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Least Squares/Regression Models

Given: Design matrix X ∈ R
n×p with rank(X ) = p

1 Gaussian linear regression model

y = Xβ0 + ǫ, ǫ ∼ N (0, σ2I n)

Unknown parameter vector β0

2 Least squares problem

min
β

‖Xβ− y‖2

Unique maximum likelihood estimator β̂ = (XTX )−1XT y

3 Randomized (row compression) algorithm

min
β

‖S(Xβ− y)‖2

Minimal norm solution β̃ = (SX )† (Sy)



Objective

Determine combined mean and variance of β̃ w.r.t.

Gaussian linear model ǫ ∼ N (0, σ2I n)

Randomized row compression S

Inspiration

Ping Ma, Michael Mahoney, Bin Yu
A statistical perspective on algorithmic leveraging
J. Mach. Learn. Res., vol. 16, pp 861-911 (2015)

Overview

Existing work
Examples
Structural perturbation bounds
Model-induced uncertainty, conditioned on algorithm-induced uncertainty
Combined model-induced and algorithm-induced uncertainty
Summary



Existing Work

(Numerical) row-compression methods for least squares

Drineas, Mahoney, Muthukrishnan 2006
Zhou, Lafferty, Wasserman 2007
Boutsidis, Drineas 2009
Drineas, Mahoney, Muthukrishnan, Sarlós 2011
Meng, Saunders, Mahoney 2014
Bartels, Hennig 2016
Becker, Kawas, Petrick, Ramamurthy 2017

Statistical properties

Ma, Mahoney, Yu 2015
Raskutti, Mahoney 2016
Ahfock, Astle, Richardson 2017
Thanei, Heinze, Meinshausen 2017
Lopes, Wang, Mahoney 2018



Examples



Model-Induced Uncertainty

Gaussian linear model: y = Xβ0 + ǫ with ǫ ∼ N (0, σ2I n)

Design matrix:

X =







1 0
0 1
1 0
0 0







, X † = (XTX )−1XT =

(
1
2 0 1

2 0
0 1 0 0

)

Left inverse: X †X = I =

(
1 0
0 1

)

Maximum likelihood estimator: β̂ = X †y

Unbiased estimator: Ey [β̂] = X †
Ey [y ] = X †Xβ0 = β0

Variance: Vary [β̂] = X †
Vary [y ]

(
X †)T = σ2

(
1
2 0
0 1

)



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (1)

minβ ‖SXβ− Sy‖2 has solution β̃ = (SX )†S y , Ey [y ] = Xβ0

Sketching preserves rank: rank(SX ) = rank(X )

SX =

(

1 0 0 0
0 1 0 0

)









1 0
0 1
1 0
0 0









=

(

1 0
0 1

)

= (SX )†

Unbiased estimator:

Ey

[

β̃

∣
∣
∣S

]

= (SX )†S Ey [y ] = (SX )†SXβ0 = β0

Variance has increased:

Vary

[

β̃

∣
∣
∣S

]

= σ2(SX )† S
(

(SX )†S
)T

= σ2

(
1 0
0 1

)

< σ2

(
1
2 0
0 1

)



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (2)

minβ ‖S(Xβ− y)‖2 has solution β̃ = (SX )†S y , Ey [y ] = Xβ0

Sketching causes loss of rank: rank(SX ) < rank(X )

SX =

(

1 0 0 0
0 0 0 1

)









1 0
0 1
1 0
0 0









=

(

1 0
0 0

)

= (SX )†

Biased estimator:

Ey

[

β̃

∣
∣
∣S

]

= (SX )†SXβ0 =

(
1 0
0 0

)

β0 6= β0

Variance is singular:

Vary

[

β̃

∣
∣
∣S

]

= σ2(SX )† S
(

(SX )†S
)T

= σ2

(
1 0
0 0

)



Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (3)

minβ ‖S(Xβ− y)‖2 has solution β̃ = (SX )†S y , Ey [y ] = Xβ0

Summary: Model-induced uncertainty conditioned on S

Sketching preserves rank: rank(SX ) = rank(X )

Left inverse: (SX )† = (XTSTSX )−1 (SX )T

β̃ is an unbiased estimator: Ey [β̃
∣
∣
∣S] = β0

Sketching causes loss of rank: rank(SX ) < rank(X )

No left inverse: (XTSTSX )−1 does not exist

β̃ is a biased estimator: Ey [β̃
∣
∣
∣S] 6= β0

Variance Vary [β̃
∣
∣
∣S] is singular



Combined Uncertainty:
Uniform Sampling with Replacement (1)

Sampling 2 out of 4 rows: S ij =
√
2

(
eT
i

eT
j

)

, 1 ≤ i , j ≤ 4

S11X =
√
2

(

1 0 0 0
1 0 0 0

)









1 0
0 1
1 0
0 0









=
√
2

(

1 1
1 1

)

S42X =
√
2

(

0 0 0 1
0 1 0 0

)









1 0
0 1
1 0
0 0









=
√
2

(

0 0
0 1

)

Unbiased estimator of the identity:

Es [S
TS] =

4∑

i=1

4∑

j=1

1
16S

T
ij S ij = I =

(
1
1
1
1

)



Combined Uncertainty:
Uniform Sampling with Replacement (2)

minβ ‖S(Xβ− y)‖2 has solution β̃ = (SX )†S y

Conditional mean: Ey [β̃
∣
∣
∣S ] = (SX )†SXβ0

Sequential conditioning:

E[β̃] = Es

[

Ey

[

β̃

∣
∣
∣S

]]

= Es

[

(SX )†SX
]

β0

Biased estimator:

Es

[

(SX )†SX
]

=

4∑

i=1

4∑

j=1

1
16 (S ijX )†(S ijX ) = 1

16

(
12 0
0 7

)

6=
(
1 0
0 1

)

12 out of 16 sketched matrices S ijX are rank deficient



Structural Perturbation Bounds



Perturbed Solution

Exact problem minβ ‖Xβ− y‖2
Hat matrix Px = X (XTX )−1XT = XX †

Range R(Px ) = R(X )

Solution β̂ = X †y = X †Pxy

Perturbed problem minβ ‖S(Xβ− y)‖2
(XTST SX )−1 does not work!

Comparison Hat matrix∗ P = X (SX )†S

Range R(P) ⊂ R(X ) = R(Px )

If rank(SX ) = rank(X ) then R(P) = R(X )

Solution β̃ = (SX )†Sy = X †Py

∗More general than [Raskutti, Mahoney 2016]



Example: Hat Matrix, and Comparison Hat Matrix

Design matrix, and Hat matrix:

X =









1 0
0 1
1 0
0 0









, Px = XX † =









1
2

0 1
2

0
0 1 0 0
1
2

0 1
2

0
0 0 0 0









Sketching matrix with rank(SX ) = rank(X ), and Comparison Hat matrix:

S =

(

1 0 0 0
0 1 0 0

)

, P = X (SX )†S =









1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0









, R(P) = R(X )

Sketching matrix with rank(SX ) < rank(X ), and Comparison Hat matrix:

S =

(

1 0 0 0
0 0 0 1

)

, P = X (SX )†S =









1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0









, R(P) ⊂ R(X )



Perturbed Solution

Exact problem minβ ‖Xβ− y‖2
Hat matrix Px = X (XTX )−1XT = XX †

Solution β̂ = X †Pxy

Perturbed problem minβ ‖S(Xβ− y)‖2
Comparison Hat matrix P = X (SX )†S

Solution β̃ = X †Py

Difference between perturbed and exact solution

β̃ = β̂+ X †(P − Px)y

proportional to difference between Hat and Comparison Hat matrix



Multiplicative Perturbation Bounds

Ingredients:

Condition number: κ2(X ) = ‖X‖2‖X †‖2
Angle between y and range(X ): 0 < θ < π/2

Relative error in perturbed solution:

‖β̃ − β̂‖2
‖β̂‖2

≤ κ2(X )

cos θ
︸ ︷︷ ︸

Amplifier

‖P − Px‖2
︸ ︷︷ ︸

Perturbation

Least squares solution insensitive to multiplicative perturbations, if

1 Matrix X well-conditioned with respect to (left) inversion

2 Righthand side y close to range(X )

Tighter than [Drineas, Mahoney, Muthukrishnan, Sarlós 2011]



Model-Induced Uncertainty, Conditioned on
Algorithm-Induced uncertainty



Conditioning on S : Mean

minβ ‖SXβ− Sy‖2 has solution β̃ = (SX )†S y

Conditional mean

Ey

[

β̃

∣
∣
∣S

]

= (SX )†S Ey [y ] = (SX )†S X β0

If rank(SX ) = rank(X ) then β̃ is unbiased estimator

Ey

[

β̃

∣
∣
∣S

]

= (SX )†(SX )
︸ ︷︷ ︸

I

β0 = β0

If rank(SX ) < rank(X ) then β̃ is biased estimator

Ey

[

β̃

∣
∣
∣S

]

= β0 +
(

I − (SX )†(SX )
)

︸ ︷︷ ︸

Rank deficiency of SX

β0

Bias of β̃ increases with rank deficiency of SX



Conditioning on S : Variance

minβ ‖SXβ− Sy‖2 has solution β̃ = X †P y

Ingredients:

Hat matrix: Px = XX †

Comparison Hat matrix: P = X (SX )†S

Model variance: Vary [β̂] = σ2(XTX )−1 = σ2X † (X †)T

Conditional variance:

Vary

[

β̃

∣
∣
∣S

]

= σ2 X †PPT (X †)T

= Vary [β̂] + σ2 X †
(

PPT − Px

)

(X †)T

︸ ︷︷ ︸

Deviation of P from orthogonal projector

Px is orthogonal projector onto R(X ) with Px
T = Px = Px

2



Conditioning on S : Summary

minβ ‖SXβ− Sy‖2 has solution β̃ = X †P y

Comparison Hat matrix P = X (SX )†S

Model-induced uncertainty of β̃ conditioned on S

governed by rank(SX )

Bias increases with deviation of SX from full column-rank

If rank(SX ) = rank(X ) then β̃ is unbiased

Conditional variance close to model variance, if

P close to being an orthogonal projector onto R(X )
X well-conditioned with respect to inversion

If rank(SX ) < rank(X ) then Vary [β̃
∣
∣
∣S] is singular



Combined Model-induced and Algorithm-Induced
Uncertainty



Combined Uncertainty: Mean

minβ ‖SXβ− Sy‖2 has solution β̃ = (SX )†S y

Total mean

E[β̃] = β0 + Es

[

(SX )†(SX )− I
]

β0

Deviation of combined uncertainties from model-induced
uncertainties governed by
expected deviation of sketched matrix from rank deficiency

Total bias proportional to
expected deviation of SX from having full column-rank



Combined Uncertainty: Variance

minβ ‖SXβ− Sy‖2 has solution β̃ = (SX )†S y

Deviation of total variance from model variance

Var[β̃] = Vary [β̂] + σ2 X †
Es [PPT − Px ] (X

†)T

+Vars

[(

(SX )†(SX )− I
)

β0

]

X †
Es [PPT − Px ] (X

†)T

Expected deviation of P from orthogonal projector onto R(X ),
amplified by conditioning of X

Vars
[(
(SX )†(SX )− I

)
β0

]

Expected deviation of SX from having full column-rank



Example: Best Case for Uniform Sampling

Columns of Hadamard matrix: Best Coherence

X =









1 1
1 −1
1 1
1 −1









, Px = XX † = 1
2









1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1









S samples 2 rows uniformly and with replacement

Expected deviation of SX from full column-rank

Es

[

(SX )†(SX )− I
]

= − 4
16

(

1 0
0 1

)

Expected deviation of P from orthogonal projector onto R(X )

Es [PPT − Px ] =
3
16









1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1











Example: Worst Case for Uniform Sampling

Columns of identity matrix: Worst Coherence

X =









1 0
0 1
0 0
0 0









, Px = XX † =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









S samples 2 rows uniformly and with replacement

Expected deviation of SX from full column-rank

Es

[

(SX )†(SX )− I
]

= − 9
16

(

1 0
0 1

)

Expected deviation of P from orthogonal projector onto R(X )

Es [PPT − Px ] =
9
16









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0











Summary

Randomized (row) sketching for full column-rank regression

Exact expressions for uncertainties, induced by model and algorithm,
under very general assumptions

Introduced Comparison Hat matrix,
to allow comparison between problems of different dimensions

Tighter multiplicative perturbation bounds

Total mean and variance governed by expected deviation of

Sketched matrix from full column-rank
Comparison Hat matrix from orthogonal projector

Examples illustrate applicability

J.T. Chi and I.C.F. Ipsen,

Randomized Least Squares Regression: Combining Model- and

Algorithm-Induced Uncertainties, arXiv:1808.0594




