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Randomized Algorithms

Solve a deterministic problem by statistical sampling

Monte Carlo Methods
Von Neumann & Ulam, Los Alamos, 1946

Simulated Annealing: global optimization



Application of Randomized Algorithms

Astronomy: Tamás Budavári (Johns Hopkins)

Classification of galaxies
Singular Value Decomposition/PCA, subset selection

Nuclear Engineering: Hany Abdel-Khalik (NCSU)

Model reduction in nuclear fission
Low-rank approximation

Population Genomics: Petros Drineas (RPI)

Find SNPs that predict population association
SVD/PCA, subset selection

Software for Machine Learning Applications:
Matrix multiplication, linear systems, least squares,
SVD/PCA, low rank approximation, matrix functions
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This Talk

Least squares/regression problems

Traditional, deterministic algorithms

A randomized algorithm

Krylov space method
Randomized preconditioner

Random sampling of rows

To construct preconditioned matrix
Need: Sampled matrices with low condition numbers

A probabilistic bound for condition numbers

Coherence

Leverage scores



Least Squares/Regression Problems:
Traditional, Deterministic Algorithms



Least Squares for Dense Matrices

Given:

Real m × n matrix A with rank(A) = n
Real m × 1 vector b

Want: minx ‖Ax − b‖2 (two-norm)

Unique solution x = A†b

Direct method:
QR factorization A = QR QTQ = I , R is △

Solve Rx = QTb

Operation count: O(mn2)



QR Factorization of Tall & Skinny Matrix

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!!!!!!! !!!!!!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!

!

!

!

!

!

!

!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!#!!!!!!!!!!!!!$!



Least Squares for Dense Matrices

Given:

Real m × n matrix A with rank(A) = n
Real m × 1 vector b

Want: minx ‖Ax − b‖2 (two-norm)

Unique solution x = A†b

Direct method:
QR factorization A = QR QTQ = I , R is △

Solve Rx = QTb

Operation count: O(mn2)

But: Too expensive when A is large & sparse
QR factorization produces fill-in



Least Squares for Sparse Matrices:

LSQR [Paige & Saunders 1982]

Krylov space method
Iterates xk computed with matrix vector multiplications

Residuals decrease (in exact arithmetic)

‖b − Axk‖2 ≤ ‖b − Axk−1‖2

Convergence fast if condition number κ(A) small

κ(A) = ‖A‖2‖A
†‖2 ≥ 1



Accelerating Convergence

Find preconditioner P with

κ(AP) small
Linear system Px = rhs is easy to solve

Preconditioned least squares problem

Solve miny ‖AP y − b‖2 by LSQR {fast convergence}

Retrieve solution to original problem: x = Py

The ideal preconditioner

QR factorization A = QR QTQ = I , R is △

Preconditioner P = R−1 ⇒ AR−1 = Q
κ(Q) = 1 : LSQR converges in 1 iteration!!!

But: Construction of preconditioner much too expensive!



A Randomized Preconditioner
for Least Squares Problems



A Cheaper, Randomized Preconditioner

QR factorization from only a few rows of A

Sample c ≥ n rows of A: SA

“Small” QR factorization

SA = QsRs QT
s Qs = I , Rs is △

Randomized preconditioner R−1
s



QR Factorizations of Original and Sampled Matrices
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Blendenpik [Avron, Maymounkov & Toledo 2010]

Solve minz ‖Az − b‖2

A is m × n, rank(A) = n and m ≫ n

{Construct preconditioner}
Sample c ≥ n rows of A → SA {fewer rows}

QR factorization SA = QsRs

{Solve preconditioned problem}

Solve miny ‖AR
−1
s y − b‖2 with LSQR

Solve Rs z = y {△ system}

Hope:

AR−1
s has almost orthonormal columns

Condition number almost perfect: κ(AR−1
s ) ≈ 1



From Sampling to Condition Numbers

[Avron, Maymounkov & Toledo 2010]

Computed
QR decomposition of sampled matrix: SA = QsRs

Conceptual
QR decomposition of full matrix: A = QR

The Idea

1 Sampling rows of A ≡ Sampling rows of Q

2 Condition number of preconditioned matrix:

κ(AR−1
s ) = κ(SQ)

We analyze κ(SQ)
Sampled matrices with orthonormal columns



Random Sampling of Rows



Random Sampling of Rows

Given: Matrix Q with m rows

1 Sampling strategies pick indices:
Sample c indices from {1, . . . ,m}

2 Construct sampled matrix SQ

3 Determine expected value of SQ

Three sampling strategies:

Sampling without replacement
Sampling with replacement (Exactly(c))
Bernoulli sampling



Uniform Sampling without Replacement

[Gittens & Tropp 2011, Gross & Nesme 2010]

Choose random permutation k1, . . . , km of 1, . . . ,m
Pick k1 . . . , kc

Properties:

Picks exactly c indices k1, . . . , kc

Each index is picked at most once

The picks depend on each other

Random permutation of m indices

A permutation that is equally likely to occur
among all m! permutations



Uniform Sampling with Replacement (Exactly(c))

[Drineas, Kannan & Mahoney 2006]

for t = 1 : c do
Pick kt from {1, . . . ,m} with probability 1/m

independently and with replacement
end for

Properties:

Picks exactly c indices k1, . . . , kc

An index can be picked more than once

All picks are independent



Bernoulli Sampling

[Avron, Maymounkov & Toledo 2010, Gittens & Tropp 2011]

for j = 1 : m do
Pick j with probability c/m

end for

Properties:

Samples each index at most once

Expected number of sampled indices: c

All picks are independent



Construction of Sampled Matrix

Sampling with and without replacement:

SQ =
√

m
c







row k1 of Q
...

row kc of Q







Sampled matrix has c rows from Q

Bernoulli sampling:

row j of SQ =
√

m
c

{

row j of Q with probability c
m

0 with probability 1− c
m

Sampled matrix has m rows
Expected number of rows from Q is c



Approach towards Expected Value of SQ

Two-norm condition number:

κ(SQ)2 = κ
(

(SQ)T (SQ)
)

(SQ)T (SQ) is a symmetric matrix

Matrix product (SQ)T (SQ): Sum of outer products

Expected value of one sampled outer product

Expected value of (SQ)T (SQ)



Matrix Product = Sum of Outer Products

Q =





x x
x x
x x





Product QTQ =

(

x x x
x x x

)





x x
x x
x x





=

(

x
x

)

(

x x
)

+

(

x
x

)

(

x x
)

+

(

x
x

)

(

x x
)

= Sum of outer products



Outer Product Representations

Q has m rows

Q =







r1
...
rm






with rT1 r1 + · · · + rTm rm = QTQ

Sampled matrix SQ has c rows

SQ =
√

m
c







rk1
...
rkc







with
m
c

(

rTk1 rk1 + · · ·+ rTkc rkc

)

= (SQ)T (SQ)



Expected Value of Sampled Matrix

Given: Row rk1 of Q from sampling with replacement

Expected value of matrix random variable

E[rTk1 rk1 ] = 1
m
rT1 r1 + · · ·+ 1

m
rTm rm

= 1
m

(

rT1 r1 + · · · + rTm rm

)

= 1
m
QTQ

Linearity of expected value

E
[

(SQ)T (SQ)
]

= m
c

(

E[rTk1 rk1 ] + · · ·+ E[rTkc rkc ]
)

= m
c

(

1
m
QTQ + · · ·+ 1

m
QTQ

)

= QTQ

(SQ)T (SQ) is unbiased estimator of QTQ



Expected Value when Sampling from

Matrices with Orthonormal Columns

Given: Matrix Q with orthonormal columns, QTQ = I

Matrix SQ produced by

Sampling with replacement
Sampling without replacement
Bernoulli sampling

Expected value E
[

(SQ)T (SQ)
]

= QTQ = I

Cross product of sampled matrix is
Unbiased estimator of identity matrix

“In expectation”: κ(SQ) = 1
Expected value of sampled matrix perfectly conditioned



Where We Are Now in the Talk

Solution of least squares problems minx ‖Ax − b‖2

Krylov space method + randomized preconditioner

Condition number of preconditioned matrix:

κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2

Q has orthonormal columns, QTQ = I

Sampled matrix SQ
Three different strategies to sample rows from Q

Expected value of sampled matrix

E
[

(SQ)T (SQ)
]

= QTQ = I



Issues

How to implement sampling?

Does sampling with replacement really make sense here?

How large are the condition numbers of the sampled
matrices?

How many sampled matrices are rank deficient?

Can we get bounds for the condition numbers of the sampled
matrices?

How does the expected value differ
from the actually sampled value?



How to Implement

Uniform Sampling With Replacement

Sample kt from {1, . . . ,m} with probability 1/m
independently and with replacement

[Devroye 1986]

η = rand {uniform [0, 1] random variable}

kt = ⌊1 +m η⌋

Matlab: kt = randi(m)



Condition Numbers and Rank Deficiency

Sampling c rows from m × n matrix Q with QTQ = I
m = 104, n = 5 (30 runs for each value of c)

Sampled matrices SQ from three strategies:

Sampling without replacement
Sampling with replacement
Bernoulli sampling

Plots:

1 Condition number of SQ
κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2 (if SQ has full column rank)

2 Percentage of matrices SQ that are rank deficient
(κ(SQ) ≥ 1016)



Comparison of Sampling Strategies
Sampling without replacement

Sampling with replacement (Exactly(c))

Bernoulli sampling



Comparison of Sampling Strategies

Sampled matrices SQ from three strategies:

Little difference among the sampling strategies
Same behavior for small c
If SQ has full rank, then very well conditioned

κ(SQ) ≤ 10

Advantages of sampling with replacement

Fast: Need to generate/inspect only c values
Easy to implement, embarrassingly parallel
Replacement does not affect accuracy

(for small amounts of sampling)



A Probabilistic Bound for
The Condition Number of the Sampled Matrices



Setup for the Bound

Given: m × n matrix Q with orthonormal columns

Sampling c rows from Q

Q =







r1
...
rm






SQ =

√

m
c







rk1
...
rkc







Unbiased estimator: E
[

(SQ)T (SQ)
]

= QTQ = I

Sum of c random matrices: (SQ)TSQ = X1 + · · · + Xc

Xt =
m
c
rkt r

T
kt

1 ≤ t ≤ c



Matrix Bernstein Concentration Inequality [Recht 2011]

Yt independent random n × n matrices with E[Yt ] = 0

‖Yt‖ ≤ τ almost surely (two-norm)

ρt ≡ max{‖E[YtY
T
t ]‖, ‖E[Y T

t Yt ]‖}

Desired error 0 < ǫ < 1

Failure probability δ = 2n exp
(

−3
2

ǫ
2

3
∑

t ρt+τ ǫ

)

With probability at least 1− δ

∥

∥

∥

∥

∥

∑

t

Yt

∥

∥

∥

∥

∥

≤ ǫ {Deviation from mean}



Applying the Concentration Inequality

Sampled matrix:

(SQ)T (SQ) = X1 + · · · + Xc , Xt =
m
c
rkt r

T
kt

Zero mean version:

(SQ)T (SQ)− I = Y1 + · · · + Yc , Yt = Xt −
1
c
I

By construction: E[Yt ] = 0

‖Yt‖ ≤ m
c
µ, E[Y 2

t ] ≤
m
c2

µ

Largest row norm squared: µ = max1≤j≤m ‖rj‖
2

With probability at least 1− δ, ‖(SQ)T (SQ)− I‖ ≤ ǫ



Condition Number Bound

m × n matrix Q with orthonormal columns

Largest row norm of Q squared: µ = max1≤j≤m ‖rj‖
2

Number of rows to be sampled: c ≥ n

0 < ǫ < 1

Failure probability

δ = 2n exp

(

−
c

m µ

ǫ2

3 + ǫ

)

With probability at least 1− δ:

κ(SQ) ≤

√

1 + ǫ

1− ǫ



Tightness of Condition Number Bound

Input: m × n matrix Q with QTQ = I with
m = 104, n = 5, µ = 1.5 n/m

1 Exact condition number from sampling with replacement

Little sampling: n ≤ c ≤ 1000
A lot of sampling: 1000 ≤ c ≤ m

2 Condition number bound
√

1+ǫ

1−ǫ

where success probability 1− δ ≡ .99

ǫ ≡
1

2c

(

ℓ+
√

12cℓ+ ℓ2
)

ℓ ≡ 2
3 (m µ− 1) ln(2n/ δ)



Little sampling (n ≤ c ≤ 1000)

0 100 200 300 400 500 600 700 800 900 1000
1

10

c

κ(
S

Q
)

Bound holds for c ≥ 93 ≈ 2(mµ − 1) ln(2n/δ)/ǫ2



A lot of sampling (1000 ≤ c ≤ m)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.2

1.3

1.4

1.5

1.1

c

κ(
S

Q
)

Bound predicts correct magnitude of condition number



Condition Number Bound

m × n matrix Q with orthonormal columns

Largest row norm of Q squared: µ = max1≤j≤m ‖rj‖
2

Number of rows to be sampled: c ≥ n

0 < ǫ < 1

Failure probability

δ = 2n exp

(

−
c

m µ

ǫ2

3 + ǫ

)

With probability at least 1− δ:

κ(SQ) ≤

√

1 + ǫ

1− ǫ

The only distinction among different m × n matrices Q with
orthonormal columns is µ



Conclusions from the Bound

Correct magnitude for condition number of sampled matrix,
even for small matrix dimensions

Lower bound on number of sampled rows

c = O (m µ ln n)

Important ingredient: Largest row norm of Q squared

µ = max
1≤j≤m

‖row j of Q‖2



Coherence

µ = max1≤j≤m ‖row j of Q‖2

Largest squared row norm of
matrix Q with orthonormal columns



Properties of Coherence

Coherence of m × n matrix Q with QTQ = I

µ = max
1≤j≤m

‖row j of Q‖2

n/m ≤ µ(Q) ≤ 1

Maximal coherence: µ(Q) = 1
At least one column of Q is a canonical vector

Minimal coherence: µ(Q) = n/m
Columns of Q are columns of a Hadamard matrix

Coherence measures “correlation with standard basis”

Indicator for how well the ”mass” of the matrix is distributed



Coherence in General

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix
by sampling its entries

Mori & Talwalkar 2010, 2011

Estimation of coherence

Avron, Maymounkov & Toledo 2010

Randomized preconditioners for least squares

Drineas, Magdon-Ismail, Mahoney & Woodruff 2011

Fast approximation of coherence



Different Definitions

Coherence of subspace
Q is subspace of Rm of dimension n
P orthogonal projector onto Q

µ0(Q) =
m

n
max

1≤j≤m
‖row j of P‖2 (1 ≤ µ0 ≤

m
n
)

Coherence of full rank matrix
A is m × n with rank(A) = n
Columns of Q are orthonormal basis for R(A)

µ(A) = max
1≤j≤m

‖row j of Q‖2 ( n
m

≤ µ ≤ 1)

Reflects difficulty of recovering the matrix from sampling



Effect of Coherence on Sampling

Input: m × n matrix Q with QTQ = I

Coherence µ = max1≤j≤m ‖row j of Q‖2

m = 104, n = 5

Sampling with replacement

1 Low coherence: µ = 7.5 · 10−4 = 1.5 n/m

2 Higher coherence: µ = 7.5 · 10−2 = 150 n/m



Low Coherence
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Only a single rank deficient matrix (for c = 5)



Higher Coherence

200 300 400 500 600 700 800 900 1000

1.5

2

3

4

5

c

κ(
S

Q
)

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100

90

c

F
ai

lu
re

 P
er

ce
n

ta
g

e

Most matrices rank deficient, when sampling at most 10% of rows



Improving on Coherence:

Leverage Scores



Leverage Scores

Idea: Use all row norms

Q is m × n with orthonormal columns

Leverage scores = squared row norms

ℓk = ‖row k of Q‖2 1 ≤ k ≤ m

Coherence µ = maxk ℓk

Low coherence ≈ uniform leverage scores

Leverage scores of full column rank matrix A:
Columns of Q are orthonormal basis for R(A)

ℓk(A) = ‖row k of Q‖2 1 ≤ k ≤ m



Statistical Leverage Scores

Hoaglin & Welsch 1978
Chatterjee & Hadi 1986

Identify potential outliers in minx ‖Ax − b‖

Hb: Projection of b onto R(A) where H = A(ATA)−1AT

Leverage score: Hkk ∼ influence of kth data point on LS fit

QR decomposition: A = QR

Hkk = ‖row k of Q‖2 = ℓk(A)

Application to randomized algorithms: Mahoney & al. 2006–2012



Leverage Score Bound

m × n matrix Q with orthonormal columns

Leverage scores

ℓj = ‖row j of Q‖2 L = diag
(

ℓ1 . . . ℓm
)

Coherence µ = max1≤j≤m ℓj

0 < ǫ < 1

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m (3 ‖QTLQ‖2 + µ ǫ

)

With probability at least 1− δ: κ(SQ) ≤
√

1+ǫ

1−ǫ



Improvement with Leverage Score Bound

Low coherence: µ = 1.5n/m, small amounts of sampling

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

c

κ(
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Q
)

Leverage score bound vs. Coherence bound
(m = 104, n = 4, δ = .01)



Summary

Least squares problems minz ‖Az − b‖2
A is m × n, rank(A) = n and m ≫ n

Solution by iterative Krylov space method LSQR

Randomized preconditioner

Condition number of preconditioned matrix = κ(SQ)

Q has orthonormal columns, SQ is sampled matrix

Three strategies to sample rows from Q

Bounds for condition number of sampled matrix SQ
Explicit, non-asymptotic, predictive even for small matrix dimensions

Sampling accuracy depends on coherence

Tighter bounds: Replace coherence by leverage scores



Existing Work

Randomized algorithms for least squares

Drineas, Mahoney & Muthukrishnan 2006

Drineas, Mahoney, Muthukrishnan & Sarlós 2006

Rokhlin & Tygert 2008

Boutsidis & Drineas 2009

Blendenpik: Avron, Maymounkov & Toledo 2010

LSRN: Meng, Saunders & Mahoney 2011

Survey papers for randomized algorithms

Halko, Martinsson & Tropp 2011

Mahoney 2011

Graph theory

Preconditioning for graph Laplacians, graph sparsification
Spielman & Teng 2006, Koutis, Miller & Peng 2012, ....

Effective resistance = leverage scores
Drineas & Mahoney 2010


