
1

A (personally biased) introduction to
randomized matrix computations

In honour of Olga Taussky-Todd

Ilse C.F. Ipsen

Based on joint work with
Jocelyn Chi, John Holodnak, Arnel Smith,

and Thomas Wentworth

North Carolina State University
Raleigh, NC, USA

Research supported by DOE, NSF-CCF, NSF-DMS



2

Algebraic number theory
Class field theory
Group theory
Matrix theory
Numerical analysis

https://mathshistory.st-andrews.ac.uk/Biographies/Taussky-Todd/

https://mathshistory.st-andrews.ac.uk/Biographies/Taussky-Todd/
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Randomized algorithms

Solution of a deterministic problem via statistical sampling

Example: Monte Carlo methods (von Neumann & Ulam, Los Alamos, 1946)

circle area = 4 E
[

#hits
#darts

]
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Randomization for matrix computations

How to use it:

Dimension reduction: Sample to solve a smaller subproblem

Acceleration: Compute a ‘preconditioner’ via sampling

Analysis: Iterative methods applied to random starting guesses

Advantages:

Fast computation of approximate solutions

Easy implementation

Reduction of data movement (communication)

Solution of large-scale problems

RandBLAS and RandLAPACK under development1

1Murray, Demmel, Mahoney, . . ., Dongarra: Randomized numerical linear
algebra: A perspective on the field with an eye to software
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This talk

Caveat: This is not a comprehensive review
We focus on a few fundamental ideas, to convey insight

What is sampling?

Case study: Monte Carlo Gram matrix multiplication
Why matrix multiplication???
This is such a basic, old, worked-over problem
Answer: It gives insight and is needed for the next case study

Matrices with orthonormal columns
Do we really need such a special case?
Answer: Yes, we need this for the next case study

Case study: Randomized least squares/regression problems
1 Dimension reduction
2 Convergence acceleration

Summary and future research
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What is Sampling?
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Sampling rows from a matrix

Sampling rows = picking rows from a matrix

Dimension reduction: Sampled matrix has fewer rows
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Data-oblivious sampling

Matrix S samples, uniformly and independently,
c rows from identity matrix

Im =

1

. . .

1

 =

eT
1
...

eT
m

 ∈ Rm×m S =
√

m
c


eT
k1

...
eT
kc

 ∈ Rc×m

In expectation: E[STS] = Im

SA samples, uniformly and independently, c rows from A

SA =
√

m
c


eT
k1

A
...

eT
kc

A


In expectation: E[(SA)T (SA)] = ATA

{(SA)T (SA) is unbiased estimator of ATA}
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Uniform sampling, with replacement
of c indices from {1, . . . ,m}

Repeat c times:
Sample kt from {1, . . . ,m} with probability 1

m

Example: m = 8, c = 4

Implementation [Devroye]

υ = rand {uniform [0, 1] random variable}
kt = b1 + m υc

Matlab: randi, datasample Julia, R: sample Python: random.choice
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Uniform sampling with replacement, in action

Repeat m times:
Sample index from {1, . . . ,m} with probability 1/m

E[# samples required to pick each index] = mHm = m lnm +O(m)
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Summary: Uniform sampling with replacement

+ Simple implementation of data-oblivious sampling

+ Convenient probabilistic analysis (samples are independent)

– Repeated indices and rows

+ For practical (small to moderate) amounts of sampling:
sampling with replacement as good as
sampling without replacement
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Case Study:
Monte Carlo Gram Matrix Multiplication
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Idea behind Monte Carlo Matrix Multiplication

Given: Tall and skinny matrix A ∈ Rm×n with m ≥ n

Instead of computing the Gram matrix ATA

Do a dimension reduction:
Sample a few rows from A, and compute an approximation
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Monte Carlo Gram Matrix Multiplication
[Drineas, Kannan, Mahoney]

Input: A ∈ Rm×n, c ≥ 1 {sampling amount}
Output: (SA)T (SA) ≈ ATA

S = 0c×m {Initialize sampling matrix}
for t = 1 : c do

Sample kt uniformly with replacement from {1, . . . ,m}
S(t, :) =

√
m
c eT

kt
{row t of sampling matrix}

end for
X = SA {Sample rows from A}
Return XTX

Relative error: ‖(SA)T (SA)−ATA‖2

‖ATA‖2
{in the spectral/two-norm}
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What kind of accuracy to expect from
Monte Carlo matrix multiplication

Relative error ‖(SA)T (SA)−ATA‖2

‖ATA‖2
versus number of rows of SA

3 different matrices A ∈ R2048×16
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Error due to randomization for
Monte Carlo Gram matrix multiplication

[Holodnak, Ipsen], [Ipsen, Smith]

Largest (squared) normalized row-norm of A ∈ Rm×n

µ ≡ max
1≤i≤m

(
‖eT

i A‖2

‖A‖2

)2

Matrix S samples c rows uniformly with replacement

For any 0 < δ < 1 with probability at least 1− δ

‖(SA)T (SA)− ATA‖2

‖ATA‖2

≤ τ +
√
τ (6 + τ)

where

τ ≡ m

c
µ

ln (n/δ)

3
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Interpretation of error bound

For any 0 < δ < 1 with probability at least 1− δ

‖(SA)T (SA)− ATA‖2

‖ATA‖2︸ ︷︷ ︸
Relative deviation from expectation

≤ τ +
√
τ (6 + τ)

where

τ ≡ m

c
µ

ln (n/δ)

3

m
c : inverse proportion of # rows sampled

µ = max1≤i≤m

(
‖eT

i A‖2

‖A‖2

)2
: ‘distribution of mass’ in the matrix
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Foundation for the proof:
Matrix Bernstein concentration inequality

[Recht], [Tropp]

Given

• Independent matrix-valued random variables X j ∈ Rn×n

• Symmetric: XT
j = X j

• Bounded norms: maxj ‖X j‖2 ≤ β
• Zero expectation: E[X j ] = 0

• Bounded ‘variance’:
∥∥∥∑j E[X 2

j ]
∥∥∥

2
≤ υ

Then for any ε ≥ 0

P

∥∥∥∥∥∥
∑
j

X j

∥∥∥∥∥∥
2

≥ ε

 ≤ n exp

(
− 3 ε2

6 υ + 2β ε

)
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Error bound in action

Relative error ‖(SA)T (SA)−ATA‖2

‖ATA‖2
versus number of rows of SA

A ∈ R2048×10 uniform (0, 1), κ(A) = 1.13, µ = .0137
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Summary: Monte Carlo Gram matrix multiplication

– Low accuracy (1 digit for small matrix dimensions)

– More sampling does not help:
Error decreases slowly with increasing sampling amounts

– Appropriate for tall and skinny matrices
(many rows, few columns)

+ Error bound reflects qualitative behaviour of error

+ Error bound informative even for matrices of small dimension

– This is a risky approach for randomization:
Sampling produces loss of information and accuracy



21

Matrices with Orthonormal Columns

Q ∈ Rm×n with QTQ = I n
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Sampling rows from matrices with orthonormal columns

Q ∈ R8×2 with QTQ = I 2, µ ≡ max1≤i≤8 ‖eT
i Q‖2

2

Sample 2 rows of Q so that rank(SQ) = 2

Q =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


Q = 1√

8



1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1


µ = 1 µ = 1

4

Sampling is hard Sampling is easy

Largest row norm µ of Q quantifies difficulty of sampling
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Coherence = Largest row norm
of matrix with orthonormal columns

Coherence of Q ∈ Rm×n with QTQ = I {orthonormal columns}

µ ≡ max
1≤i≤m

‖eT
j Q‖2

2

• n/m ≤ µ(Q) ≤ 1

• Maximal coherence: µ(Q) = 1
At least one column of Q is column of identity

• Minimal coherence: µ(Q) = n/m
Columns of Q are columns of Hadamard matrix

Coherence [Donoho, Huo]

Measures correlation with standard basis

Reflects difficulty of recovering matrix from sampling
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Elements of different 128× 7 matrices
with orthonormal columns

good coherence bad coherence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Monte Carlo Gram matrix multiplication
for orthonormal matrices Q with different coherence

Error ‖(SQ)T (SQ)− I n‖2 versus number of rows of SQ

Coherence: µ = 1 µ = .0074 µ = .002 = n/m
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Error due to randomization
for matrices with orthonormal columns

Q ∈ Rm×n has orthonormal columns
Coherence µ ≡ max1≤i≤m ‖eT

i Q‖2
2

S samples c rows uniformly with replacement

For any 0 < δ < 1 with probability at least 1− δ

‖(SQ)T (SQ)− I‖2 ≤ τ +
√
τ(6 + τ) where τ = m µ

ln (n/δ)
3c

Error depends on coherence of Q

• Good coherence µ = n/m {mass of Q uniformly distributed}

τ = n ln (n/δ)
3c depends on smallest matrix dimension

• Bad coherence µ = 1 {mass of Q highly concentrated}

τ = m ln (n/δ)
3c depends on largest matrix dimension
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Probabilistic error bound in action

With probability at least 1− δ = .99

‖(SQ)T (SQ)− I‖2 ≤ τ +
√
τ(6 + τ) where τ = m µ ln (n/δ)

3c

Q ∈ Rm×n Hadamard with m = 2048, n = 8, µ = n/m = .0039
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Summary: Matrices with orthonormal columns

Q ∈ Rm×n has orthonormal columns, QTQ = I n
Monte Carlo matrix multiplication: (SQ)T (SQ) ≈ I n

Coherence µ ≡ max1≤i≤m ‖eT
i Q‖2

2

reflects distribution of ‘mass’ in the matrix Q
determines the difficulty of sampling rows from Q

Good coherence µ = n/m: Sampling is easy
Error depends on small matrix dimension n

Bad coherence µ = 1: Sampling is hard
Error depends on large matrix dimension m

Error bound reflects qualitative behaviour of error,
and is informative even for matrices of small dimension
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Case Study:
Randomized Solution of

Least Squares/Regression Problems
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Well-posed least squares/regression problems

Given A ∈ Rm×n with rank(A) = n, b ∈ Rm

Solve minx ‖Ax − b‖2

Unique solution: x∗ = A†b, A† ≡ (ATA)−1AT

Two randomization approaches:

1 Dimension reduction

2 Convergence acceleration
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First randomization approach:
Dimension reduction [Drineas, Mahoney, Muthukrishnan, Sarlós]

Approach: Random sampling of rows from A and b

Matrix S samples c rows uniformly and with replacement

Replace minx ‖Ax − b‖2 by smaller-dimensional problem

min
x̃
‖S (Ax̃ − b)‖2

Minimal norm solution x̃∗ = (SA)†(Sb)

Perspective of regression:
How does row sampling affect the statistical model uncertainty?
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Model uncertainty in regression problems

Gaussian linear model

b = Ax0 + ε A =


1 0
0 1
1 0
0 0

 ε ∼ N (0, σ2I 4)

minx ‖Ax − b‖2 has unique solution

x∗ = A†b A† =

[
1
2 0 1

2 0
0 1 0 0

]
Maximum likelihood estimator

Eε[x∗] = A† Eε[b] = A†Ax0 = x0

with variance Varε[x∗] = σ2 (ATA)−1 = σ2

[
1
2 0
0 1

]
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Effect of row sampling on model uncertainty

min
x̃
‖S (Ax̃ − b)‖2

has minimal norm solution x̃∗ = (SA)†(Sb)

Example:

SA =
√

2

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

S


1 0
0 1
1 0
0 0

 =

[√
2 0

0
√

2

]

Unbiased estimator: Eε[x̃∗] = (SA)†S Eε [b] = x0

Variance changes:

Varε[x̃∗] = σ2

[
1
2 0
0 1

2

]
6= σ2

[
1
2 0
0 1

]
= Varε[x∗]
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Effect of row sampling on model uncertainty
[Chi, Ipsen]

min
x̃
‖S (Ax̃ − b)‖2

has minimal norm solution x̃∗ = (SA)†(Sb)

Define oblique projector: Π ≡ A(SA)†S

Expectation: Eε[x̃∗ |S] = A†ΠAx0

If rank(SA) = rank(A), then Eε[x̃∗ |S] = x0 (unbiased estimator)

Variance: Varε[x̃∗ |S] = σ2 (A†Π)(A†Π)T

If rank(SA) < rank(A), then Varε[x̃∗ |S] singular

This is only a partial analysis: S is a fixed sampling matrix
No accounting for the uncertainty due to randomization
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Change in variance under randomization

A ∈ R2048×16 has orthonormal columns
30 different sampling matrices S that sample m

10
= 204 rows

uniformly with replacement

Elements of Varε[A] versus elements of Varε[SA]
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Summary: First randomization approach
for least squares/regression problems

Dimension reduction: Random sampling of rows from

b = Ax0 + ε, ε ∼ N (0, σ2I )

Statistical perspective:
Row sampling changes statistical properties of underlying linear model

Simultaneous analysis of uncertainties from both, model and randomization
leads to results that are difficult to interpret

Computational perspective:
If rank(SA) < rank(A), the sampled least squares problem is ill-posed

Even if rank(SA) = rank(A), the sampled least squares problem
can be more ill conditioned, due to
worse matrix condition number: κ(SA) > κ(A)
larger least squares residual: ‖S(Ax̃∗ − b)‖2 > ‖Ax∗ − b‖2

Conclusion: Row sampling is a risky approach for randomization
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Second randomization approach:
Convergence acceleration

[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]

Iterative Krylov space method LSQR [Paige, Saunders]

Iterates xk converge to x∗ as

‖A(x∗ − xk)‖2
2︸ ︷︷ ︸

error in iteration k

≤ 2

(
κ(A)− 1

κ(A) + 1

)k

‖A(x∗ − x0)‖2
2︸ ︷︷ ︸

initial error

Fast convergence, if condition number κ(A) ≡ ‖A‖2‖A†‖2 ≈ 1

Accelerate convergence via right preconditioning
{change of variables}

min
y
‖AP−1 (Px)︸ ︷︷ ︸

y

−b‖2
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The ideal preconditioner

QR factorization A = Q R {basis transformation to orthonormal basis}

!
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!

!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!#!!!!!!!!!!!!!$!

Q ∈ Rm×n has orthonormal columns: QTQ = I n
R ∈ Rn×n is triangular nonsingular

Use R as preconditioner

Preconditioned matrix AR−1 = Q has κ(Q) = 1

LSQR solves pre-conditioned problem in 1 iteration

But: Construction of preconditioner is too expensive
Operation count: O(mn2) flops {floating point operations}
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A cheaper randomized preconditioner
[Avron, Maymounkov, Toledo], [Rokhlin, Tygert]

QR factorization from a few rows of matrix A ∈ Rm×n

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

"!!!!!!!!!!!#!!!!!!!!!!!!!!!!$!!!!!!!!!!!!!!!!!!%!!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!

!!!!!!!! !!!!!!!"!!!!!!!!!!!!!!! !!!! !!!!!!!!
!
!!!!!!! !!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!

1 Sample c ≥ n rows of A: SA
2 Factor sampled matrix:

SA = QsRs

3 Randomized preconditioner Rs

Operation count: O(cn2) flops
0 {independent of large dimension m}
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Blendenpik (simplified version)
[Avron, Maymounkov, Toledo]

Input: A ∈ Rm×n with rank(A) = n, b ∈ Rm×n

Sampling amount c ≥ n
Output: Solution x∗ to minx ‖Ax − b‖2

{Construct preconditioner}
Sample c rows of A → SA {fewer rows}
Factor SA = QsRs

{Solve preconditioned problem}
Solve miny ‖AR−1

s y − b‖2 with LSQR
Solve Rs x∗ = y {4 system}
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Convergence analysis of preconditioned LSQR
[Avron, Maymounkov, Toledo], [Ipsen, Wentworth]

min
y
‖AR−1

s y − b‖2

1 Two QR factorizations

Conceptual factorization of original matrix: A = QR
Computed factorization of sampled matrix: SA = QsRs

2 Condition number of preconditioned matrix =
Condition number of sampled orthonormal matrix

κ(AR−1
s ) = κ(SQ)

3 Next: Bound κ(SQ) with Monte Carlo matrix multiplication
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From matrix multiplication error to condition numbers

Given: X with XTX ≈ I
Eigenvalues of XTX : λmax ≥ · · · ≥ λmin > 0

Condition number: κ(X )2 = κ(XTX ) = λmax
λmin

1 Monte Carlo matrix multiplication:
With probability at least 1− δ

‖XTX − I‖2 ≤ ε
2 Weyl’s monotonicity theorem:

|λmin − 1| ≤ ε and |λmax − 1| ≤ ε
3 Condition number:

With probability at least 1− δ

κ(X ) =

√
λmax

λmin
≤
√

1 + ε

1− ε
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Condition number bound for row-sampled matrices
with orthonormal columns

[Avron, Maymounkov, Toledo], [Ipsen, Wentworth], [Ipsen, Smith]

Assume:
Q ∈ Rm×n with QTQ = I n and µ ≡ max1≤i≤m ‖eT

i Q‖2
2

S samples c rows uniformly with replacement

Condition number of sampled matrix:
For any 0 < δ < 1 and 0 < ε < 1, if c ≥ mµ ln (n/δ)

ε2

then with probability at least 1− δ

κ(SQ) ≤ 1 + ε

1− ε
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Condition number bound in action

Orthonormal matrix Q ∈ R2048×16, perfect coherence µ = n
m

= .0162
Success probability δ = .99

Choose ε = 99/101 so that κ(SQ) ≤ 1+ε
1−ε = 10

Need c ≥ 2mµ ln (n/δ)
ε2 ≈ 322 = 16% of rows
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Summary: Second randomization approach
for least squares/regression problems

Convergence acceleration:
Randomized construction of preconditioner

+ Only need correct magnitude of condition number

+ Actual condition number close to optimal

– Need good coherence for small sampling amounts

+ Improve coherence by fast premultiplication with
random orthogonal matrix [Avron, Maymounkov, Toledo]

+ Safe approach for randomization, no loss of information
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Summary

Sampling without replacement

Viable in practice, and ‘easy’ to analyse

Monte Carlo Gram matrix multiplication

Dimension reduction to smaller-dimensional matrices
Risky randomization: Loss of information and accuracy

Matrices with orthonormal columns
Coherence reflects the difficulty of sampling rows

Randomized least squares/regression problems

Dimension reduction to smaller-dimensional matrices
Risky randomization: Can change statistical properties,
destroy well-posedness, and worsen numerical accuracy

Convergence acceleration via randomized preconditoner
Safe randomization: Faster speed, no loss of accuracy
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Future Research

Tighter, more practical matrix concentration inequalities

Analysis of randomized algorithms in finite precision:
Numerical error due to randomization
Notion of conditioning (e.g. coherence)
Notion of numerical stability of randomized algorithms

Robust implementations (e.g. choice of failure probability)

Opportunities for safe randomization:
Dynamic randomized preconditioners in inner loops

Randomization in mixed/lower arithmetic precision

Propagating errors due to randomization
through computational pipelines (probabilistic numerics)
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Thank you very much
for your attention


	mbtn@7: 
	anm7: 
	7.69: 
	7.68: 
	7.67: 
	7.66: 
	7.65: 
	7.64: 
	7.63: 
	7.62: 
	7.61: 
	7.60: 
	7.59: 
	7.58: 
	7.57: 
	7.56: 
	7.55: 
	7.54: 
	7.53: 
	7.52: 
	7.51: 
	7.50: 
	7.49: 
	7.48: 
	7.47: 
	7.46: 
	7.45: 
	7.44: 
	7.43: 
	7.42: 
	7.41: 
	7.40: 
	7.39: 
	7.38: 
	7.37: 
	7.36: 
	7.35: 
	7.34: 
	7.33: 
	7.32: 
	7.31: 
	7.30: 
	7.29: 
	7.28: 
	7.27: 
	7.26: 
	7.25: 
	7.24: 
	7.23: 
	7.22: 
	7.21: 
	7.20: 
	7.19: 
	7.18: 
	7.17: 
	7.16: 
	7.15: 
	7.14: 
	7.13: 
	7.12: 
	7.11: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	mbtn@6: 
	anm6: 
	6.45: 
	6.44: 
	6.43: 
	6.42: 
	6.41: 
	6.40: 
	6.39: 
	6.38: 
	6.37: 
	6.36: 
	6.35: 
	6.34: 
	6.33: 
	6.32: 
	6.31: 
	6.30: 
	6.29: 
	6.28: 
	6.27: 
	6.26: 
	6.25: 
	6.24: 
	6.23: 
	6.22: 
	6.21: 
	6.20: 
	6.19: 
	6.18: 
	6.17: 
	6.16: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	mbtn@5: 
	anm5: 
	5.40: 
	5.39: 
	5.38: 
	5.37: 
	5.36: 
	5.35: 
	5.34: 
	5.33: 
	5.32: 
	5.31: 
	5.30: 
	5.29: 
	5.28: 
	5.27: 
	5.26: 
	5.25: 
	5.24: 
	5.23: 
	5.22: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	mbtn@4: 
	anm4: 
	4.41: 
	4.40: 
	4.39: 
	4.38: 
	4.37: 
	4.36: 
	4.35: 
	4.34: 
	4.33: 
	4.32: 
	4.31: 
	4.30: 
	4.29: 
	4.28: 
	4.27: 
	4.26: 
	4.25: 
	4.24: 
	4.23: 
	4.22: 
	4.21: 
	4.20: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	mbtn@3: 
	anm3: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	mbtn@2: 
	anm2: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	mbtn@1: 
	anm1: 
	1.120: 
	1.119: 
	1.118: 
	1.117: 
	1.116: 
	1.115: 
	1.114: 
	1.113: 
	1.112: 
	1.111: 
	1.110: 
	1.109: 
	1.108: 
	1.107: 
	1.106: 
	1.105: 
	1.104: 
	1.103: 
	1.102: 
	1.101: 
	1.100: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	mbtn@0: 
	anm0: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


