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This talk

Forward error when summing n real numbers x1, . . . , xn

sn = x1 + · · ·+ xn

in floating point arithmetic

Overview

• The traditional method

• More accurate methods (without higher precision or better hardware)

Inspired by computer architecture and formal methods:
Shifted summation
Kahan’s 1965 method: Compensated summation

• Summary



The traditional method



Sequential (recursive) summation
[Higham: Accuracy and Stability of Numerical Algorithms, Chapter 4]

• Exact arithmetic

s1 = x1, sk = sk−1 + xk , 2 ≤ k ≤ n

• Floating point arithmetic1

ŝ1 = x1, ŝk = (ŝk−1 + xk)(1 + δk), 2 ≤ k ≤ n

where |δk | ≤ u are n− 1 roundoffs

• First order forward error
∣
∣
∣
∣

ŝn − sn

sn

∣
∣
∣
∣
≤ n u

∑n
k=1 |xk |
|sn|

︸ ︷︷ ︸

≥1

+ O(u2)

1Assume: x1, . . . , xn are floating point numbers



Tighter forward error bounds
for sequential summation

• Exact expression [Hallman 2020]

ŝn − sn =
n∑

k=2

sk δk

n∏

j=k

(1 + δj )

• Probabilistic bounds
[Higham, Mary 2019, 2020], [Rhyne 2020], [Hallman 2020]

Treat roundoffs δk as zero-mean bounded random variables
(independent, or mean-independent)

Error ≈ O(
√
nu) with high probability

• Next: More accurate algorithms



Shifted summation



Motivation for shifted summation

• Computer architecture, formal methods for program
verification:
[Solovyev et al 2015], [Dahlquist, Salvia, Constatinides 2019], [Lohar, Prokop,

Darulova 2019], [Constantinides, Dahlquist, Rakamaric, Salvia 2021]

Assume x1, . . . , xn drawn from a distribution
Compute statistics for accumulated errors
Determine probability of errors in certain interval

• Probabilistic bounds for random data
[Higham, Mary 2020], [Hallman 2020]

Idea: Sequential summation accurate if xk tightly clustered



Sequential summation of random data [Hallman 2020]

Assume:

• Roundoffs δk are independent zero-mean random variables,
and |δk | ≤ u

• Summands xk are random variables with mean µ and
’variance’ max1≤k≤n |xk − µ| ≤ σ

Then for any 0 < δ < 1 with probability at least 1− δ

|ŝn − sn| ≤ (1 + γ)(λ n3/2 |µ|+ λ2n σ) u

where λ =
√

2 ln (6/δ) and γ = exp (λ (
√
nu + nu2)/(1 − u)) − 1

Sequential summation accurate if xk tightly clustered around zero



Application to non-random data [Higham, Mary 2020]

Example: Assume xk = 104 + yk where |yk | ≤ 1

• Sequential summation
|ŝn − sn| ≤ nu

∑n
k=1 |xk |+O(u2) = n2u (104 + 1) +O(u2)

• ’Center’ the data to reduce their ‘mean’

Center: yk = xk − 104, 1 ≤ k ≤ n

Sum centered data
t1 = y1, tk = tk−1 + yk , 1 ≤ k ≤ n

Uncenter: s = tn + n · 104

|t̂n − tn| ≤ nu
∑n

k=1 |yk |+O(u2) ≤ n2u +O(u2)

Centered sum captures ‘tail’ bits of xk =⇒ smaller error



Shifted sequential summation [Higham, Mary 2020]

Input: summands x1, . . . , xn, shift c
t0 = 0
for k = 1 : n do

ŷk = (xk − c)(1 + ǫk) {ǫk are centering roundoffs}
t̂k = (t̂k−1 + ŷk)(1 + δk) {δk are summation roundoffs}

end for
ŷn+1 = cn (1 + ǫn+1)
ŝn = (t̂n + ŷn+1)(1 + δn+1) {uncentering}

Error [Hallman, II 2021]

ŝn − sn =
n+1∑

k=1

tkδk

n+1∏

ℓ=k+1

(1 + δℓ)

︸ ︷︷ ︸

Summation

+
n+1∑

k=1

ykǫk

n+1∏

ℓ=k

(1 + δℓ)

︸ ︷︷ ︸

Centering



Error bounds for shifted summation [Hallman, II 2021]

Error depends only on shifted quantities

• Deterministic

|ŝn−sn| ≤ u(1+u)n






n∑

k=2

|sk − kc |
︸ ︷︷ ︸

|tk |

+

n∑

k=1

|xk − c |
︸ ︷︷ ︸

|yk |

+ |s|+ |nc |






• Probabilistic
Let δj and ǫj be independent zero-mean random variables
Then for any 0 < δ < 1 with probability at least 1− δ,

|ŝn − sn| ≤ max
1≤k≤n+1

(|sk − kc | + |xk − c |) β
√

2 ln(2/δ)

where β =
√

u
2γ2n ≤

√
(n+2)u2

1−2(n+2)u ≈
√
n + 2 u

(provided n ≪ 1/u)



Numerical experiments: Sequential summation
with shifting vs no shifting

• Number of summands n = 106

• Shift c = (maxk xk +mink xk)/2

• Working precision: Julia Float64 u = 2−53 ≈ 1.11 · 10−16

• ‘Exact’ computation: Julia Float256

• Plots: relative errors |ŝn − sn|/|sn| versus n
• Probabilistic ‘bound’

u
√
n + 2 max

1≤k≤n+1

|sk − kc| + |xk − c|
|sn|

√

2 ln(2/δ)
︸ ︷︷ ︸

3.26

δ = 10−2

Two different types of summands xk , 1 ≤ k ≤ n

Figure 1: xk = 104 + yk where yk is uniform[0,1]
Figure 2: xk is normal(0,1)



Summands tightly clustered at 104

xk = 104 + yk where yk is uniform[0,1]
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Shifting increases accuracy compared to plain summation
Bound accurate within factor of 100



Summands tightly clustered at zero
xk is normal(0,1)
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Shifting hurts accuracy (−.2 ≤ c ≤ 1.2) over plain summation
Bound accurate within factor of 10-100



Summary: Shifted sequential summation

• Error bounds depend only on shifted quantities
and hold to all orders of u

• Probabilistic bound: Error ≈ O(
√
nu)

• Shifting improves accuracy if
shift c decreases magnitude of partial sums

max
k

(|sk − k c |+ |xk − c |) ≪ max
k

(|sk |+ |xk |)

See advice in [Higham book, Section 4.2]

• Extension to general summation algorithms [Hallman, II 2021]

Roundoffs treated as (mean-) independent random variables
Probabilistic bounds depend on

√
height of computational tree

Bounds valid to all orders of u

• Warning: Shifting can worsen accuracy
for naturally centered data, such as normal(0, 1)



Kahan’s 1965 method:
Compensated sequential summation



Compensated sequential summation
[Goldberg 1991], [Higham book], [Kahan 1973]

Input: summands x1, . . . , xn
s1 = x1, c1 = 0
for k = 2 : n do

yk = xk − ck−1

sk = sk−1 + yk
ck = (sk − sk−1)− yk

end for
return sn



Summands tightly clustered at 104

xk = 104 + yk where yk is uniform[0,1]
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Compensated summation as or more accurate
than shifted summation with c = (mink xk +maxk xk)/2



Summands clustered at zero
xk is normal(0,1)
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Compensated summation more accurate
than shifted summation with c = (mink xk +maxk xk)/2



Roundoff in sequential compensated summation
[Goldberg 1991], [Kahan 1973]

ŝ1 = s1 = x1, ĉ1 = 0
for k = 2 : n do

ŷk = (xk − ĉk−1)(1 + ηk)
ŝk = (ŝk−1 + ŷk)(1 + σk)
ĉk = ((ŝk − ŝk−1)(1 + δk)− ŷk) (1 + βk)

end for

Forward error

|ŝn − sn| ≤
(
2u +O(nu2)

)
n∑

k=1

|xk |



Recursion for error and correction [Hallman, II 2021]

ek = ŝk − sk

ĉk = ((ŝk − ŝk−1)(1 + δk)− (xk − ĉk−1)(1 + ηk))
︸ ︷︷ ︸

ŷk

(1 + βk)

satisfy the recurrence

[
ek
ĉk

]

= Pk

[
ek−1

ĉk−1

]

+ Pk

[
sk−1

−xk

]

+

[
−sk
0

]

2 ≤ k ≤ n

where

Pk ≡
[

1 + σk −(1 + ηk )(1 + σk )
σk (1 + δk)(1 + βk) (1 + ηk)(1 − (1 + σk )(1 + δk ))(1 + βk)

]



Explicit expressions for error and correction [Hallman, II 2021]

[
en
ĉn

]

= (Pn · · ·P2)

[
x1
0

]

+

n∑

j=2

(Pn · · ·Pj)

[
0

−xj

]

+

[
−sn
0

]

A second explicit expression

en = snσn +

n∑

j=4

xjηj

n∏

k=j

(1 + σk)

+

n−1∑

j=2

(sjσj − ĉj (1 + ηj+1))

n∏

k=j+1

(1 + σk)



A third explicit expression [Hallman, II 2021]

en = ŝn − sn = sn σn + Xn + Xnσn + En−1(1 + σn)
︸ ︷︷ ︸

O(u2)

where

Xn ≡ xnηn (1 + βn) +
n−1∑

j=2

xj(ηj − δj)

︸ ︷︷ ︸

O(u)

n∏

ℓ=j

(1 + βℓ)(1 + ηℓ+1)

En−1 ≡ en−1Θn−1 +

n−1∑

j=2

ej(Θj + δj+1)

n∏

ℓ=j+1

(1 + βℓ)(1 + ηℓ+1)

Θk = 1− (1 + δk)(1 + βk)(1 + ηk+1) 2 ≤ k ≤ n − 1



First order error [Hallman, II 2021]

• The previous expressions imply

ŝn − sn = sn σn + xn ηn +

n−1∑

k=2

xk(ηk − δk) +O(u2)

Error dominated by correction and final summation roundoffs

ŷk = (xk − ĉk−1)(1 + ηk ), ĉk = ((ŝk − ŝk−1)(1 + δk)− ŷk) (1 + βk)

ŝn = (ŝn−1 + ŷn)(1 + σn)

• First order bound |ŝn − sn| ≤ 3u
∑n

k=1 |xk |+O(u2)

inconsistent with
previous bounds |ŝn − sn| ≤ 2u

∑n
k=1 |xk |+O(u2)



Second order error [Hallman, II 2021]

Let µk ≡ ηk − δk , 1 ≤ k ≤ n − 1, µn = ηn

ŝn − sn = snσn +

n∑

k=2

xkµk (1 + σn)

−
n−1∑

k=2

(skσk(µk+1 + βk + δk) + xkδk(µk+1 + βk + ηk)) +O(u3)

Deterministic bound

|ŝn − sn| ≤ (3u + 4n u2)

n∑

k=1

|xk |+O(u3)



Probabilistic bounds [Hallman, II 2021]

Vector of summands x =
[
x1 · · · xn

]T

Independent zero-mean random variables δj and ǫj
Then for any 0 < δ < 1 with probability at least δ

Second order bound

|ŝn − sn| ≤ u



(2 + 6u) ‖x‖2 +

√
√
√
√|sn|2 + 16u2

n−1∑

k=1

|sk |2



√

2 ln(2/δ) +O(u3)

≤ u

(

(2 + 6u)‖x‖2 +
√

1 + 16(n − 2)u2‖x‖1
)
√

2 ln(2/δ) +O(u3)

First order bound

|ŝn − sn| ≤ u(2‖x‖2 + |sn|)
√

2 ln(2/δ) +O(u2)



Numerical experiments:
Compensated summation in half precision

• Working precision: Julia Float16 u = 2−11 ≈ 4.88 · 10−4

• ‘Exact’ computation: Julia Float64

• Plots: relative errors |ŝn − sn|/|sn| versus n
• First order probabilistic bound

u
2‖x‖2 + |sn|

|sn|
√

2 ln(2/δ)
︸ ︷︷ ︸

3.26

where δ = 10−2

Two different types of summands xk , 1 ≤ k ≤ n

Figure 1: xk is uniform[0,1], n = 6 · 104
Figure 2: xk is normal(0,1), n = 106



Summands have same sign: xk is uniform[0,1]

Compensated summation accurate to machine precision
Ordinary summation not accurate (well-conditioned problem)

Bound accurate within factor of 10



Summands have different signs: xk is normal(0,1)

Bound accurate within factor of 10



Summary

Forward error in summation of n real numbers
without recourse to higher precision or better arithmetic

• Shifted sequential summation
Explicit expression and probabilistic bounds valid to all orders
Extension to general summation algorithms
Centering more accurate if it decreases magnitude of partial sums
But centering can hurt accuracy
Mixed precision versions do not appear to be effective

• Compensated sequential summation
Three explicit expressions for error
First and second order deterministic and probabilistic error bounds
First order bound differs by u from existing bounds
First order probabilistic bound accurate within factor of 10
Accurate but more expensive
Compromise: FABsum [Blanchard, Higham, Mary 2020]

E. Hallman and I. C. F. Ipsen:
Deterministic and Probabilistic Error Bounds for Floating Point Summation
Algorithms, arXiv:2107.01604


