Subset Selection Deterministic vs. Randomized

llse Ipsen

North Carolina State University

Joint work with: Stan Eisenstat, Yale

Mary Beth Broadbent, Martin Brown, Kevin Penner

Subset Selection

Given: real or complex matrix A integer k

Determine permutation matrix P so that

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \mathsf{A}_2)$$

- Important columns A₁
 Columns of A₁ are 'very' linearly independent
- Redundant columns A₂

Columns of A_2 are 'well' represented by A_1

Subset Selection Requirements

Important columns A₁

Smallest singular value $\sigma_k(A_1)$ should be 'large'

• Redundant columns A₂

 $\min_{Z} \|A_1 Z - A_2\|$ should be 'small' (two norm)

Subset Selection Requirements

Important columns A₁

Smallest singular value $\sigma_k(A_1)$ should be 'large'

$$\sigma_{\mathsf{k}}(\mathsf{A})/\gamma \leq \sigma_{\mathsf{k}}(\mathsf{A}_{1}) \leq \sigma_{\mathsf{k}}(\mathsf{A})$$

for some γ

• Redundant columns A₂

 $\min_{Z} \|A_1 Z - A_2\|$ should be 'small' (two norm)

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \|\mathsf{A}_1 \,\mathsf{Z} - \mathsf{A}_2\| \leq \gamma \,\sigma_{\mathsf{k}+1}(\mathsf{A})$$

for some γ

Outline

- Deterministic algorithms: strong RRQR, SVD
- Randomized 2-phase algorithm
- Perturbation analysis of randomized algorithm
- Numerical experiments: randomized vs. deterministic

• New deterministic algorithm

Deterministic Subset Selection

```
Businger & Golub (1965) QR with column pivoting
Faddev, Kublanovskaya & Faddeeva (1968)
Golub, Klema & Stewart (1976)
Gragg & Stewart (1976)
Stewart (1984)
Foster (1986)
T. Chan (1987)
```

Hong & Pan (1992) Chandrasekaran & Ipsen (1994) Gu & Eisenstat (1996) Strong RRQR

First Deterministic Algorithm

Rank revealing QR decomposition

$$\mathsf{AP} = \mathsf{Q} \begin{pmatrix} \mathsf{R}_{11} & \mathsf{R}_{12} \\ \mathsf{0} & \mathsf{R}_{22} \end{pmatrix} \qquad \text{where} \quad \mathsf{Q}^\mathsf{T} \mathsf{Q} = \mathsf{I}$$

• Important columns

$$old egin{array}{c} {\mathsf{R}}_{11} \ {\mathsf{0}} \end{array} = {\mathsf{A}}_1 \quad ext{and} \quad \sigma_{\mathsf{i}}({\mathsf{A}}_1) = \sigma_{\mathsf{i}}({\mathsf{R}}_{11}) \quad 1 \leq \mathsf{i} \leq \mathsf{k} \end{array}$$

• Redundant columns

$$\mathbf{Q} \begin{pmatrix} \mathbf{R}_{12} \\ \mathbf{R}_{22} \end{pmatrix} = \mathbf{A}_2 \qquad \min_{\mathbf{Z}} \|\mathbf{A}_1 \mathbf{Z} - \mathbf{A}_2\| = \|\mathbf{R}_{22}\|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Strong RRQR (Gu & Eisenstat 1996)

Input: $m \times n$ matrix A, $m \ge n$, integer k

Output:
$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$$
 R_{11} is $k \times k$

 $\bullet \ R_{11} \ is \ well \ conditioned$

$$rac{\sigma_{\mathsf{i}}(\mathsf{A})}{\sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})}} \leq \sigma_{\mathsf{i}}(\mathsf{R}_{11}) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

• R₂₂ is small

$$\sigma_{\mathsf{k}+\mathsf{j}}(\mathsf{A}) \leq \sigma_{\mathsf{j}}(\mathsf{R}_{22}) \leq \sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})} \, \sigma_{\mathsf{k}+\mathsf{j}}(\mathsf{A})$$

• Offdiagonal block not too large

$$\left(\mathsf{R}_{11}^{-1} \mathsf{R}_{12} \right)_{ij} \le 1$$

Strong RRQR Algorithm

Compute some QR decomposition with column pivoting

$$\mathsf{AP}_{\mathsf{initial}} = \mathsf{Q} \begin{pmatrix} \mathsf{R}_{11} & \mathsf{R}_{12} \\ \mathsf{0} & \mathsf{R}_{22} \end{pmatrix}$$

2 Repeat

Exchange a column of $\begin{pmatrix} R_{11} \\ 0 \end{pmatrix}$ with a column of $\begin{pmatrix} R_{12} \\ R_{22} \end{pmatrix}$ Update permutations P, retriangularize

until | det(R₁₁)| stops increasing

• Output:
$$AP_{final} = (A_1 \\ k \\ n-k$$

Second Deterministic Algorithm

Singular value decomposition

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n-k}}) = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 \\ \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_{11} & \mathsf{V}_{12} \\ \mathsf{V}_{21} & \mathsf{V}_{22} \end{pmatrix}$$

• Important columns A₁

$$\frac{\sigma_{\mathsf{i}}(\mathsf{A})}{\|\mathsf{V}_{11}^{-1}\|} \leq \sigma_{\mathsf{i}}(\mathsf{A}_1) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \qquad \text{for all} \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

• Redundant columns A₂

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \|\mathsf{V}_{11}^{-1}\| \sigma_{\mathsf{k}+1}(\mathsf{A})$$

[Hong & Pan 1992]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Almost Strong RRQR Algorithm

In the spirit of Golub, Klema and Stewart (1976)

Compute SVD

$$\mathsf{A} = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 \\ \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_1 \\ \mathsf{V}_2 \end{pmatrix}$$

a Apply strong RRQR to V₁: $V_1P = (\underbrace{V_{11}}_{k}, \underbrace{V_{12}}_{n-k})$

$$rac{1}{\sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})}} \leq \sigma_{\mathsf{i}}(\mathsf{V}_{11}) \leq 1 \qquad 1 \leq \mathsf{i} \leq \mathsf{k}$$

• Output: $AP = (\underbrace{A_1}_{k}, \underbrace{A_2}_{n-k})$

Almost Strong RRQR

Produces permutation P so that

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n}-\mathsf{k}})$$

where

• Important columns A₁

$$rac{\sigma_{\mathsf{i}}(\mathsf{A})}{\sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})}} \leq \sigma_{\mathsf{i}}(\mathsf{A}_1) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \qquad 1 \leq \mathsf{i} \leq \mathsf{k}$$

• Redundant columns A₂

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \sqrt{1 + \mathsf{k}(\mathsf{n} - \mathsf{k})} \, \sigma_{\mathsf{k}+1}(\mathsf{A})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Deterministic Subset Selection

- Algorithms: strong RRQR, SVD
- Permuting columns of A corresponds to permuting right singular vector matrix V
- Perturbation bounds in terms of V

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \|\mathsf{V}_{11}^{-1}\| \sigma_{\mathsf{k}+1}(\mathsf{A})$$

• Operation count for $m \times n$ matrix, $m \ge n$

$$\min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \sqrt{1 + \mathsf{f}^{2}\mathsf{k}(\mathsf{n} - \mathsf{k})} \, \sigma_{\mathsf{k}+1}(\mathsf{A})$$

in $\mathcal{O}\left(mn^2 + n^3 \log_f n\right)$ flops

Randomized Algorithms

Frieze, Kannan & Vempala 1998, 2004 Drineas, Kannan & Mahoney 2006 Deshpande, Rademacher, Vempala & Wang 2006 Rudelson & Vershynin 2007 Liberty, Woolfe, Martinsson, Rokhlin & Tygert 2007 Drineas, Mahoney & Muthukrishnan 2006, 2008 Boutsidis, Mahoney & Drineas 2008, 2009 Civril & Magdon-Ismail 2009

Survey paper:

Halko, Martinsson & Tropp 2009

2-Phase Randomized Algorithm

Boutsidis, Mahoney & Drineas 2009

- Quantum Randomized Phase:
 Sample small number (≈ k log k) of columns
- Oeterministic Phase: Apply rank revealing QR to sampled columns

With 70% probability:

Two norm

$$\min_{Z} \|A_1 Z - A_2\|_2 \leq \mathcal{O}\left(k^{3/4} \log^{1/2} k \ (n-k)^{1/4}\right) \|\Sigma_2\|_2$$

Frobenius norm

$$\min_{Z} \|\boldsymbol{A}_{1}\boldsymbol{Z} - \boldsymbol{A}_{2}\|_{F} \leq \mathcal{O}\left(k\log^{1/2}k\right)\|\boldsymbol{\Sigma}_{2}\|_{F}$$

Deterministic vs. Randomized Algorithms

• Want: permutation P so that AP

$$= (\underbrace{A_1}_{k}, \underbrace{A_2}_{n-k})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Compute SVD

$$\mathbf{A} = \mathbf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 \\ \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \end{pmatrix}$$

• Obtain P from k dominant right singular vectors V₁

Deterministic vs. Randomized Algorithms

- Want: permutation P so that $AP = (\underbrace{A_1} \underbrace{A_2})$

Compute SVD

$$\mathsf{A} = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 \\ \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_1 \\ \mathsf{V}_2 \end{pmatrix}$$

- Obtain P from k dominant right singular vectors V₁
- Deterministic: Apply RRQR to all columns of matrix V_1
- Randomized:

Apply RRQR to subset of columns of scaled matrix V_1 D

2-Phase Randomized Algorithm

Compute SVD

$$\mathbf{A} = \mathbf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 & \\ & \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix}$$

andomized phase:Scale: $V_1 \rightarrow V_1 D$ Sample c columns: $(V_1 D) P_s = (V_{1s} D_s *)$

• Deterministic phase: Apply RRQR to $V_{1s}D_s$: $(V_{1s}D_s) P_d = (\underbrace{V_{11}D_1}_{I_s} *)$

• Output: $AP_sP_d = (\underbrace{A_1}_{n-k}, \underbrace{A_2}_{n-k})$

Perturbation Bounds

$$\mathsf{SVD}: \qquad \mathsf{AP} = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 & \\ & \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_{11} & \mathsf{V}_{12} \\ \mathsf{V}_{21} & \mathsf{V}_{22} \end{pmatrix} \qquad \mathsf{V}_{11} \text{ is } \mathsf{k} \times \mathsf{k}$$

• For deterministic algorithms

$$\min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \|\boldsymbol{\Sigma}_{2}\|/\sigma_{\mathsf{k}}(\mathsf{V}_{11})$$

or

$$\min_{\mathbf{Z}} \|\mathbf{A}_{1}\mathbf{Z} - \mathbf{A}_{2}\| \leq \|\mathbf{\Sigma}_{2}\| + \|\mathbf{\Sigma}_{2}\mathbf{V}_{21}\|/\sigma_{\mathsf{k}}(\mathbf{V}_{11})$$

Perturbation Bounds

$$\mathsf{SVD}: \qquad \mathsf{AP} = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 & \\ & \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_{11} & \mathsf{V}_{12} \\ \mathsf{V}_{21} & \mathsf{V}_{22} \end{pmatrix} \qquad \mathsf{V}_{11} \text{ is } \mathsf{k} \times \mathsf{k}$$

• For deterministic algorithms

$$\min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \|\boldsymbol{\Sigma}_{2}\|/\sigma_{\mathsf{k}}(\mathsf{V}_{11})$$

or

$$\min_{\mathbf{Z}} \|\mathbf{A}_{1}\mathbf{Z} - \mathbf{A}_{2}\| \leq \|\mathbf{\Sigma}_{2}\| + \|\mathbf{\Sigma}_{2}\mathbf{V}_{21}\|/\sigma_{\mathsf{k}}(\mathbf{V}_{11})$$

• For randomized 2-phase algorithm

 $\min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\| \leq \|\boldsymbol{\Sigma}_{2}\| + \|\boldsymbol{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\|/\sigma_{\mathsf{k}}(\mathsf{V}_{11}\mathsf{D}_{1})$

for any nonsingular matrix D_1

Perturbation Bounds for Randomized Algorithm

• D₁ is scaling matrix

 $\min_{Z} \|A_{1}Z - A_{2}\| \leq \|\Sigma_{2}\| + \|\Sigma_{2}V_{21}D_{1}\|/\sigma_{k}(V_{11}D_{1})$

• $V_{11}D_1$ comes from RRQR:

$$\underbrace{(V_{1s}D_s)}_{\hat{c}} P_d = \underbrace{(V_{11}D_1}_k \ *)$$

$$\begin{split} \min_{\mathbf{Z}} \|\mathbf{A}_{1}\mathbf{Z} - \mathbf{A}_{2}\| \leq \\ \|\mathbf{\Sigma}_{2}\| + \sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})} \, \|\mathbf{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\| / \sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \end{split}$$

Perturbation Bounds for Randomized Algorithm

• D₁ is scaling matrix

 $\min_{Z} \|A_{1}Z - A_{2}\| \leq \|\Sigma_{2}\| + \|\Sigma_{2}V_{21}D_{1}\|/\sigma_{k}(V_{11}D_{1})$

• $V_{11}D_1$ comes from RRQR:

$$\underbrace{(V_{1s}D_s)}_{\hat{c}} P_d = \underbrace{(V_{11}D_1}_k \ *)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

$$\begin{split} \min_{\mathbf{Z}} \|\mathbf{A}_{1}\mathbf{Z} - \mathbf{A}_{2}\| \leq \\ \|\mathbf{\Sigma}_{2}\| + \sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})} \|\mathbf{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\| / \sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \end{split}$$

• We need with high probability:

 $\|\mathbf{\Sigma}_2 \mathbf{V}_{21} \mathbf{D}_1\| \approx \|\mathbf{\Sigma}_2\| \qquad \sigma_{\mathsf{k}}(\mathbf{V}_{1\mathsf{s}} \mathbf{D}_{\mathsf{s}}) \gg \mathbf{0}$

Probabilistic Bounds: Frobenius Norm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Column i of X sampled with probability p_i Scaling matrix $D_{ii} = 1/\sqrt{p_i}$ with probability p_i

Probabilistic Bounds: Frobenius Norm

Column i of X sampled with probability p_i Scaling matrix $D_{ii} = 1/\sqrt{p_i}$ with probability p_i

- Frobenius norm $\|X D\|_{F}^{2} = \operatorname{trace}(X D^{2} X^{T})$
- Linearity $E[||X D||_F^2] = trace(X \underbrace{E[D^2]}_{I} X^T)$
- Scaling $E\left[D_{ii}^2\right] = p_i * \frac{1}{p_i} + (1 p_i) * 0 = 1$

• Expected value $E [||X D||_F^2] = ||X||_F^2$

Probabilistic Bounds: Frobenius Norm

Column i of X sampled with probability p_i Scaling matrix $D_{ii} = 1/\sqrt{p_i}$ with probability p_i

- Frobenius norm $\|X D\|_{F}^{2} = \operatorname{trace}(X D^{2} X^{T})$
- Linearity $E[||X D||_F^2] = trace(X \underbrace{E[D^2]}_{I} X^T)$
- Scaling $E\left[D_{ii}^2\right] = p_i * \frac{1}{p_i} + (1 p_i) * 0 = 1$
- Expected value $E [||X D||_F^2] = ||X||_F^2$
- Markov's inequality

$$\operatorname{Prob}\left[\|\boldsymbol{\mathsf{X}}\;\boldsymbol{\mathsf{D}}\|_{\mathsf{F}}^2 \leq \alpha \; \|\boldsymbol{\mathsf{X}}\|_{\mathsf{F}}^2\right] \geq 1 - \frac{1}{\alpha}$$

Randomized Subset Selection: Frobenius Norm

Perturbation bound

$$\begin{split} \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\|_{\mathsf{F}} \leq \\ \|\boldsymbol{\Sigma}_{2}\|_{\mathsf{F}} + \sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})} \, \|\boldsymbol{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\|_{\mathsf{F}} / \sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \end{split}$$

• With probability $1 - \frac{1}{\alpha}$

 $\|\boldsymbol{\Sigma}_{2}\boldsymbol{\mathsf{V}}_{21}\boldsymbol{\mathsf{D}}_{1}\|_{\mathsf{F}} \leq \sqrt{\alpha} \|\boldsymbol{\Sigma}_{2}\boldsymbol{\mathsf{V}}_{2}\|_{\mathsf{F}} = \sqrt{\alpha} \|\boldsymbol{\Sigma}_{2}\|_{\mathsf{F}}$

Holds for any probability distribution

Randomized Subset Selection: Frobenius Norm

Perturbation bound

$$\begin{split} \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\|_{\mathsf{F}} \leq \\ \|\boldsymbol{\Sigma}_{2}\|_{\mathsf{F}} + \sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})} \, \|\boldsymbol{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\|_{\mathsf{F}} / \sigma_{\mathsf{k}}(\mathsf{V}_{1s}\mathsf{D}_{s}) \end{split}$$

• With probability $1 - \frac{1}{\alpha}$

 $\|\boldsymbol{\Sigma}_{2}\boldsymbol{\mathsf{V}}_{21}\boldsymbol{\mathsf{D}}_{1}\|_{\mathsf{F}} \leq \sqrt{\alpha} \|\boldsymbol{\Sigma}_{2}\boldsymbol{\mathsf{V}}_{2}\|_{\mathsf{F}} = \sqrt{\alpha} \|\boldsymbol{\Sigma}_{2}\|_{\mathsf{F}}$

- Holds for any probability distribution
- Still to show: $\sigma_k(V_{1s}D_s) \gg 0$ with high probability

Sampling: Frobenius Norm

When is $\sigma_k(V_{1s}D_s) \gg 0$ with high probability?

- Expected number of sampled columns: c
- Column i of V₁ sampled with "probability"

 $p_i = \min\{1, c q_i\}$ where $q_i = \|(V_1)_i\|_2^2/k$

Try to sample columns with large norm

• Scaling matrix $D = (1/\sqrt{p_1} \dots 1/\sqrt{p_n})$

• If $c = \Theta(k \log k)$ then with probability $\geq .9$

 $\sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \geq 1/2$

[Boutsidis, Mahoney & Drineas 2009]

Sampling: Frobenius Norm

How many columns should V_{1s} actually have?

- Expected number of sampled columns from V₁: c
- Actual number of columns in V_{1s}: ĉ

$E[\hat{c}] \leq c$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sampling: Frobenius Norm

How many columns should V_{1s} actually have?

- Expected number of sampled columns from V₁: c
- Actual number of columns in V_{1s}: ĉ

E[ĉ] ≤ **c**

 $\bullet \ \mbox{If } c \ \mbox{q}_i \leq 1$ for all i, and $\hat{c} \geq k$ then

$$\sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \leq \sqrt{\frac{\hat{\mathsf{c}}}{\mathsf{c}}}$$

• If $\hat{c} < c/4$ then $\sigma_k(V_{1s}D_s) < 1/2$

Make sure that enough columns are actually sampled

Randomized Subset Selection: Two Norm

$$\begin{split} \min_{\mathsf{Z}} \|\mathsf{A}_{1}\mathsf{Z} - \mathsf{A}_{2}\|_{2} \leq \\ \|\boldsymbol{\Sigma}_{2}\|_{2} + \sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})} \, \|\boldsymbol{\Sigma}_{2}\mathsf{V}_{21}\mathsf{D}_{1}\|_{2} / \sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}}) \end{split}$$

• Probability distribution $p_i = \min\{1, c \; q_i\}$

$$q_{i} = \frac{1}{2} \frac{\|(V_{1})_{i}\|_{2}^{2}}{k} + \frac{1}{2} \left(\frac{\|(\Sigma_{2}V_{2})_{i}\|_{2}}{\|\Sigma_{2}V_{2}\|_{F}}\right)^{2}$$

• With probability \geq .9

$$\|\boldsymbol{\Sigma}_2\boldsymbol{\mathsf{V}}_{21}\boldsymbol{\mathsf{D}}_1\|_2 \leq \gamma \; \left(\frac{(\mathsf{n}-\mathsf{k}+1)\log\mathsf{c}}{\mathsf{c}}\right)^{1/4} \; \|\boldsymbol{\Sigma}_2\|_2$$

[Boutsidis, Mahoney & Drineas 2009]

Numerical Experiments

Compare strong RRQR and randomized 2-phase algorithm

- Subset selection for 2 norm
- Matrix orders $n \leq 500, 2000$
- $0 \le k \le 240$
- Matrices:

Kahan, random, scaled random, triangular numerical rank k

- Randomized algorithm: run 40 times
- Iterative determination of c

c = 2k while $\sigma_{\rm k}({\sf V}_{1{\sf s}}{\sf D}_{\sf s}) < 1/2$ do c = 2 * c

Accuracy

Residuals min_Z $\|\mathbf{A}_1 \mathbf{Z} - \mathbf{A}_2\|_2$ for n = 500 and k = 20

	RRQR	Randomized			
Matrix		max	min	mean	
Kahan	$7 imes 10^{0}$	$2 imes 10^{0}$	$5 imes 10^{-1}$	$5 imes 10^{-1}$	
num. rank k	$7 imes 10^{0}$	$2 imes 10^1$	$8 imes 10^0$	$1 imes 10^1$	
triangular	$3 imes 10^{0}$	$1 imes 10^{0}$	$1 imes 10^{0}$	$1 imes 10^{0}$	
random	$3 imes 10^1$	$3 imes 10^1$	$3 imes 10^1$	$3 imes 10^1$	
scaled rand	$4 imes 10^1$	$5 imes 10^1$	$4 imes 10^1$	$5 imes 10^1$	

No significant difference in accuracy between deterministic and randomized algorithms

Number of Sampled Columns

Values of c for n = 500 and k = 20

Matrix	c values tried	most frequent	mean ĉ
Kahan	40, 80, 160, 320, 640	2k = 40	56
num. rank k	40, 80, 160	4k = 80	83
triangular	40, 80, 160	4k = 80	97
random	40, 80, 160	4k = 80	93
scaled rand	40, 80, 160	4k = 80	97

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

c = 4k seems to be a good value

Different Probability Distributions

• Two norm

$$q_{i} = \frac{1}{2} \frac{\|(V_{1})_{i}\|_{2}^{2}}{k} + \frac{1}{2} \left(\frac{\|(\Sigma_{2}V_{2})_{i}\|_{2}}{\|\Sigma_{2}V_{2}\|_{F}}\right)^{2}$$

expensive

$$\mathbf{q}_{i} = \frac{1}{2} \frac{\|(\mathbf{V}_{1})_{i}\|_{2}^{2}}{k} + \frac{1}{2} \frac{\|(\mathbf{A})_{i}\|_{2}^{2} - \|(\mathbf{A}\mathbf{V}_{1}^{\mathsf{T}}\mathbf{V}_{1})_{i}\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2} - \|\mathbf{A}\mathbf{V}_{1}^{\mathsf{T}}\mathbf{V}_{1}\|_{F}^{2}}$$

numerically unstable (can be negative)

• Frobenius norm

$$\mathbf{q_i} = \frac{\|(\mathbf{V}_1)_{\mathbf{i}}\|_2^2}{\mathbf{k}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

numerically stable and cheap

Different Probability Distributions

Residuals min_Z $\|A_1 Z - A_2\|_2$ for n = 500 and k = 20

Matrix	Ρ	max	min	mean	ĉ
num. rank k	2	$2 imes 10^1$	$8 imes 10^{0}$	$1 imes 10^1$	83
	F	$1 imes 10^1$	$7 imes 10^{0}$	$1 imes 10^1$	88
triangular	2	$1 imes 10^{0}$	$1 imes 10^{0}$	$1 imes 10^{0}$	97
	F	$1 imes 10^{0}$	$1 imes 10^{0}$	$8 imes 10^{0}$	91
random	2	$3 imes 10^1$	$3 imes 10^1$	$3 imes 10^1$	93
	F	$3 imes 10^1$	$3 imes 10^1$	$3 imes 10^1$	87
scaled rand	2	$5 imes 10^1$	$4 imes 10^1$	$5 imes 10^1$	97
	F	$5 imes 10^1$	$4 imes 10^1$	$5 imes 10^1$	93
Kahan	2	$2 imes 10^{0}$	$5 imes 10^{-1}$	$5 imes 10^{-1}$	56
	F	$7 imes 10^{-1}$	$5 imes 10^{-1}$	$5 imes 10^{-1}$	42

No difference in accuracy between 2 norm and Frobenius norm probability distributions

Ideas from Randomized Algorithm

$$\mathsf{AP} = \mathsf{U} \begin{pmatrix} \boldsymbol{\Sigma}_1 \\ \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_1 \\ \mathsf{V}_2 \end{pmatrix} \qquad \mathsf{V}_1 = (\underbrace{\mathsf{V}_{11}}_{k} \quad \underbrace{\mathsf{V}_{12}}_{n-k})$$

- Order columns of V₁ in order of decreasing norms
- Apply strong RRQR to columns of largest norm

Intuition

$$\|\mathbf{V}_{11}\|_{\mathbf{F}}^2 = \mathbf{k} - \|\mathbf{V}_{12}\|_{\mathbf{F}}^2$$

This means: $\|V_{11}\|_F$ large implies $\|V_{12}\|_F$ small

$$\sigma_{\mathsf{k}}(\mathsf{V}_{11})^2 = 1 - \|\mathsf{V}_{12}\|_2^2$$

This means: $\|V_{12}\|_2$ small implies $\sigma_k(V_{11})$ large

New 2-Phase Deterministic Algorithm

Compute SVD

$$\mathbf{A} = \mathbf{U} \begin{pmatrix} \mathbf{\Sigma}_1 \\ \mathbf{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix}$$

Ordering phase:

Order according to decreasing column norms

$$V_1 \rightarrow V_1 P_0$$

Select leading 4k columns: $A P_0 = (A_S *)$

Solution Representation Representatio Representation Representation Representation Representati

Results for New Deterministic Algorithm

- n = 2000 and k = 40
- Residuals $\min_{Z} \|A_1 Z A_2\|_2$
- Time ratio TR = time(new algorithm)/time(RRQR)

Matrix	Residuals		$\sigma_{k}(A_{1})$		TR
	RRQR	new	RRQR	new	
Kahan	$4 imes 10^{0}$	$4 imes 10^{0}$	$8 imes 10^{-2}$	$8 imes 10^{-2}$	0.11
random	$9 imes 10^1$	$9 imes 10^1$	$1 imes 10^1$	$1 imes 10^1$	0.03
s. rand	$1 imes 10^2$	$1 imes 10^2$	$2 imes 10^1$	$2 imes 10^1$	0.07
triang	$4 imes 10^{0}$	$3 imes 10^1$	$3 imes 10^{-1}$	$3 imes 10^{-1}$	0.02

New algorithm appears to be as accurate as RRQR and possibly faster

Summary

Subset selection

Given: real or complex matrix A, integer k Want: $AP = (A_1 \ A_2)$ with $\sigma_k(A_1) \approx \sigma_k(A) \qquad \min_{Z} ||A_1 Z - A_2|| \approx \sigma_{k+1}(A)$

- Deterministic algorithms: strong RRQR, SVD
- Randomized 2-phase algorithm
- Randomized algorithm: no more accurate than strong RRQR for matrices of order ≤ 2000

- Numerical issues with randomized algorithm
- New deterministic algorithm: As accurate as strong RRQR and perhaps faster