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Why Statistical /Probabilistic Approaches
to Roundoff Error Analysis?

Disadvantage of deterministic bounds:

@ Too pessimistic, especially for large dimensions n

(worst-case bounds cannot account for cancellation of errors)

@ Valid only for sufficiently small n

(n< % where u is unit roundoff,  half precision: n < 2048)

@ May specify only first-order error terms



Existing Work

Von Neumann & Goldstine (1947): Matrix inversion

Hull & Swenson (1966): Matrix addition, multiplication, Runge Kutta
Henrici (1966): ODEs

Tienari (1970): Matrix inversion

Barlow & Bareiss (1985): Gaussian elimination

Calvetti (1991, 1992): Convolution, FFT

Chatelin & Brunet (1990): Eigenvalues

Higham & Mary (2018):

Backward errors for: Inner products, matvec, matmult, LU, Cholesky



Overview

© Perturbation bounds (perturbed inputs, exact computation)

General deterministic worst-case bound
Probabilistic bound: Independent errors

@ Roundoff error bounds (exact inputs, roundoff in computation)
Probabilistic bound: Dependent errors

Assume: All vectors are real



Perturbation Bounds

Perturbed inputs, exact computation



Perturbed Inner Product

Exact vectors

X1 Y1
X = y= XTy:X1y1+"'+Xn}/n
Xn Yn

Perturbed vectors

(14 d1)xt (I+0)n
f‘_( ) f/—( ) [671,10;] < u
(14 6n)xn (14 6n)yn

Relative error




General Deterministic Worst-Case Bound

Idea: Express perturbations as Hadamard product

X1+ 01x1 yi+0in
x = : =x+ dox, y= . =y+0oy
Xn + On Xn }/n+0n}/n

Relative error bound
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@ 0 o O represents second-order errors

@ Bound is exact



Deterministic Worst-Case Bound: Special Cases

@ p = 1: Traditional amplifier
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@ p = co: Smallest amplifier
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Comparison of Deterministic Bounds for n < 10®

Random normal (0,1) vectors
T T T T

Relative error

Dimension n x107

p =1 (traditional) bound is the best
p = 2 bound is almost as good

Single precision perturbations u =~ 10~8, bounds computed in double



Probabilistic Bound: Azuma's Inequality

How much doesasum Z2 =21 +--- + Z,
of independent random variables Z3,...,Z,
differ from its mean E[Z]?

Z-E[Z)|<g, 1<j<n

then

Pr[|Z—E[znz€1§zexp( 2 )

€
2%, &

0237, cj2 approximates the variance

@ All Z; close to their means =
Z1+ -+ Z, close to its mean, with high probability



Probabilistic Perturbation Bound

Assume
@ All 4;,0; are independent random variables
® Zero mean: E[4;] =0 =E[6;]
@ Bounded: |6j],]6;| < u

Then, for any 0 < § < 1, with probability at least 1 — ¢
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Probabilistic  Perturbation

Amplifier

@ Probabilistic factor is small:

If 1-6=1-10"1° then \/21In(2/6) <9



Comparison of Perturbation Bounds:
Deterministic vs Probabilistic
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@ Deterministic (p = 2) bound: A =/n

Increases with dimension n

@ Probabilistic bound: A = /2 In(2/9)

Independent of dimension
A <9 for tiny failure probability § = 10710

@ Probabilistic bound tighter for n > 81



Comparison: Deterministic vs Probabilistic for n < 10°

Relative error

Dimension n %108

Probabilistic bound tighter than deterministic bound

Single precision perturbations u ~ 108, bounds computed in double



Comparison: Deterministic vs Probabilistic for n < 10°

Random uniform [0,1] vectors
T T T T
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Dimension n %108

Probabilistic bound tighter than deterministic bound

Single precision perturbations u ~ 108, bounds computed in double



Perturbation Bounds: Summary

Component-wise relative perturbation of input vectors,
inner product computation is exact

Bounds for the relative error of x Ty

Deterministic bounds are exact (no big O terms)
Amplifier in any p-norm

Probabilistic bound: Perturbations are random variables
No assumptions on random variables other than:

independent, zero-mean, bounded

Probabilistic bound (with stringent success probability)
tighter than deterministic bound for dimension n > 81



Roundoff Error Bounds

Exact inputs, computations have round off errors



Deterministic Roundoff Error Bound
@ Exact computation
Ss1= Xy
Sk41 = Skt Xkt1Yk+1 2<k<n
Output: s, =x"y

@ Floating point arithmetic: |dx|. |0x| < u

S = xw(1+061)
S = (Gkor+xyc(1+0)(14+0,) 2<k<n
Output: §,

@ If nu < 1 then [Higham 2002]

§n_5n ‘X|T|y‘ nu
s |~ IxTy| 1—nu
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Amplifier Roundoff



Probabilistic Roundoff Error Bound

Distinguish product roundoffs from summation roundoffs

@ Exact computation

S1=%8 = Xy

Dk+1 = 2(k+1) = 2k T Xk+1Vk+1 2<k<n
. _ T
Output: s =x"y

@ Floating point arithmetic: |0x| < u

S = xwy(1+01)
S = §(1+0)
Skr1 = Sk + XpprYarr (14 d2kr1)
Sk+1) = Sukt1(I+dpqny)  2<k<n



Probabilistic Bounds for Forward Error
@ Product roundoff
Dkt1 = Spk+1 — S2k+1
= Zok + Xk+1Yk+1 02k+1
@ Summation roundoff
L(kt1) = D(k+1) — 2(k+1)
= Zoki1 + Sk 102(k41)

@ Assume that roundoffs J, have zero mean: E[6x] =0
Forward error at stage j, conditioned on previous roundoffs,
has mean equal to forward error at stage j — 1

E[Zj|51,...,5j71]:Zj,1 1< <2n

Forward errors Z1, Z>, ..., are Martingale with respect to
roundoffs &1, do, . ..



Probabilistic Bound: Azuma-Hoeffding Martingale

Sequence of random variables 7y, 71, Z> ... is Martingale
with respect to sequence 01,05 ... if for j >1

@ Z; is function of d1,...,0;

Q E[|Zj]] < o0,

Q E[Z|61,...,01] =Zi
If also

Z-Zal<g  1<j<2

then, for any 0 < § < 1, with probability at least 1 — §

| Zon — Zp| <

Zc

V21In (2/6)



Probabilistic Roundoff Bound

Assume that the roundoffs §; satisfy:
® Zero mean: E[;] =0
@ Bounded: |[§;| <u

Then, for any 0 < § < 1, with probability at least 1 — §

§2n — S2n

-
< |XX|T}:V| Vn+1 /2In(2/6) (1+u)"u

S2n

Bound does not depend on the summation order



Comparison of Roundoff Bounds:
Deterministic vs Probabilistic

_ X7yl
~ IxTy]

Son — Son
S2n

Au

Assume: § = 1071, y ~ 6108 (IEEE Single), n < 107

@ Deterministic bound:

A =

<15n
— nu

@ Probabilistic bound:

A=+vn+1(1+u)"/2In(2/0) <15.7vVn+1

@ Deterministic bound ~ n
probabilistic bound ~ +/n



Comparison: Deterministic vs Probabilistic for n < 10°

Normal (0,1) vectors
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Probabilistic bound tighter than deterministic bound

Single precision perturbations u ~ 6 - 10—, bounds computed in double



Comparison: Deterministic vs Probabilistic for n < 10°

Uniform [0,1] vectors
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Probabilistic bound tighter than deterministic bound

Single precision perturbations u ~ 6 - 10—, bounds computed in double



Comparison: Deterministic vs Probabilistic for n < 108

Normal (0,1) vectors
T T T

Relative error

Dimension n %107

Probabilistic bound tighter than deterministic bound
But: Need to tighten probabilistic bound



Tighter Probabilistic Bound

Assume that the roundoffs §; satisfy:
@ Zero mean: E[d;j] =0
@ Bounded: |[§;| <u

For any 0 < § < 1, with probability at least 1 — §

@ < k/2In(2/0)u
2n
where
2
VIxoyl3+ 50 ((xoy) )
KR = T
IxTy|

and

ue=(1+u (1+u)? - (1+4u))



Summary

Probabilistic perturbation bounds:

Relative error independent of n

Probabilistic roundoff error bounds:
@ Forward error proportional to ~ /n instead of n
@ No limit on dimension n

@ No assumption on independence of errors (Martingales)
Only assumption: zero-mean and bounded

@ Exact, non-asymptotic bounds (no big O terms)
@ Extremely stringent success probabilities (6 = 10-19)
Not covered:

New condition numbers for general forward error bounds

(from concentration inequalities)



