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Leverage Scores

Real m × n matrix A with rank(A) = n

Columns of Q are orthonormal basis for range(A)
column i of Q ⊥ column j of Q, ‖column j of Q‖2 = 1

Leverage scores of A

ℓj(A) = ‖row j of Q‖22 1 ≤ j ≤ m

0 ≤ ℓj(A) ≤ 1
∑m

j=1 ℓj(A) = n = ‖A‖2F

Outlier detection in least squares/regression problems
[Hoaglin & Welsch 1978, Velleman & Welsch 1981, Chatterjee & Hadi 1986]

Importance sampling in randomized matrix algorithms
[Avron, Boutsidis, Drineas, Mahoney, Toledo, ...]



Largest Leverage Score

Largest leverage score = coherence of A

µ(A) ≡ max
j

ℓj(A)

[Donoho & Ho 2001, Candés, Romberg & Tao 2006, Candés & Recht 2009, ...]

n/m ≤ µ(A) ≤ 1

Uniform leverage scores ℓj(A) = n/m for all j
⇒ Minimal coherence µ(A) = n/m
Uniform sampling is easy

Large leverage score ℓj(A) = 1 for some j

⇒ Maximal coherence µ(A) = 1
Uniform sampling is hard



Why Leverage Scores?

Analysis of randomized algorithms:
Quantify the difficulty of uniform sampling

Probabilities in randomized matrix algorithms
[Boutsidis, Drineas, Mahoney, ...]

Least Squares Solver Blendenpik [Avron, Maymounkov, Toledo 2010]

Bounds for condition numbers of sampled matrices

Condition number (sensitivity of basis to perturbations)

If A has linearly independent columns then

κ(A) ≡ ‖A‖2 ‖A
†‖2

If Q has orthonormal columns then κ(Q) = 1
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Motivation



The Problem

Given

Real m × n matrix Q with orthonormal columns

coherence µ and leverage scores ℓj
Real c ×m ”sampling” matrix S with n ≤ c ≪ m

Condition number of sampled matrix

κ(SQ) ≡ ‖SQ‖2 ‖(SQ)†‖2

Sensitivity of SQ to perturbations

Given η and δ, for which values of c (in terms of µ and ℓj) is

κ(SQ) ≤ 1 + η

with probability at least 1− δ?



Example: A Bound [Ipsen & Wentworth 2012]

Label leverage scores so that µ ≡ ℓ[1] ≥ · · · ≥ ℓ[m]

τ ≡
t

∑

j=1

ℓ[j ] +

(

1

µ
− t

)

ℓ[t+1] where t ≡ ⌊1/µ⌋

SQ : c rows of Q sampled uniformly with replacement

Given ǫ, with probability at least 1− δ

κ(SQ) ≤

√

1 + ǫ

1− ǫ

provided c ≥ m µ (2 τ + 2
3 ǫ) ln (2n/δ)/ǫ2

In practice: κ(SQ) ≤ 10 with at least 99% probability
provided c ≥ m µ (2.1 τ + .7) (ln (2n) + 4.7)



Practical Questions

For various values of m, n, coherence, leverage scores, and c :

How does this bound compare to existing bounds?

How does this bound compare to the condition numbers of
sampled matrices?

What are the smallest values of c for which the bound
becomes informative?

What are the smallest values of c for which the sampled
matrices have full rank?

How large are the condition numbers of the sampled matrices?

When is sampling 10% of the rows sufficient?

For a given coherence, are there leverage score distributions
that make sampling harder?

How large can n/m be, before sampling becomes inefficient?



The App



Matlab App with GUI (arXiv:1402.0642)

kappaSQ = κ(SQ)

1 Plot probabilistic bounds for κ(SQ)
2 Run experiments, and plot actual values of κ(SQ)

Features of kappaSQ

Four randomized sampling methods
Uniform & leverage score sampling with replacement

Uniform sampling without replacement

Bernoulli sampling

Six probabilistic bounds

Test matrix generation (for given m, n and leverage scores)

Leverage score distributions: ”adversarial” or not
(for given m, n and coherence)

”Publication-ready” plots

Easy incorporation of user’s own codes



Screen Shot of kappaSQ



Advantages of kappaSQ

Insight into behavior of sampling methods & bounds
in a practical, non-asymptotic context

Compare different bounds

Compare bounds to experiments

Explore the limits of randomized sampling

Intuitive user interface (plot button)

Visually appealing plots

Sensible default values

Extensive facilities for customizing plots (beautify)

Very little familiarity with Matlab required



Sensitivity of Leverage Scores
to Rotation of Subspace



Rotation of Subspace
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Exact and Perturbed Leverage Scores

Exact subspace: range(A), A is m × n with rank(A) = n

Exact leverage scores

ℓj(A) = ‖eTj A‖22 1 ≤ j ≤ m

where A is orthonormal basis for range(A)

Rotated subspace: range(B), B is m × n with rank(B) = n

Perturbed leverage scores

ℓj(B) = ‖eTj B‖22 1 ≤ j ≤ m

where B is orthonormal basis for range(B)

Question: How close are ℓj(B) to ℓj(A)?



Principal Angles between Column Spaces

A and B are m × n with orthonormal columns

SVD of n× n matrix ATB = U ΣV T

Σ = diag
(

cos θ1 · · · cos θn
)

Principal angles θj between range(A) and range(B)

1 ≥ cos θ1 ≥ . . . ≥ cos θn ≥ 0

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

Special cases

If range(A) = range(B) then Σ = In and all θj = 0

If ATB = 0 then Σ = 0 and all θj = π/2



Uniform Leverage Scores

A is m × n Hadamard m = 1024, n = 50, all leverage scores ℓj (A) = n/m

Angles: cos θ1 = 1 sin θn ≈ 10−8

Absolute errors |ℓj(B) − ℓj(A)| vs index j
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20% Large Leverage Scores

A is m × n m = 1000, n = 50

800 small ℓj(A) ≤ 10−6 200 large ℓj(A) ≈ .3

Leverage scores ℓj(A) vs index j

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0



20% Large Leverage Scores: Absolute Errors

Angles: cos θ1 = 1 sin θn ≈ 10−8

Absolute errors |ℓj(B) − ℓj (A))| vs index j
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Small leverage scores: absolute errors ≤ 10−15

Large leverage scores: absolute errors ≤ 10−9



20% Large Leverage Scores: Relative Errors

Angles: cos θ1 = 1 sin θn ≈ 10−8

Relative errors |ℓj(B) − ℓj(A))|/|ℓj (A)| vs index j
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All leverage scores have relative errors ≤ 10−8



Sensitivity of Leverage Scores to Subspace Rotation

A and B are m × n with orthonormal columns

Angles between range(A) and range(B)

0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

Perturbation bounds

ℓj(B) ≤

(

cos θ1

√

ℓj(A) + sin θn

√

1− ℓj(A)

)2

ℓj(A) ≤

(

cos θ1

√

ℓj(B) + sin θn

√

1− ℓj(B)

)2

1 ≤ j ≤ m

Leverage scores of A and B are close,
if all angles between range(A) and range(B) are small



Tightness of Bound

A is m × n m = 1000, n = 50 sin θ ≈ 10−8

800 small ℓj(A) ≤ 10−6 200 large ℓj(A) ≈ .3

Bound - ℓj(B) vs index j
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Bound tight in relative sense: Bound− ℓj (B) . 10−8 ℓj(B)



Large Leverage Scores

A and B are m × n with orthonormal columns

Perturbed leverage score is large: ℓk(B) ≥ 1/2 for some k

ℓk(A)

(cos θ1 + sin θn)
2 ≤ ℓk(B)

≤
(

cos θ1
√

ℓk(A) + sin θn
√

1− ℓk(A)
)2

Exact leverage score is also large: ℓk(A) ≥ 1/2

ℓk(A)

(cos θ1 + sin θn)
2 ≤ ℓk(B) ≤ (cos θ1 + sin θn)

2 ℓk(A)

Upper and lower bounds for large leverage scores



Summary: Sensitivity to Subspace Rotation

Leverage scores of matrices with orthonormal columns

Leverage scores are close, if subspace rotation small

Small leverage scores as insensitive as large ones

Our perturbation bounds are qualitatively informative

Simpler bounds for special cases:
Large leverage scores, m = 2n



Sensitivity of Leverage Scores
to Matrix Perturbations



Norm-wise Relative Matrix Perturbations

A and A+ E are m × n of rank n

Two-norm condition number and relative perturbation

κ ≡ ‖A‖2 ‖A
†‖2 ǫ ≡ ‖E‖2/‖A‖2

First-order bounds
∣

∣

∣

∣

ℓj(A+ E)− ℓj(A)

ℓj(A)

∣

∣

∣

∣

≤ 2

√

1−ℓj(A)
ℓj(A) κ ǫ+O(ǫ2)

Sensitivity proportional to condition number of A
Leverage scores sensitive if κ ≫ 1

Small leverage scores more sensitive than large ones



Small Perturbations

A is m× n m = 500, n = 15, κ = 1, ǫ ≈ 10−15

Relative error |ℓj(A+ E)− ℓj(A)|/ℓj (A) vs ℓj (A)
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Large Perturbations

A is m× n m = 500, n = 15, κ = 1, ǫ ≈ 10−3

Relative error |ℓj(A+ E)− ℓj(A)|/ℓj (A) vs ℓj (A)
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Summary

Motivation
Sampling rows from matrices Q with orthonormal columns

Want: Condition number of sampled matrix κ(SQ)
Condition number depends on leverage scores

Largest leverage scores = coherence

Matlab App kappaSQ (arXiv:1402.0642)

Sampling & bounds in non-asymptotic context

Compare different probabilistic bounds

Run experiments and test tightness of bounds

”Publication-ready” plots

Sensitivity of Leverage Scores, to:
Subspace rotations

Leverage scores close if subspace rotation small

Small leverage scores as insensitive as large ones

Relative matrix perturbations

Sensitivity depends on condition number of matrix

Small leverage scores more sensitive than large ones


