
Subset Selection
Deterministic vs. Randomized

Ilse Ipsen

North Carolina State University

Joint work with: Stan Eisenstat, Yale

Mary Beth Broadbent, Martin Brown, Kevin Penner



Subset Selection

Given: real or complex matrix A
integer k

Determine permutation matrix P so that

AP = ( A1︸︷︷︸
k

A2)

Important columns A1

Columns of A1 are ’very’ linearly independent

Redundant columns A2

Columns of A2 are ’well’ represented by A1



Subset Selection Requirements

Important columns A1

Smallest singular value σk(A1) should be ’large’

σk(A)/γ ≤ σk(A1) ≤ σk(A)

for some γ

Redundant columns A2

minZ ‖A1Z− A2‖ should be ’small’ (two norm)

σk+1(A) ≤ min
Z
‖A1 Z− A2‖ ≤ γ σk+1(A)

for some γ
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Deterministic Subset Selection

Businger & Golub (1965) QR with column pivoting
Faddev, Kublanovskaya & Faddeeva (1968)
Golub, Klema & Stewart (1976)
Gragg & Stewart (1976)
Stewart (1984)
Foster (1986)
T. Chan (1987)

Hong & Pan (1992)
Chandrasekaran & Ipsen (1994)
Gu & Eisenstat (1996) Strong RRQR



First Deterministic Algorithm

Rank revealing QR decomposition

AP = Q

(
R11 R12

0 R22

)
where QTQ = I

Important columns

Q

(
R11

0

)
= A1 and σi(A1) = σi(R11) 1 ≤ i ≤ k

Redundant columns

Q

(
R12

R22

)
= A2 min

Z
‖A1Z− A2‖ = ‖R22‖



Strong RRQR (Gu & Eisenstat 1996)

Input: m× n matrix A, m ≥ n, integer k

Output: AP = Q

(
R11 R12

0 R22

)
R11 is k× k

R11 is well conditioned

σi(A)√
1 + k(n− k)

≤ σi(R11) ≤ σi(A) 1 ≤ i ≤ k

R22 is small

σk+j(A) ≤ σj(R22) ≤
√

1 + k(n− k) σk+j(A)

Offdiagonal block not too large∣∣∣∣(R−1
11 R12

)
ij

∣∣∣∣ ≤ 1



Strong RRQR Algorithm

1 Compute some QR decomposition with column pivoting

APinitial = Q

(
R11 R12

0 R22

)
2 Repeat

Exchange a column of

„
R11

0

«
with a column of

„
R12

R22

«
Update permutations P, retriangularize

until | det(R11)| stops increasing

3 Output: APfinal = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

)



Second Deterministic Algorithm

Singular value decomposition

AP = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

) = U

(
Σ1

Σ2

)(
V11 V12

V21 V22

)

Important columns A1

σi(A)

‖V−1
11 ‖
≤ σi(A1) ≤ σi(A) for all 1 ≤ i ≤ k

Redundant columns A2

σk+1(A) ≤ min
Z
‖A1Z− A2‖ ≤ ‖V−1

11 ‖ σk+1(A)

[Hong & Pan 1992]



Almost Strong RRQR Algorithm
In the spirit of Golub, Klema and Stewart (1976)

1 Compute SVD

A = U

(
Σ1

Σ2

)(
V1

V2

)

2 Apply strong RRQR to V1: V1P = (V11︸︷︷︸
k

V12︸︷︷︸
n−k

)

1√
1 + k(n− k)

≤ σi(V11) ≤ 1 1 ≤ i ≤ k

3 Output: AP = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

)



Almost Strong RRQR

Produces permutation P so that

AP = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

)

where

Important columns A1

σi(A)√
1 + k(n− k)

≤ σi(A1) ≤ σi(A) 1 ≤ i ≤ k

Redundant columns A2

σk+1(A) ≤ min
Z
‖A1Z− A2‖ ≤

√
1 + k(n− k) σk+1(A)



Deterministic Subset Selection

Algorithms: strong RRQR, SVD

Permuting columns of A corresponds to
permuting right singular vector matrix V

Perturbation bounds in terms of V

σk+1(A) ≤ min
Z
‖A1Z− A2‖ ≤ ‖V−1

11 ‖ σk+1(A)

Operation count for m× n matrix, m ≥ n

min
Z
‖A1Z− A2‖ ≤

√
1 + f2k(n− k) σk+1(A)

in O
(
mn2 + n3 logf n

)
flops



Randomized Algorithms

Frieze, Kannan & Vempala 1998, 2004
Drineas, Kannan & Mahoney 2006
Deshpande, Rademacher, Vempala & Wang 2006
Rudelson & Vershynin 2007
Liberty, Woolfe, Martinsson, Rokhlin & Tygert 2007
Drineas, Mahoney & Muthukrishnan 2006, 2008
Boutsidis, Mahoney & Drineas 2008, 2009
Civril & Magdon-Ismail 2009

Survey paper:

Halko, Martinsson & Tropp 2009



2-Phase Randomized Algorithm
Boutsidis, Mahoney & Drineas 2009

1 Randomized Phase:
Sample small number (≈ k log k) of columns

2 Deterministic Phase:
Apply rank revealing QR to sampled columns

With 70% probability:

Two norm

min
Z
‖A1Z− A2‖2 ≤ O

(
k3/4 log1/2 k (n− k)1/4

)
‖Σ2‖2

Frobenius norm

min
Z
‖A1Z− A2‖F ≤ O

(
k log1/2 k

)
‖Σ2‖F



Deterministic vs. Randomized Algorithms

Want: permutation P so that AP = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

)

Compute SVD

A = U

(
Σ1

Σ2

)(
V1

V2

)
Obtain P from k dominant right singular vectors V1

Deterministic:
Apply RRQR to all columns of matrix V1

Randomized:
Apply RRQR to subset of columns of scaled matrix V1 D
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2-Phase Randomized Algorithm

1 Compute SVD

A = U

(
Σ1

Σ2

)(
V1

V2

)

2 Randomized phase:
Scale: V1 → V1D
Sample c columns: (V1D) Ps = (V1sDs︸ ︷︷ ︸

ĉ

∗)

3 Deterministic phase:
Apply RRQR to V1sDs: (V1sDs) Pd = (V11D1︸ ︷︷ ︸

k

∗)

4 Output: APsPd = ( A1︸︷︷︸
k

A2︸︷︷︸
n−k

)



Perturbation Bounds

SVD : AP = U

(
Σ1

Σ2

)(
V11 V12

V21 V22

)
V11 is k× k

For deterministic algorithms

min
Z
‖A1Z− A2‖ ≤ ‖Σ2‖/σk(V11)

or

min
Z
‖A1Z− A2‖ ≤ ‖Σ2‖+ ‖Σ2V21‖/σk(V11)

For randomized 2-phase algorithm

min
Z
‖A1Z− A2‖ ≤ ‖Σ2‖+ ‖Σ2V21D1‖/σk(V11D1)

for any nonsingular matrix D1
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Perturbation Bounds for Randomized Algorithm

D1 is scaling matrix

min
Z
‖A1Z− A2‖ ≤ ‖Σ2‖+ ‖Σ2V21D1‖/σk(V11D1)

V11D1 comes from RRQR: (V1sDs)︸ ︷︷ ︸
ĉ

Pd = (V11D1︸ ︷︷ ︸
k

∗)

min
Z
‖A1Z− A2‖ ≤

‖Σ2‖+
√

1 + k(ĉ− k) ‖Σ2V21D1‖/σk(V1sDs)

We need with high probability:

‖Σ2V21D1‖ ≈ ‖Σ2‖ σk(V1sDs)� 0
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Probabilistic Bounds: Frobenius Norm

Column i of X sampled with probability pi

Scaling matrix Dii = 1/
√

pi with probability pi

Frobenius norm ‖X D‖2
F = trace(X D2 XT)

Linearity E
[
‖X D‖2

F

]
= trace(X E

[
D2
]

︸ ︷︷ ︸
I

XT)

Scaling E
[
D2

ii

]
= pi ∗ 1

pi
+ (1− pi) ∗ 0 = 1

Expected value E
[
‖X D‖2

F

]
= ‖X‖2

F

Markov’s inequality

Prob
[
‖X D‖2

F ≤ α ‖X‖
2
F

]
≥ 1−

1

α
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Randomized Subset Selection: Frobenius Norm

Perturbation bound

min
Z
‖A1Z− A2‖F ≤

‖Σ2‖F +
√

1 + k(ĉ− k) ‖Σ2V21D1‖F/σk(V1sDs)

With probability 1− 1
α

‖Σ2V21D1‖F ≤
√
α ‖Σ2V2‖F =

√
α ‖Σ2‖F

Holds for any probability distribution

Still to show: σk(V1sDs)� 0 with high probability
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Sampling: Frobenius Norm

When is σk(V1sDs)� 0 with high probability?

Expected number of sampled columns: c

Column i of V1 sampled with “probability”

pi = min{1, c qi} where qi = ‖(V1)i‖2
2/k

Try to sample columns with large norm

Scaling matrix D =
(
1/
√

p1 . . . 1/
√

pn

)
If c = Θ (k log k) then with probability ≥ .9

σk(V1sDs) ≥ 1/2

[Boutsidis, Mahoney & Drineas 2009]



Sampling: Frobenius Norm

How many columns should V1s actually have?

Expected number of sampled columns from V1: c

Actual number of columns in V1s: ĉ

E[ĉ] ≤ c

If c qi ≤ 1 for all i, and ĉ ≥ k then

σk(V1sDs) ≤
√

ĉ

c

If ĉ < c/4 then σk(V1sDs) < 1/2

Make sure that enough columns are actually sampled
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Randomized Subset Selection: Two Norm

min
Z
‖A1Z− A2‖2 ≤

‖Σ2‖2 +
√

1 + k(ĉ− k) ‖Σ2V21D1‖2/σk(V1sDs)

Probability distribution pi = min{1, c qi}

qi =
1

2

‖(V1)i‖2
2

k
+

1

2

(‖(Σ2V2)i‖2

‖Σ2V2‖F

)2

With probability ≥ .9

‖Σ2V21D1‖2 ≤ γ
(

(n− k + 1) log c

c

)1/4

‖Σ2‖2

[Boutsidis, Mahoney & Drineas 2009]



Numerical Experiments

Compare strong RRQR and randomized 2-phase algorithm

Subset selection for 2 norm

Matrix orders n ≤ 500, 2000

0 ≤ k ≤ 240

Matrices:
Kahan, random, scaled random, triangular
numerical rank k

Randomized algorithm: run 40 times

Iterative determination of c
c = 2k
while σk(V1sDs) < 1/2 do c = 2 ∗ c



Accuracy

Residuals minZ ‖A1 Z− A2‖2 for n = 500 and k = 20

RRQR Randomized
Matrix max min mean
Kahan 7× 100 2× 100 5× 10−1 5× 10−1

num. rank k 7× 100 2× 101 8× 100 1× 101

triangular 3× 100 1× 100 1× 100 1× 100

random 3× 101 3× 101 3× 101 3× 101

scaled rand 4× 101 5× 101 4× 101 5× 101

No significant difference in accuracy between
deterministic and randomized algorithms



Number of Sampled Columns

Values of c for n = 500 and k = 20

Matrix c values tried most frequent mean ĉ
Kahan 40, 80, 160, 320, 640 2k = 40 56

num. rank k 40, 80, 160 4k = 80 83
triangular 40, 80, 160 4k = 80 97
random 40, 80, 160 4k = 80 93

scaled rand 40, 80, 160 4k = 80 97

c = 4k seems to be a good value



Different Probability Distributions

Two norm

qi =
1

2

‖(V1)i‖2
2

k
+

1

2

(‖(Σ2V2)i‖2

‖Σ2V2‖F

)2

expensive

qi =
1

2

‖(V1)i‖2
2

k
+

1

2

‖(A)i‖2
2 − ‖(AVT

1 V1)i‖2
2

‖A‖2
F − ‖AVT

1 V1‖2
F

numerically unstable (can be negative)

Frobenius norm

qi =
‖(V1)i‖2

2

k

numerically stable and cheap



Different Probability Distributions

Residuals minZ ‖A1 Z− A2‖2 for n = 500 and k = 20

Matrix P max min mean ĉ
num. rank k 2 2× 101 8× 100 1× 101 83

F 1× 101 7× 100 1× 101 88

triangular 2 1× 100 1× 100 1× 100 97
F 1× 100 1× 100 8× 100 91

random 2 3× 101 3× 101 3× 101 93
F 3× 101 3× 101 3× 101 87

scaled rand 2 5× 101 4× 101 5× 101 97
F 5× 101 4× 101 5× 101 93

Kahan 2 2× 100 5× 10−1 5× 10−1 56
F 7× 10−1 5× 10−1 5× 10−1 42

No difference in accuracy between 2 norm and Frobenius
norm probability distributions



Ideas from Randomized Algorithm

AP = U

(
Σ1

Σ2

)(
V1

V2

)
V1 = (V11︸︷︷︸

k

V12︸︷︷︸
n−k

)

Order columns of V1 in order of decreasing norms

Apply strong RRQR to columns of largest norm

Intuition
‖V11‖2

F = k− ‖V12‖2
F

This means: ‖V11‖F large implies ‖V12‖F small

σk(V11)2 = 1− ‖V12‖2
2

This means: ‖V12‖2 small implies σk(V11) large



New 2-Phase Deterministic Algorithm

1 Compute SVD

A = U

(
Σ1

Σ2

)(
V1

V2

)

2 Ordering phase:
Order according to decreasing column norms

V1 → V1 PO

Select leading 4k columns: A PO = ( AS︸︷︷︸
4k

∗)

3 Rank revealing phase:
Apply strong RRQR to AS: AS PR = ( A1︸︷︷︸

k

∗)



Results for New Deterministic Algorithm

n = 2000 and k = 40

Residuals minZ ‖A1 Z− A2‖2

Time ratio TR = time(new algorithm)/time(RRQR)

Matrix Residuals σk(A1) TR
RRQR new RRQR new

Kahan 4× 100 4× 100 8× 10−2 8× 10−2 0.11
random 9× 101 9× 101 1× 101 1× 101 0.03
s. rand 1× 102 1× 102 2× 101 2× 101 0.07
triang 4× 100 3× 101 3× 10−1 3× 10−1 0.02

New algorithm appears to be as accurate as RRQR
and possibly faster



Summary
Subset selection

Given: real or complex matrix A, integer k
Want: AP = ( A1︸︷︷︸

k

A2) with

σk(A1) ≈ σk(A) min
Z
‖A1 Z− A2‖ ≈ σk+1(A)

Deterministic algorithms: strong RRQR, SVD

Randomized 2-phase algorithm

Randomized algorithm: no more accurate than strong
RRQR for matrices of order ≤ 2000

Numerical issues with randomized algorithm

New deterministic algorithm:
As accurate as strong RRQR and perhaps faster


