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Least Squares/Regression Models

Given: Design matrix X € R"P with rank(X) = p
© Gaussian linear regression model
y=XBy+e, e~N(O,a2I,,)

Unknown parameter vector 3

© Least squares problem

min [ XB — ¥l

Unique maximum likelihood estimator f = (XTX)"1xTy

© Randomized (row compression) algorithm

min [S(XB ~ )

Minimal norm solution B = (§X) (Sy)



Objective

Determine combined mean and variance of 3 w.r.t.

@ Gaussian linear model € ~ N(0,021,)
@ Randomized row compression S

Inspiration

Ping Ma, Michael Mahoney, Bin Yu
A statistical perspective on algorithmic leveraging
J. Mach. Learn. Res., vol. 16, pp 861-911 (2015)

Overview

Existing work

Examples

Structural perturbation bounds

Model-induced uncertainty, conditioned on algorithm-induced uncertainty
Combined model-induced and algorithm-induced uncertainty

Summary



Existing Work

(Numerical) row-compression methods for least squares

Drineas, Mahoney, Muthukrishnan 2006

Zhou, Lafferty, Wasserman 2007

Boutsidis, Drineas 2009

Drineas, Mahoney, Muthukrishnan, Sarlés 2011
Meng, Saunders, Mahoney 2014

Bartels, Hennig 2016

Becker, Kawas, Petrick, Ramamurthy 2017

Statistical properties

Ma, Mahoney, Yu 2015

Raskutti, Mahoney 2016

Ahfock, Astle, Richardson 2017
Thanei, Heinze, Meinshausen 2017
Lopes, Wang, Mahoney 2018



Examples



Model-Induced Uncertainty

Gaussian linear model:  y = XBg + € with € ~ N(0,021,)

Design matrix:
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Left inverse: X' X =1= <0 1)

Maximum likelihood estimator: |§ = Xy
Unbiased estimator: IEy[[AS] = X1 Eyly] = XTX|30 =By

A 1
Variance:  Vary 8] = X1 Var,[y] (x') =% (3 ])



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (1)

ming |SXB — Sy|2 has solution B = (§X){Sy, E,ly] = XB,
Sketching preserves rank: rank(SX) = rank(X)
10
1 0 0 0)[0 1 10
SX:(O 1 0 o) (1 o)_(o 1):(5)()T
0 0
Unbiased estimator:
Ey [B|S] = (5X)'S Byly] = (SX)'SXB, = Bo

Variance has increased:

Var, [B‘S} :gQ(SX)TS((SX)Ts)T — g2 <(1) (1)> >;o'2 (% (1)



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (2)

ming |S(XB — y)||2 has solution B = (SX)ISy, E,[y] = XB,
Sketching causes loss of rank: rank(S$X) < rank(X)
100 0 10
SX:(O 00 1)( ):(o 0)=(5X)T

Biased estimator:

O = O
O O = O

£y [B]S] = (sx)15xBo = (5 ) Bo B

Variance is singular:

Var, [B|S| = 02(SX)'S ((SX)'S) T=o (é 8)



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (3)

ming |S(XB — y)||2 has solution B = (SX)ISy, E,[y] = XB,

Summary: Model-induced uncertainty conditioned on S
@ Sketching preserves rank: rank(S§X) = rank(X)
Left inverse: (SX)F = (XTSTSX)1(sX)T
B is an unbiased estimator: E,[f ‘ S] =By

@ Sketching causes loss of rank: rank(SX) < rank(X)

No left inverse: (XTSTSX)™! does not exist
B is a biased estimator: E,[( ‘ S] # By

Variance Var,[@ ‘ S] is singular



Combined Uncertainty:

Uniform Sampling with Replacement (1)

Sampling 2 out of 4 rows:
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Unbiased estimator of the identity:
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Combined Uncertainty:
Uniform Sampling with Replacement (2)

ming |S(XB — y)||2 has solution B = (SX)iSy
Conditional mean: E, [ ‘ S| = (SX)ISXB,

Sequential conditioning:
E[B] = Es [Ey [B ‘ s” — K, [(SX)TSX] Bo
Biased estimator:
4 4
e [5x0'sx] = 3% s =% (5 9) (5 9)
i=1 j=1

12 out of 16 sketched matrices §;;X are rank deficient



Structural Perturbation Bounds



Perturbed Solution

Exact problem ming || XB — y||2

Hat matrix Py = X(XTX)"1XT = xx1
Range R(Px) = R(X)

Solution B = Xty = XTP.y

Perturbed problem ming ||S(XB — y)|l2
(XTST §X)~! does not work!
Comparison Hat matrix* P = X(§X)'S
Range R(P) C R(X) = R(Px)
If rank(SX) = rank(X) then R(P) = R(X)
Solution B = (SX)ISy = XTPy

*More general than [Raskutti, Mahoney 2016]



Example: Hat Matrix, and Comparison Hat Matrix

Design matrix, and Hat matrix:

. Pe=xxT=

O OR
O OO
ONI= ONI=
O O = O
ONI= ONI=
O O OO

Sketching matrix with rank(SX) = rank(X), and Comparison Hat matrix:

s:(1 0 0 0), P=X(5X)'S =

01 00 » R(P) =R(X)

O = O
[eNeN o)
o O oo
O O O O

Sketching matrix with rank(SX) < rank(X), and Comparison Hat matrix:

s:(l 00 0)7 P = X(SX)'s = . R(P) C R(X)

O = O
oo oo
oo oo
o O oo



Perturbed Solution

Exact problem ming [|XB — y||2
Hat matrix Py = X(XTX)1XT = XXT
Solution B = X'P.y

Perturbed problem ming ||S(XB — y)||2

Comparison Hat matrix P = X(SX)'S
Solution B = XTPy

Difference between perturbed and exact solution
B=B+X(P- Py

proportional to difference between Hat and Comparison Hat matrix



Multiplicative Perturbation Bounds

Ingredients:

Condition number:  k2(X) = || X||2[| X2
Angle between y and range(X): 0<6 < 7/2

Relative error in perturbed solution:

1B — B> < r2(X)

IP — Px|)2

5 — cosf
|| B H2 A\r_-_’ Perturbation
mplifier

Least squares solution insensitive to multiplicative perturbations, if
© Matrix X well-conditioned with respect to (left) inversion
@ Righthand side y close to range(X)

Tighter than [Drineas, Mahoney, Muthukrishnan, Sarlés 2011]



Model-Induced Uncertainty, Conditioned on
Algorithm-Induced uncertainty



Conditioning on S: Mean

ming |[SXB — Sy||2 has solution B = (SX)'Sy
Conditional mean

Ey [B]S] = (SX)S By ly] = (SX)'S X B,

o If rank(§X) = rank(X) then B is unbiased estimator

E, [B] S| = (5X)'(5X) Bo = Bo
)

o If rank(§X) < rank(X) then B is biased estimator

Ey [B|S] = Bo+ (1 - (5X)(5X)) o

Rank deficiency of SX

Bias of 3 increases with rank deficiency of SX



Conditioning on S: Variance

ming [[SXB — Sy||> has solution B=XPy

Ingredients:

Hat matrix: Py = XX
Comparison Hat matrix: P = X(SX)'S

Model variance: Var,[f] = 0*(XTX) ™ = 02X (XT) T
Conditional variance:
Var, | ( s| = o2x'PPT(xhT

= Var,[p]+ o2X! (PPT—PX) (xH7

Deviation of P from orthogonal projector

P, is orthogonal projector onto R(X) with P, =P, =P



Conditioning on S: Summary

ming [[SXB — Sy|2 has solution B = XTPy
Comparison Hat matrix P = X(SX)'S

Model-induced uncertainty of B conditioned on S
governed by rank(SX)

@ Bias increases with deviation of SX from full column-rank
o If rank(§X) = rank(X) then B is unbiased
@ Conditional variance close to model variance, if

P close to being an orthogonal projector onto R(X)
X well-conditioned with respect to inversion

o If rank(SX) < rank(X) then Var,[B |S] is singular



Combined Model-induced and Algorithm-Induced
Uncertainty



Combined Uncertainty: Mean

ming [[SXB — Sy||2> has solution B = (SX)ISy
Total mean
E[B] = Bo + Es |(SX)'(SX) — 1| By
@ Deviation of combined uncertainties from model-induced

uncertainties governed by
expected deviation of sketched matrix from rank deficiency

@ Total bias proportional to
expected deviation of SX from having full column-rank



Combined Uncertainty: Variance

ming |[SXB — Sy||2 has solution B = (SX)'Sy
Deviation of total variance from model variance
Var[ﬁ] = Vary[[AE] + a2 Xt ES[PPT — Py] (XT)T
+Varg [ ((SX)'(SX) ~ 1) Bo|
o XTE,(PPT — P,J(XNT

Expected deviation of P from orthogonal projector onto R(X),
amplified by conditioning of X

o Var, [((SX)!(SX) — 1) Bo]

Expected deviation of SX from having full column-rank



Example: Best Case for Uniform Sampling

Columns of Hadamard matrix: Best Coherence

P =Xxx"=1

oOrROR
= O+~ O
oOrrOK
= O+~ O

S samples 2 rows uniformly and with replacement
@ Expected deviation of SX from full column-rank

B, [(5X)1(5X) — 1] = — & (é (1’)

@ Expected deviation of P from orthogonal projector onto R(X)

1

0
Es[PPT — P, = 2 1
0

= O~ O
OO
= O = O



Example: Worst Case for Uniform Sampling

Columns of identity matrix: Worst Coherence

10 1 00 0
o 1 Cewi_ |0 1 0 0
X=1lo o P=%XX"=10 0 0 0
0 o 00 00

S samples 2 rows uniformly and with replacement

@ Expected deviation of SX from full column-rank

B [(5X)1(5%) —1] = - % (é ‘1’)

@ Expected deviation of P from orthogonal projector onto R(X)

10 0 0
T oo 1 0 0
EPPT—Pd=% |0 0 0 o
0 0 0 O



Summary

Randomized (row) sketching for full column-rank regression

Exact expressions for uncertainties, induced by model and algorithm,
under very general assumptions

Introduced Comparison Hat matrix,
to allow comparison between problems of different dimensions

Tighter multiplicative perturbation bounds
Total mean and variance governed by expected deviation of

Sketched matrix from full column-rank
Comparison Hat matrix from orthogonal projector

@ Examples illustrate applicability

@ J.T. Chi and I.C.F. Ipsen,

Randomized Least Squares Regression: Combining Model- and
Algorithm-Induced Uncertainties, arXiv:1808.0594





