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Simple Web Model

Determine importance of a web page

PageRank of page:
Probability that surfer visits page

Page 1 has d outgoing links
If page 7 has no linkto page j thenp;; =0
else p;; =1/d
P Is stochastic matrix



Eigenvectors of P

P1 =1 = P haseigenvalue 1
left eigenvector: 7' P=x', 7>0, 7] =1

oth entry of ;. probability that surfer visits page @
PageRank of page 7

PageRank = largest left eigenvector of P



Power Method

Initial vector vy > 0, ||vy |1 = 1
After k iterations: v%,;) — v(j(’))P’“

If P Is primitive then:

P =7l with 7w > 0, ||7||, = 1, unique
Power method converges: v,y — m
Convergence rate |A\z| < 1




Primitive Matrices

Matrix P > 0 is primitive if P > ( for some m > 1

0 X
If P stochastic then eigenvalue 1 Is distinct

P is irreducible: P 2 (X X)

p(P) produced by single eigenvalue

If P stochastic then eigenvalues # 1 have
magnitude < 1

(P™ >0 = p(P™) simple)



Power Method

Initial vector Vo) > 0, U(O)Hl =1
After k iterations: v% — U(TO)P’“

If P Is primitive then:

' P =7t with 7 > 0, ||«]|; = 1, unique
Power method converges: v,y — 7
Convergence rate |\z| < 1

Slow convergence if |\o| =~ 1
Can we exploit the stochastic structure of P?



Exploiting Structure in P

P P12> -
P = I — P nonsinqular
(le P x 9

Factor [ — P = LDU

(L))o ()

where

S = P+ Po(I — P11)_1P12
stochastic complement



LDU in Eigenvalue Problem

Usel — P =LDU:
mP=1" < 7'I-P)=0 < a'LD=0

[ — Py
W;([—S) =0 Wf — 7'('; P21([—P11)_1

™o IS eigenvector for smaller matrix .S



Smaller Eigenvalue Problem

S:P22+P21([—P11)_1P12

If P Is stochastic and irreducible then
®* S |s stochastic and irreducible
o o1'S = o1 witho > 0,

oll1 = 1, unique

If S Is primitive then
® Power method converges

® Convergence rate [A2(S)| < 1



ldea

®* Exact: m4 =niS

m = (w3 Pu(I — Pip)”" 7 S)
® Approximation: Any my > 0

7 = (73 Pn(I — Pn)™t 75 95)

® Repeat with: 7y := 74 S



"The Big Picture

77'T — (ﬁgpgl(]— Pll)_l ﬁgS)

=(x ) <P21(1—O Py)-! g)

0 0\ [0 0\,
(P21(1P11)1 S) B (0 1>L r

ILU Preconditioned Power method (I — P =LDU)




ILU Preconditioned Power Method

Initial guess: () > 0, HW(O)H =1

0 0Y  _
lterate: 7, ) = pr g, (O [> L'P

|7l = 1

00\, 1, 0 0
(o 1>L P= (le([—Pﬂ)l S)

Convergence rate |\ (.5)]



But ...

ILU preconditioned power method requires
formation of S = Pyy + Py (I — Ppy) 1Py in

00\,.,, (00

0= (5)
Does ILU preconditioned power method
converge faster than power method?

Is [A2(5)] < [A2(P)]?



How To Avoid Forming S

0 0
l=p (x 71 ( ) T =1
P ( ) P21(]_ Pll)—l s H Hl

IS mathematically equivalent to:

Form A = ( P Pl )

Py 7! Pyl
Compute o > 0 where o’ A = o',
Partition o = (w? p)

Multiply 7! = (wT pTT) P

OzHl =1



Connections

ILU Preconditioned power method =
lterative Aggregation/Disaggregation

® |AD based on stochastic complementation:
Meyer 1989, Meyer 2004 (SIAM)
Langville & Meyer 2002, 2003, 2004
Billy Stewart 1985, 1992, 1994
Lee, Golub & Zenios 2003

® |AD based on general splittings:
Marek & Szyld 1994, Szyld 2004 (ILAS)
Marek & Mayer 1998, 2001, 2003

® Haveliwala, Kamvar, Klein, Manning & Golub 2003
Kamvar, Haveliwala & Golub 2004
Choi & Saunders (SIAM 2004)



‘Upper Bounds for |\,

If P stochastic then |\;(P)| < 7(P)

max ||e] P — e; Py
1,]

1
where T(P) = 5

If P also irreducible then 7(5) < 7(P)
where S = Py + le([ — Pll)_lplg

Upper bound for |A\y(.5)| < upper bound for | Ay (P)]




Google Matrix

G=cP+(1—clv!

P Is stochastic matrix
0<c<l,v>0and|v|; =1

Power method for G always converges:
’)\Q(G)‘ <c<l1

ILU preconditioned power method can
converge faster than power method:

If |\o(P)| = 1then |\ (Sa)| < | M\a(G))



Assumptions

G=cP+(1-clv!
where P Is stochastic such that
P contains essential index classes (', ..., C}
Each C; contains index ¢; such that 77 ; = 0

k

QGQ! = g ( g; g;z> () permutation

where (+{; contains rows & columns ;.. .17, of &



ILU Power Method: Google Matrix

Se = Gagr + G (I — G11) ' Gio
Under previous assumptions:

A2(Sa)| < [A2(G)
With appropriate partitioning:

ILU preconditioned power method converges faster
than power method



Summary

ILU preconditioned power method
Power method on stochastic complement S

Convergence rate |\y(9)]

Upper bounds for | A5 (.5)]

Implemented as:
Iterative Aggregation/Disaggregation method

No need to form S

Faster convergence for Google matrix than
power method
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