) amounts of sampling:
sampling with replacement as good as
sampling without replacement



Case Study:
Monte Carlo Gram Matrix Multiplication



Idea behind Monte Carlo Matrix Multiplication

Given: Tall and skinny matrix A € R™*" with m > n

Instead of computing the Gram matrix AT A

—

A AA

Do a dimension reduction:
Sample a few rows from A, and compute an approximation

1 E-.

(sA) (SA)(sa)

SA



Monte Carlo Gram Matrix Multiplication

[Drineas, Kannan, Mahoney]

Input: AcR™N ¢c>1 {sampling amount}
Output: (SA)T(SA)~ATA

S = chm {Initialize sampling matrix}
fort =1:cdo
Sample k: uniformly with replacement from {1,..., m}

\/ﬁekt {row t of sampling matrix}
end for

X =SA {Sample rows from A}
Return X T X

[(SA)T(SA)-AT Al
AT All2

Relative error: {in the spectral /two-norm}



What kind of accuracy to expect from
Monte Carlo matrix multiplication

I(SA)T(SA)-AT Al|2

1ATATL versus number of rows of SA

Relative error

3 different matrices A € R2048x16
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Error due to randomization for
Monte Carlo Gram matrix multiplication

[Holodnak, Ipsen], [Ipsen, Smith]

Largest (squared) normalized row-norm of A € R™*"

L= max (ueTAH2)2
T 1<i<m [lAll2

Matrix S samples ¢ rows uniformly with replacement

For any 0 < § < 1 with probability at least 1 — §

I(SA)T(SA) — AT A||2
IAT All2 -

T+/7(6+7)

where

T

gu In(g/é)



Interpretation of error bound

For any 0 < § < 1 with probability at least 1 — §

T AT
USAT (S ATA: e
2

TV
Relative deviation from expectation

where | 5
y=m,nn/9)
c 3

M - inverse proportion of # rows sampled

el A 2 e . L. .
[ = Maxi<i<m (”HIAH2H2> . ‘distribution of mass’ in the matrix




Foundation for the proof:
Matrix Bernstein concentration inequality
[Recht], [Tropp]
Given
e Independent matrix-valued random variables X; € R"*"
e Symmetric: XJ-T = X
e Bounded norms: max; || X|l> < 3
e Zero expectation: E[X;] =0
e Bounded ‘variance': HZJIE[XJZ]H2 <w
Then for any e > 0

3¢?
P JZXJ 26 Snexp<—6v+25€>
2



Error bound in action

I(SA)T(SA)—ATAll; versus number of rows of SA

Relative error

|ATAll2
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A ¢ R2048x10 ypiform (0,1), k(A) = 1.13, u = .0137



Summary: Monte Carlo Gram matrix multiplication

— Low accuracy (1 digit for small matrix dimensions)

— More sampling does not help:
Error decreases slowly with increasing sampling amounts

— Appropriate for tall and skinny matrices
(many rows, few columns)

+ Error bound reflects qualitative behaviour of error
+  Error bound informative even for matrices of small dimension

— This is a risky approach for randomization:
Sampling produces loss of information and accuracy



Matrices with Orthonormal Columns

QecR™"with Q'TQ =1,



Sampling rows from matrices with orthonormal columns

Q c R8><2 Wlth QTQ o 12, n = maX1§i§8 ||e,TQ||§

Sample 2 rows of Q so that rank(SQ) = 2

10 1 17
0 1 1 1
0 0 1 1
100 1 |11
Q= 0 0 Q= VB |1 —1
00 1 -1
0 0 1 -1
[0 0] 11 —1]
n=1 W= }1
Sampling is hard Sampling is easy

Largest row norm p of @ quantifies difficulty of sampling



Coherence = Largest row norm
of matrix with orthonormal columns

Coherence of Q € R™*" with QTQ =1 {orthonormal columns}

_ T QI3
p= max [lef Q3

e n/m<pu(Q)<1

e Maximal coherence: u(Q) =1
At least one column of Q is column of identity

e Minimal coherence: p(Q) = n/m
Columns of Q are columns of Hadamard matrix
Coherence [Donoho, Huo]
@ Measures correlation with standard basis

@ Reflects difficulty of recovering matrix from sampling



Elements of different 128 x 7 matrices
with orthonormal columns

good coherence bad coherence

Hadamard Hartley Haar Identity
= 0.0625 = 0.10469 = 0.15089




Monte Carlo Gram matrix multiplication
for orthonormal matrices Q with different coherence

Error [|[(SQ)T(SQ) — 1,2 versus number of rows of SQ

Coherence: p=1 p=.0074 p=.002=n/m
£ AE0QQAR

10?

Error

(Haar

‘ O Bad coherence (Identity)
u]

D Good (

500 1000 1500 2000 2500 3000 3500 4000
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Error due to randomization
for matrices with orthonormal columns

@ € R™*" has orthonormal columns

Coherence p1 = maxi<i<m ||e,-TQH§

S samples ¢ rows uniformly with replacement

For any 0 < § < 1 with probability at least 1 — ¢
1(SQ)T(SQ) — 1|2 <7+ +/T(6+7) where 7=mp %

Error depends on coherence of @
e Good coherence n = n/m {mass of @ uniformly distributed}
In(n/d)

T = n =3/ depends on smallest matrix dimension

e Bad coherence H = 1 {mass of Q highly concentrated}

T=m I”%ﬁ depends on largest matrix dimension



Probabilistic error bound in action

With probability at least 1 — § = .99

1(SQ)T(SQ) — Il <7+ /7(6+7)  where 7=my /)

O Error

O Bound

200 400 600 800 1000 1200 1400 1600 1800 2000
Number ¢ of rows sampled
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Q € R™*" Hadamard with m = 2048, n =8, ;1 = n/m = .0039

102



Summary: Matrices with orthonormal columns

Q € R™*" has orthonormal columns, Q7 Q = 1,

Monte Carlo matrix multiplication: (SQ)7(SQ) =~ I,

e Coherence 1 = maxi<i<m He,TQH%
reflects distribution of ‘mass’ in the matrix Q
determines the difficulty of sampling rows from Q

@ Good coherence y = n/m: Sampling is easy
Error depends on small matrix dimension n

@ Bad coherence . = 1: Sampling is hard
Error depends on large matrix dimension m

@ Error bound reflects qualitative behaviour of error,
and is informative even for matrices of small dimension



Case Study:

Randomized Solution of
Least Squares/Regression Problems



Well-posed least squares/regression problems

Given A € R™*" with rank(A) = n, b € R™
Solve miny ||Ax — b||2
Unique solution: x,. = A'h, Al =(ATA)'AT

b
b- Ax

ok
~onge (A)
Two randomization approaches:

@ Dimension reduction

@ Convergence acceleration



First randomization approach:
DimenSion red UCtion [Drineas, Mahoney, Muthukrishnan, Sarlés]

Approach: Random sampling of rows from A and b

@ Matrix S samples ¢ rows uniformly and with replacement

@ Replace miny [|[Ax — b||2 by smaller-dimensional problem

min|S (A% - b2
X
@ Minimal norm solution X, = (SA)f(Sb)

Perspective of regression:
How does row sampling affect the statistical model uncertainty?



Model uncertainty in regression problems

Gaussian linear model

10
0 1 )
b=Axo+e A= 10 € ~N(0,0°14)
0 0
miny ||Ax — b||2 has unique solution
1 1
5 0 5 0
— Al T2 2
X = Ab A‘[o 10 0]

Maximum likelihood estimator

Ec[x.] = ATE.[b] = ATAxo = xg

1
with variance Varc[x,] = 0% (AT A)~! = 52 [(2) (1)]



Effect of row sampling on model uncertainty

min [|S (AX — b)||2

has minimal norm solution X, = (SA)'(Sb)

Example:

i 8- 5

0 V2

O = O =
o o~ O

S

@ Unbiased estimator: [F.[%.] = (SA)'SE. [b] = xqo
@ Variance changes:

1 1
vardxd =0 [ 9| # 0% |2 8| = varcle)
2



Effect of row sampling on model uncertainty

[Chi, Ipsen]

min [|S (AX — b)||2
has minimal norm solution %, = (SA)(Sb)

@ Define oblique projector: = A(SA)'S
o Expectation: E.[%.|S] = ATTIAxq

If rank(SA) = rank(A), then E¢[X. |S] = xo (unbiased estimator)
e Variance: Var[%, |S] = o2 (ATM)(ATN)7T

If rank(SA) < rank(A), then Vare[X« |S] singular

This is only a partial analysis: S is a fixed sampling matrix
No accounting for the uncertainty due to randomization



Change in variance under randomization

A € R2948X16 has orthonormal columns
30 different sampling matrices S that sample % = 204 rows
uniformly with replacement

Elements of Vare[A] versus elements of Var[SA]

Elements of Variance of A Elements of Variance of SA

Play/Pause



Summary: First randomization approach
for least squares/regression problems

Dimension reduction: Random sampling of rows from

b= Axo + €, e ~ N(0,0°1)

Statistical perspective:
@ Row sampling changes statistical properties of underlying linear model
@ Simultaneous analysis of uncertainties from both, model and randomization
leads to results that are difficult to interpret

Computational perspective:
@ If rank(SA) < rank(A), the sampled least squares problem is ill-posed

@ Even if rank(SA) = rank(A), the sampled least squares problem
can be more ill conditioned, due to
worse matrix condition number: k(SA) > k(A)
larger least squares residual: ||S(AX« — b)||2 > ||Axx — b||2

Conclusion: Row sampling is a risky approach for randomization



Second randomization approach:
Convergence acceleration

[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]

Iterative Krylov space method LSQR [Paige, Saunders]
Iterates xj converge to x, as

k
K(A)—1 2
Alxy —x))|]3 < 2 22— A(x, —x
At~ x0lB < 2 (S 1) At xol?
error in iteration k initial error
Fast convergence, if condition number x(A) = || A||2||AT|]2 ~ 1

Accelerate convergence via right preconditioning
{change of variables}

min || A p1 (Px)—b|2
y N——

y



The ideal preconditioner

QR factorization A= QR {basis transformation to orthonormal basis}

a _ Q R Q" Q = 1

Q € R™*" has orthonormal columns: R'Q=1,

R € R™" s triangular nonsingular
@ Use R as preconditioner
@ Preconditioned matrix AR = Q has x(Q) =1
@ LSQR solves pre-conditioned problem in 1 iteration

But: Construction of preconditioner is too expensive
Operation count: O(mn?) flops  {floating point operations}



A cheaper randomized preconditioner

[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]

QR factorization from a few rows of matrix A € R™*"

‘ @ Sample ¢ > nrows of A: SA
© Factor sampled matrix:

l SA = Q.R,

© Randomized preconditioner R,

. l | Operation count: O(cn?) flops

{independent of large dimension m}



Blendenpik (simplified version)

[Avron, Maymounkov, Toledo]

Input: A € R™*" with rank(A) = n, b € R™*"
Sampling amount ¢ > n
Output: Solution x, to miny ||Ax — b||2

{Construct preconditioner}
Sample c rows of A — SA  {fewer rows}
Factor SA= Q.R.

{Solve preconditioned problem}
Solve miny, |[AR_ 'y — b||> with LSQR
Solve Rsx, = y {A system}



Convergence analysis of preconditioned LSQR

[Avron, Maymounkov, Toledo], [Ipsen, Wentworth]

min || A Rs_ly — b||2
y

@ Two QR factorizations

e Conceptual factorization of original matrix: A= QR
o Computed factorization of sampled matrix: SA = QsR;

@ Condition number of preconditioned matrix =
Condition number of sampled orthonormal matrix

(AR 1Y) = k(5Q)

© Next: Bound x(SQ) with Monte Carlo matrix multiplication



From matrix multiplication error to condition numbers

o Given: X with XTX ~ I
o Eigenvalues of XTX: Apax > -+ > Apmin > 0
o Condition number: k(X)? = k(X" X) = ))‘\'"Tl
@ Monte Carlo matrix multiplication:
With probability at least 1 — §
IXTX — 12 < ¢
@ Weyl's monotonicity theorem:
Amin—1] <€ and [Apax — 1| <€

© Condition number:
With probability at least 1 — §

Amax 1+e€
X)= <4/
K( ) Amin 1—¢




Condition number bound for row-sampled matrices
with orthonormal columns

[Avron, Maymounkov, Toledo], [Ipsen, Wentworth], [Ipsen, Smith]

Assume:
Q c R™" with QT Q =1, and ;1 = maxi<i<m || e] QI3
S samples ¢ rows uniformly with replacement

Condition number of sampled matrix:
Forany0<d<landO<e<l,ifc>mpu n(”/(s)
then with probability at least 1 — §

[aY

+€

k(S5Q) <

—
™



Condition number bound in action

Orthonormal matrix Q@ € R2048X16 ' perfect coherence = 2 = .0162
Success probability § = .99

Choose € = 99/101 so that k(SQ) < 1 = 10

200 400 600 800 1000 1200 1400 1600 1800 2000
Number c of rows sampled

Play/Pause

Need ¢ > 2mpu ”(”/5) ~ 322 = 16% of rows



Summary: Second randomization approach
for least squares/regression problems

Convergence acceleration:
Randomized construction of preconditioner

+ Only need correct magnitude of condition number
+ Actual condition number close to optimal
— Need good coherence for small sampling amounts

+ Improve coherence by fast premultiplication with
random orthogonal matrix [Avron, Maymounkov, Toledo]

+ Safe approach for randomization, no loss of information



Summary

Sampling without replacement
Viable in practice, and ‘easy’ to analyse

Monte Carlo Gram matrix multiplication
Dimension reduction to smaller-dimensional matrices
Risky randomization: Loss of information and accuracy

Matrices with orthonormal columns
Coherence reflects the difficulty of sampling rows

Randomized least squares/regression problems
Dimension reduction to smaller-dimensional matrices
Risky randomization: Can change statistical properties,
destroy well-posedness, and worsen numerical accuracy

Convergence acceleration via randomized preconditoner
Safe randomization: Faster speed, no loss of accuracy



Future Research

Tighter, more practical matrix concentration inequalities
Analysis of randomized algorithms in finite precision:
Numerical error due to randomization
Notion of conditioning (e.g. coherence)
Notion of numerical stability of randomized algorithms

Robust implementations (e.g. choice of failure probability)

Opportunities for safe randomization:
Dynamic randomized preconditioners in inner loops

Randomization in mixed/lower arithmetic precision

Propagating errors due to randomization
through computational pipelines (probabilistic numerics)



Thank you very much
for your attention
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