Randomized Algorithms for Matrix Computations

Ilse Ipsen

Students: John Holodnak, Kevin Penner, Thomas Wentworth

Research supported in part by NSF CISE CCF, DARPA XData

Randomized Algorithms

Solve a deterministic problem by statistical sampling

• Monte Carlo Methods

Von Neumann & Ulam, Los Alamos, 1946

• Simulated Annealing: global optimization

Application of Randomized Algorithms

- Astronomy: Tamás Budavári (Johns Hopkins)
 Classification of galaxies
 Singular Value Decomposition/PCA, subset selection
- Nuclear Engineering: Hany Abdel-Khalik (NCSU) Model reduction in nuclear fission Low-rank approximation
- Population Genomics: Petros Drineas (RPI)
 Find SNPs that predict population association
 SVD/PCA, subset selection
- Software for Machine Learning Applications: Matrix multiplication, linear systems, least squares, SVD/PCA, low rank approximation, matrix functions

Michael Mahoney (Stanford), Ken Clarkson and David Woodruf (IBM Almaden) Haim Avron and Christos Boutsidis (IBM Watson), Costas Bekas (IBM Zürich)

This Talk

Least squares/regression problems

- Traditional, deterministic algorithms
- A randomized algorithm *Krylov space method Randomized preconditioner*
- Random sampling of rows

To construct preconditioned matrix Need: Sampled matrices with low condition numbers

- A probabilistic bound for condition numbers
- Coherence
- Leverage scores

Least Squares/Regression Problems: Traditional, Deterministic Algorithms

Least Squares for Dense Matrices

• Given:

Real $m \times n$ matrix A with rank(A) = nReal $m \times 1$ vector b

• Want: $\min_{x} ||Ax - b||_2$ (two-norm)

Unique solution $x = A^{\dagger}b$

• Direct method: QR factorization A = QR $Q^TQ = I$, R is \triangle Solve $Rx = Q^Tb$

Operation count: $\mathcal{O}(mn^2)$

QR Factorization of Tall & Skinny Matrix

Least Squares for Dense Matrices

• Given:

Real $m \times n$ matrix A with rank(A) = nReal $m \times 1$ vector b

• Want: $\min_{x} ||Ax - b||_2$ (two-norm)

Unique solution $x = A^{\dagger}b$

• Direct method:

QR factorization A = QR $Q^TQ = I$, R is \triangle Solve $Rx = Q^Tb$

Operation count: $\mathcal{O}(mn^2)$

• But: Too expensive when A is large & sparse QR factorization produces fill-in

Least Squares for Sparse Matrices: LSQR [Paige & Saunders 1982]

Krylov space method

Iterates x_k computed with matrix vector multiplications

Residuals decrease (in exact arithmetic)

$$\|b - Ax_k\|_2 \le \|b - Ax_{k-1}\|_2$$

Convergence fast if condition number $\kappa(A)$ small

 $\kappa(A) = \|A\|_2 \|A^{\dagger}\|_2 \ge 1$

Accelerating Convergence

Find preconditioner P with

 $\kappa(AP)$ small Linear system Px = rhs is easy to solve

Preconditioned least squares problem

Solve $\min_{y} ||APy - b||_2$ by LSQR {fast convergence} Retrieve solution to original problem: x = Py

The ideal preconditioner

 $\begin{array}{ll} QR \ \text{factorization} \ A = QR \quad Q^{\mathsf{T}}Q = I, R \ \text{is} \ \triangle \\ Preconditioner \ P = R^{-1} \quad \Rightarrow AR^{-1} = Q \\ \kappa(Q) = 1: \quad LSQR \ \text{converges} \ \text{in} \ 1 \ \text{iteration} \ \text{!!!} \end{array}$

But: Construction of preconditioner much too expensive!

A Randomized Preconditioner for Least Squares Problems

A Cheaper, Randomized Preconditioner

QR factorization from only a few rows of A

- Sample $c \ge n$ rows of A: SA
- "Small" QR factorization

$$SA = Q_s R_s$$
 $Q_s^T Q_s = I$, R_s is \triangle

• Randomized preconditioner R_s^{-1}

QR Factorizations of Original and Sampled Matrices

Blendenpik [Avron, Maymounkov & Toledo 2010]

- Solve $\min_{z} ||Az b||_2$
- A is $m \times n$, rank(A) = n and $m \gg n$

$\begin{cases} \text{Solve preconditioned problem} \\ \text{Solve } \min_{y} \|AR_{s}^{-1}y - b\|_{2} \text{ with LSQR} \\ \text{Solve } R_{s}z = y \quad \{ \triangle \text{ system} \} \end{cases}$

Hope:

 AR_s^{-1} has almost orthonormal columns Condition number almost perfect: $\kappa(AR_s^{-1}) \approx 1$

From Sampling to Condition Numbers

[Avron, Maymounkov & Toledo 2010]

- Computed QR decomposition of sampled matrix: $SA = Q_s R_s$
- Conceptual QR decomposition of full matrix: A = QR

The Idea

- Sampling rows of $A \equiv$ Sampling rows of Q
- Ondition number of preconditioned matrix:

 $\kappa(AR_s^{-1}) = \kappa(SQ)$

We analyze $\kappa(SQ)$

Sampled matrices with orthonormal columns

Random Sampling of Rows

Random Sampling of Rows

Given: Matrix Q with m rows

- Sampling strategies pick indices: Sample c indices from {1,...,m}
- Construct sampled matrix SQ
- Obtermine expected value of SQ

Three sampling strategies:

Sampling without replacement Sampling with replacement (Exactly(c)) Bernoulli sampling

Uniform Sampling without Replacement

[Gittens & Tropp 2011, Gross & Nesme 2010]

Choose random permutation k_1, \ldots, k_m of $1, \ldots, m$ Pick $k_1 \ldots, k_c$

Properties:

- Picks exactly c indices k_1, \ldots, k_c
- Each index is picked at most once
- The picks depend on each other
- Random permutation of *m* indices

A permutation that is equally likely to occur among all m! permutations

Uniform Sampling with Replacement (Exactly(c))

[Drineas, Kannan & Mahoney 2006]

for t = 1 : c do Pick k_t from $\{1, ..., m\}$ with probability 1/mindependently and with replacement end for

Properties:

- Picks exactly c indices k_1, \ldots, k_c
- An index can be picked more than once
- All picks are independent

Bernoulli Sampling

[Avron, Maymounkov & Toledo 2010, Gittens & Tropp 2011]

for
$$j = 1 : m$$
 do
Pick *j* with probability c/m
end for

Properties:

- Samples each index at most once
- Expected number of sampled indices: c
- All picks are independent

Construction of Sampled Matrix

• Sampling with and without replacement:

$$SQ = \sqrt{\frac{m}{c}} \begin{pmatrix} \text{row } k_1 \text{ of } Q \\ \vdots \\ \text{row } k_c \text{ of } Q \end{pmatrix}$$

Sampled matrix has c rows from Q

• Bernoulli sampling:

row j of
$$SQ = \sqrt{\frac{m}{c}} \begin{cases} \text{row } j \text{ of } Q & \text{with probability } \frac{c}{m} \\ 0 & \text{with probability } 1 - \frac{c}{m} \end{cases}$$

Sampled matrix has m rows Expected number of rows from Q is c

Approach towards Expected Value of SQ

• Two-norm condition number:

$$\kappa(SQ)^2 = \kappa\left((SQ)^T(SQ)\right)$$

 $(SQ)^{T}(SQ)$ is a symmetric matrix

- Matrix product $(SQ)^T(SQ)$: Sum of outer products
- Expected value of one sampled outer product
- Expected value of $(SQ)^T(SQ)$

Matrix Product = Sum of Outer Products

$$Q = \begin{pmatrix} x & x \\ x & x \\ x & x \end{pmatrix}$$

Product
$$Q^T Q = \begin{pmatrix} x & x & x \\ x & x & x \end{pmatrix} \begin{pmatrix} x & x \\ x & x \\ x & x \end{pmatrix}$$
$$= \begin{pmatrix} x \\ x \end{pmatrix} (x \quad x) + \begin{pmatrix} x \\ x \end{pmatrix} (x \quad x) + \begin{pmatrix} x \\ x \end{pmatrix} (x \quad x)$$

= Sum of outer products

Outer Product Representations

Q has m rows

$$Q = \begin{pmatrix} r_1 \\ \vdots \\ r_m \end{pmatrix} \quad \text{with} \quad r_1^T r_1 + \dots + r_m^T r_m = Q^T Q$$

Sampled matrix SQ has c rows

$$SQ = \sqrt{\frac{m}{c}} \begin{pmatrix} r_{k_1} \\ \vdots \\ r_{k_c} \end{pmatrix}$$

with

$$\frac{m}{c}\left(r_{k_1}^T r_{k_1} + \dots + r_{k_c}^T r_{k_c}\right) = (SQ)^T (SQ)$$

Expected Value of Sampled Matrix

Given: Row r_{k_1} of Q from sampling with replacement

Expected value of matrix random variable

$$\mathbf{E}[r_{k_1}^T r_{k_1}] = \frac{1}{m} r_1^T r_1 + \dots + \frac{1}{m} r_m^T r_m$$
$$= \frac{1}{m} \left(r_1^T r_1 + \dots + r_m^T r_m \right)$$
$$= \frac{1}{m} Q^T Q$$

Linearity of expected value

$$\mathbf{E}\left[(SQ)^{T}(SQ)\right] = \frac{m}{c} \left(\mathbf{E}[r_{k_{1}}^{T}r_{k_{1}}] + \dots + \mathbf{E}[r_{k_{c}}^{T}r_{k_{c}}]\right)$$
$$= \frac{m}{c} \left(\frac{1}{m}Q^{T}Q + \dots + \frac{1}{m}Q^{T}Q\right) = Q^{T}Q$$

 $(SQ)^{T}(SQ)$ is unbiased estimator of $Q^{T}Q$

Expected Value when Sampling from Matrices with Orthonormal Columns

- Given: Matrix Q with orthonormal columns, $Q^T Q = I$
- Matrix SQ produced by

Sampling with replacement Sampling without replacement Bernoulli sampling

• Expected value $\mathbf{E}[(SQ)^T(SQ)] = Q^TQ = I$

Cross product of sampled matrix is Unbiased estimator of identity matrix

• "In expectation": $\kappa(SQ) = 1$ Expected value of sampled matrix perfectly conditioned

Where We Are Now in the Talk

- Solution of least squares problems $\min_x ||Ax b||_2$
- Krylov space method + randomized preconditioner
- Condition number of preconditioned matrix:

 $\kappa(SQ) = \|SQ\|_2 \|(SQ)^{\dagger}\|_2$

Q has orthonormal columns, $Q^T Q = I$

• Sampled matrix SQ

Three different strategies to sample rows from Q

• Expected value of sampled matrix

$$\mathbf{E}\left[(SQ)^{\mathsf{T}}(SQ)\right] = Q^{\mathsf{T}}Q = I$$

Issues

- How to implement sampling?
- Does sampling with replacement really make sense here?
- How large are the condition numbers of the sampled matrices?
- How many sampled matrices are rank deficient?
- Can we get **bounds** for the condition numbers of the sampled matrices?

How does the expected value differ from the actually sampled value?

How to Implement Uniform Sampling With Replacement

Sample k_t from $\{1, \ldots, m\}$ with probability 1/m independently and with replacement

• [Devroye 1986] $\eta = rand$ {uniform [0, 1] random variable} $k_t = \lfloor 1 + m \eta \rfloor$

• Matlab: $k_t = randi(m)$

Condition Numbers and Rank Deficiency

Sampling c rows from $m \times n$ matrix Q with $Q^T Q = I$ $m = 10^4$, n = 5 (30 runs for each value of c)

Sampled matrices SQ from three strategies:

Sampling without replacement Sampling with replacement Bernoulli sampling

Plots:

- Condition number of SQ $\kappa(SQ) = ||SQ||_2 ||(SQ)^{\dagger}||_2$ (if SQ has full column rank)
- Percentage of matrices SQ that are rank deficient $(\kappa(SQ) \ge 10^{16})$

Comparison of Sampling Strategies

Sampling without replacement

Sampling with replacement (Exactly(c))

Bernoulli sampling

Comparison of Sampling Strategies

Sampled matrices SQ from three strategies:

Little difference among the sampling strategies Same behavior for small c If SQ has full rank, then very well conditioned $\kappa(SQ) \leq 10$

Advantages of sampling with replacement

Fast: Need to generate/inspect only c values Easy to implement, embarrassingly parallel Replacement does not affect accuracy (for small amounts of sampling) A Probabilistic Bound for The Condition Number of the Sampled Matrices

Setup for the Bound

- Given: $m \times n$ matrix Q with orthonormal columns
- Sampling c rows from Q

$$Q = \begin{pmatrix} r_1 \\ \vdots \\ r_m \end{pmatrix} \qquad SQ = \sqrt{\frac{m}{c}} \begin{pmatrix} r_{k_1} \\ \vdots \\ r_{k_c} \end{pmatrix}$$

• Unbiased estimator: $\mathbf{E}\left[(SQ)^T(SQ)\right] = Q^TQ = I$

• Sum of c random matrices: $(SQ)^T SQ = X_1 + \cdots + X_c$

$$X_t = \frac{m}{c} r_{k_t} r_{k_t}^T \qquad 1 \le t \le c$$

Matrix Bernstein Concentration Inequality [Recht 2011]

- Y_t independent random $n \times n$ matrices with $\mathbf{E}[Y_t] = 0$
- $\|Y_t\| \le \tau$ almost surely (two-norm)
- $\rho_t \equiv \max\{\|\mathbf{E}[Y_t Y_t^T]\|, \|\mathbf{E}[Y_t^T Y_t]\|\}$
- Desired error $0 < \epsilon < 1$

• Failure probability
$$\delta = 2n \exp \left(-\frac{3}{2} \frac{\epsilon^2}{3\sum_t \rho_t + \tau \epsilon}\right)$$

With probability at least $1-\delta$

$$\left\|\sum_{t} Y_{t}\right\| \leq \epsilon \qquad \{\text{Deviation from mean}\}$$

Applying the Concentration Inequality

• Sampled matrix:

$$(SQ)^T(SQ) = X_1 + \cdots + X_c, \quad X_t = \frac{m}{c} r_{k_t} r_{k_t}^T$$

• Zero mean version:

$$(SQ)^T(SQ) - I = Y_1 + \dots + Y_c, \quad Y_t = X_t - \frac{1}{c}I$$

• By construction: $\mathbf{E}[Y_t] = 0$

 $\|Y_t\| \leq \frac{m}{c} \mu, \qquad \mathsf{E}[Y_t^2] \leq \frac{m}{c^2} \mu$

Largest row norm squared: $\mu = \max_{1 \le j \le m} \|r_j\|^2$

With probability at least $1 - \delta$, $||(SQ)^T(SQ) - I|| \le \epsilon$

Condition Number Bound

- $m \times n$ matrix Q with orthonormal columns
- Largest row norm of Q squared: $\mu = \max_{1 \le j \le m} \|r_j\|^2$
- Number of rows to be sampled: $c \ge n$
- $0 < \epsilon < 1$

Failure probability

$$\delta = 2n \exp\left(-rac{c}{m\mu} rac{\epsilon^2}{3+\epsilon}
ight)$$

With probability at least $1 - \delta$:

$$\kappa(SQ) \leq \sqrt{rac{1+\epsilon}{1-\epsilon}}$$

Tightness of Condition Number Bound

Input: $m \times n$ matrix Q with $Q^T Q = I$ with $m = 10^4$, n = 5, $\mu = 1.5 n/m$

• Exact condition number from sampling with replacement *Little sampling:* $n \le c \le 1000$ *A lot of sampling:* $1000 \le c \le m$

2 Condition number bound $\sqrt{\frac{1+\epsilon}{1-\epsilon}}$ where success probability $1-\delta \equiv .99$

$$\epsilon \equiv \frac{1}{2c} \left(\ell + \sqrt{12c\ell + \ell^2} \right) \qquad \ell \equiv \frac{2}{3} \left(m \mu - 1 \right) \ln(2n/\delta)$$

Little sampling ($n \le c \le 1000$)

Bound holds for $c \geq 93 pprox 2(m\mu-1) \ln(2n/\delta)/\epsilon^2$

A lot of sampling ($1000 \le c \le m$)

Bound predicts correct magnitude of condition number

Condition Number Bound

- $m \times n$ matrix Q with orthonormal columns
- Largest row norm of Q squared: $\mu = \max_{1 \le j \le m} \|r_j\|^2$
- Number of rows to be sampled: $c \ge n$
- $0 < \epsilon < 1$
- Failure probability

$$\delta = 2n \, \exp\left(-\frac{c}{m\,\mu}\,\frac{\epsilon^2}{3+\epsilon}\right)$$

With probability at least $1 - \delta$:

$$\kappa(SQ) \leq \sqrt{rac{1+\epsilon}{1-\epsilon}}$$

The only distinction among different $m \times n$ matrices Q with orthonormal columns is μ

Conclusions from the Bound

• Correct magnitude for condition number of sampled matrix, even for small matrix dimensions

• Lower bound on number of sampled rows

$$\boldsymbol{c} = \mathcal{O}\left(m\,\boldsymbol{\mu}\,\mathsf{ln}\,n\right)$$

• Important ingredient: Largest row norm of Q squared

$$\mu = \max_{1 \le j \le m} \| \text{row } j \text{ of } Q \|^2$$

Coherence

 $\mu = \max_{1 \leq j \leq m} \| \operatorname{row} j \text{ of } Q \|^2$

Largest squared row norm of matrix Q with orthonormal columns

Properties of Coherence

Coherence of $m \times n$ matrix Q with $Q^T Q = I$

 $\mu = \max_{1 \le j \le m} \| \text{row } j \text{ of } Q \|^2$

- $n/m \leq \mu(Q) \leq 1$
- Maximal coherence: μ(Q) = 1
 At least one column of Q is a canonical vector
- Minimal coherence: μ(Q) = n/m
 Columns of Q are columns of a Hadamard matrix
- Coherence measures "correlation with standard basis"
- Indicator for how well the "mass" of the matrix is distributed

Coherence in General

- Donoho & Huo 2001 Mutual coherence of two bases
- Candés, Romberg & Tao 2006
- Candés & Recht 2009 Matrix completion: Recovering a low-rank matrix by sampling its entries
- Mori & Talwalkar 2010, 2011 Estimation of coherence
- Avron, Maymounkov & Toledo 2010 Randomized preconditioners for least squares
- Drineas, Magdon-Ismail, Mahoney & Woodruff 2011 Fast approximation of coherence

Different Definitions

• Coherence of subspace

Q is subspace of \mathbb{R}^m of dimension nP orthogonal projector onto Q

$$\mu_0(\mathcal{Q}) = \frac{m}{n} \max_{1 \le j \le m} \|\text{row } j \text{ of } P\|^2 \qquad (1 \le \mu_0 \le \frac{m}{n})$$

Coherence of full rank matrix

A is $m \times n$ with rank(A) = nColumns of Q are orthonormal basis for $\mathcal{R}(A)$

$$\mu(A) = \max_{1 \le j \le m} \| \text{row } j \text{ of } Q \|^2 \qquad \qquad (\frac{n}{m} \le \mu \le 1)$$

Reflects difficulty of recovering the matrix from sampling

Effect of Coherence on Sampling

Input: $m \times n$ matrix Q with $Q^T Q = I$ Coherence $\mu = \max_{1 \le j \le m} \|row j \text{ of } Q\|^2$ $m = 10^4, n = 5$

Sampling with replacement

- Low coherence: $\mu = 7.5 \cdot 10^{-4} = 1.5 n/m$
- **2** Higher coherence: $\mu = 7.5 \cdot 10^{-2} = 150 \ n/m$

Low Coherence

Only a single rank deficient matrix (for c = 5)

Higher Coherence

Most matrices rank deficient, when sampling at most 10% of rows

Improving on Coherence: Leverage Scores

Leverage Scores

Idea: Use all row norms

- Q is $m \times n$ with orthonormal columns
- Leverage scores = squared row norms

$$\ell_k = \| ext{row } k ext{ of } Q \|^2 \qquad 1 \leq k \leq m$$

• Coherence
$$\mu = \max_k \ell_k$$

- \bullet Low coherence \approx uniform leverage scores
- Leverage scores of full column rank matrix A: Columns of Q are orthonormal basis for R(A)

$$\ell_k(A) = \| ext{row } k ext{ of } Q \|^2 \qquad 1 \leq k \leq m$$

Statistical Leverage Scores

Hoaglin & Welsch 1978 Chatterjee & Hadi 1986

- Identify potential outliers in $\min_{x} ||Ax b||$
- *Hb*: Projection of *b* onto $\mathcal{R}(A)$ where $H = A(A^T A)^{-1}A^T$
- Leverage score: $H_{kk} \sim$ influence of kth data point on LS fit
- QR decomposition: A = QR

$$H_{kk} = \|\text{row } k \text{ of } Q\|^2 = \ell_k(A)$$

Application to randomized algorithms: Mahoney & al. 2006-2012

Leverage Score Bound

- $m \times n$ matrix Q with orthonormal columns
- Leverage scores

$$\ell_j = \|\text{row } j \text{ of } Q\|^2 \qquad L = \text{diag} \begin{pmatrix} \ell_1 & \dots & \ell_m \end{pmatrix}$$

• Coherence $\mu = \max_{1 \le j \le m} \ell_j$ • $0 < \epsilon < 1$

Failure probability

$$\delta = 2n \exp\left(-\frac{3}{2} \frac{c \epsilon^2}{m \left(3 \| Q^T L Q \|_2 + \mu \epsilon\right)}\right)$$

With probability at least $1 - \delta$: $\kappa(SQ) \le \sqrt{\frac{1+\epsilon}{1-\epsilon}}$

Improvement with Leverage Score Bound

Low coherence: $\mu = 1.5n/m$, small amounts of sampling

Leverage score bound vs. Coherence bound $(m = 10^4, n = 4, \delta = .01)$

Summary

Least squares problems $\min_{z} ||Az - b||_2$ A is $m \times n$, $\operatorname{rank}(A) = n$ and $m \gg n$

- Solution by iterative Krylov space method LSQR
- Randomized preconditioner
- Condition number of preconditioned matrix = $\kappa(SQ)$

Q has orthonormal columns, SQ is sampled matrix Three strategies to sample rows from Q

- Bounds for condition number of sampled matrix SQ
 Explicit, non-asymptotic, predictive even for small matrix dimensions
- Sampling accuracy depends on coherence
- Tighter bounds: Replace coherence by leverage scores

Existing Work

Randomized algorithms for least squares

Drineas, Mahoney & Muthukrishnan 2006 Drineas, Mahoney, Muthukrishnan & Sarlós 2006 Rokhlin & Tygert 2008 Boutsidis & Drineas 2009 Blendenpik: Avron, Maymounkov & Toledo 2010 LSRN: Meng, Saunders & Mahoney 2011

Survey papers for randomized algorithms

Halko, Martinsson & Tropp 2011 Mahoney 2011

Graph theory

Preconditioning for graph Laplacians, graph sparsification Spielman & Teng 2006, Koutis, Miller & Peng 2012, Effective resistance = leverage scores Drineas & Mahoney 2010