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Overview

Motivating Application

Modeling cardiovascular systems
Extract biomarkers: Nonlinear parameter estimation
Nonlinear dependencies among parameters

Computation

Solution of nonlinear least squares problem
by Levenberg-Marquardt trust region algorithm
Rank deficient Jacobians
Errors in Jacobian evaluation

How to “regularize” the Jacobian?

Truncated SVD: NO
Column subset selection: YES



Modeling Cardiovascular Systems

Goal: Identify parameters that regulate blood flow

Cardiovascular system = lumped 5-compartment model
Blood flow, volume, pressure, resistance, compliance
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Computation

System of 5 ODEs with N = 16 parameters

y ′ = F (t, y ; p) y(0) = y0

Parameter vector p ∈ RN

Observations dj at M time points tj M ≫ N

Nonlinear residual

R(p) =







y(t1, p)− d1
...

y(tM , p)− dM







Identify parameters p that minimize difference between
measured and computed quantities

min
p

R(p)TR(p)/2



Nonlinear Least Squares Problem

min
p

R(p)TR(p)/2

Jacobian Jn ≡ R ′(pn) at current iterate pn

Levenberg-Marquardt trust region algorithm

For n = 0, 1, 2 . . .

pn+1 = pn −
(

νn I + JTn Jn

)−1
JTn R(pn)

νn = 0 and Jn full column rank: Gauss Newton

Here: νn ≥ 0 and Jn rank deficient



Levenberg-Marquardt Algorithm

Inside a Levenberg-Marquardt Step:

While iterate has not changed

Trial step s = −
(

νnI + JTn Jn
)−1

JTn R(pn)
Trial iterate pt = pn + s
if pt good enough then

pn+1 = pt , νn+1 ← keep or decrease νn
else νn+1 ← increase νn

Ideally:

νn → 0, or at least νn bounded
pn converge to minimizer, or at least stationary point

But here:

Poor convergence (Levenberg-Marquardt stagnates)
Gradient at “solution” not small
Accuracy of “solution” ???



Convergence Analysis

Near solution manifold

Assuming exact arithmetic

Nonlinear iterations with rank deficient Jacobians:
Ben-Israel 1966, Boggs 1976, Deuflhard & Heindl 1979, Schaback 1985



Behavior of Levenberg-Marquardt Iterates

Assumptions

Initial iterate p0 close enough to a solution p∗

J(p) Lipschitz continuous

R(p∗) small but not necessarily zero

Then we can show

Levenberg-Marquardt parameters νn remain bounded

Iterates pn approach solution manifold

If pn converge then they converge to some solution
(Cauchy sequence)

Still need to show that pn converge



Convergence of Levenberg-Marquardt Iterates

Model nonlinear dependence among parameters:

R(p) = R̃ (B(p)) B : R
M → R

K

If K = N then Jacobian J has full column rank

Assumptions: Sufficiently close to a solution p∗

R̃ and B uniformly Lipschitz continuously differentiable

All K singular values of B ′ uniformly bounded away from 0

All K singular values of R̃ ′ uniformly bounded away from 0

R̃(b)T R̃(b)/2 has unique minimizer

Then: pn converge to a solution r-linearly



Summary: Convergence Analysis

Assumptions:

Near solution manifold
Initial iterate p0 sufficiently close to a solution p∗

Nonlinear residual R(p∗) small but not necessarily zero

Dependence among parameters:

R(p) = R̃ (B(p)) B : R
M → R

K

Jacobians B ′ and R̃ ′ have rank K

All Jacobians sufficiently smooth

Then: Iterates pn converge to some solution

But this assumes exact arithmetic!
What happens in finite precision?



Finite Precision Issues

Computation of trial step

Effect of errors in computed Jacobian

Regularization of Jacobian:
Truncated SVD ↔ subset selection

Singular vector perturbations: Stewart 1973



Computation of Trial Step

pn+1 = pn + s

Trial step

s = −
(

νI + JTJ
)†

JT R

Works for ν = 0 and rank deficient J

Computed as minimum norm solution to linear least squares
problem minx ‖Ax − b‖

A =

(

J√
νI

)

b =

(

R
0

)

Illconditioned or illposed if ν small, J rank deficient



Full Rank Jacobian

J has full column rank: s = −
(

νI + JTJ
)−1

JT R

Condition number κν(J) :=
∥

∥

∥

(

νI + JT J
)−1

JT
∥

∥

∥ ‖J‖

J̃ = J + E has full column rank, ‖E‖ ≤ ǫ‖J‖

s̃ = −
(

νI + J̃T J̃
)−1

J̃T R

Relative error in trial step

‖s̃ − s‖
‖s̃‖ ≤ κν(J)

(

1 +
‖R‖
‖J‖ ‖s̃‖

)

ǫ

Error in J amplified by conditioning of J and nonlinear residual R



Rank Deficient Jacobian: Regularization

Exact trial step s = −
(

νI + JTJ
)†

JTR

Truncate SVD of J: Truncated Jacobian Jt has singular values

σ1 ≥ · · · ≥ σK > σK+1 = · · · = σN = 0

“Truncated” trial step is

st = −
(

νI + JTt Jt

)†

JTt R

Computed as minimum norm solution of minx ‖Atx − b‖

At =

(

Jt√
νI

)

b =

(

R
0

)

Linear least squares problem still ill-conditioned or ill-posed



Truncated SVD: Errors in Jacobian

SVD of exact Jacobian: J = UΣV T
rank(J) = K

Nonzero singular values σ1 ≥ · · · ≥ σK > 0

κν(J) := σ1 max
σK≤σ≤σ1

σ

ν + σ2

SVD of perturbed Jacobian: J+E = ŨΣ̃Ṽ T , ‖E‖F ≤ ǫ ‖J‖
Ũ, Ṽ rotations of U, V by angles ≤ θ

J̃t truncated SVD of J + E rank(J̃t) = K

Trial step of truncated perturbed Jacobian

s̃t = −
(

νI + J̃Tt J̃t

)†

J̃Tt R



Relative Error for Truncated SVD

For ǫ sufficiently small

‖s̃t − s‖
‖s̃t‖

≤ κν(J)

[

1 + (1 + 2‖J‖ tan θ) ‖R‖
‖J‖ ‖s̃t‖

]

ǫ+O(ǫ2)

tan θ: Accuracy of singular vectors of truncated Jacobian J̃t

Error in Jt amplified by

Conditioning of J
Inaccuracy of singular vectors
Nonlinear residual R

Trial step from truncated SVD not accurate if

J close to matrix of rank K − 1: κν(J)≫ 1
Singular vectors have low accuracy: tan θ ≫ 0
Nonlinear residual R large



Alternative Regularization: Subset Selection

Choose K “very” linearly independent columns J1 from J

J =
(

J1 J2
)

Trial step

ŝ = −
(

νI + JT1 J1

)−1
JT1 R

Computed as solution of minx ‖A1x − b‖

A1 =

(

J1√
νI

)

b =

(

R
0

)

Linear least squares problem now well-conditioned



Subset Selection: Errors in Jacobian

J1 selected by strong RRQR [Gu & Eisenstat 1996]

σj√
1+K(N−K)

≤ σj(J1) ≤ σj 1 ≤ j ≤ K

Singular values of J1 close to largest singular values of J

Perturbed Jacobian J̃ = J + E

rank(J + E ) ≥ K , ‖E‖ ≤ ǫ‖J‖

Select same columns for J̃1 and J1:
(

J̃1 J̃2
)

s̃ = −
(

νI + J̃T1 J̃1

)−1
J̃T1 R



Subset Selection: Relative Error

Condition number

κ̃ν(J1) = σ1 max
σ̃K≤σ≤σ1

σ

ν + σ2
σ̃K = σK/

√
1+K(N−K)

Relative error in subset selection trial step

‖s̃ − ŝ‖
‖s̃‖ ≤ κ̃ν(J1)

(

1 +
‖R‖
‖J‖ ‖s̃‖

)

ǫ

Error in J amplified by conditioning of J1 and nonlinear residual R

Same as full rank bound applied to J1



Numerical Experiments

Goal: Design simplest possible setting to reproduce failures from
truncated SVD observed in cardiovascular model



Numerical Experiments

Driven harmonic oscillator

(1 + 10−3 δ)y ′′ + (c1 + c2)y
′ + k y = 2 sin (5t)

y(0) = y0, y
′(0) = y ′0

4 parameters p =
(

δ c1 c2 k
)T

Numerical solution ỹ(tj) from Matlab ode15s

Nonlinear residual

R(p) =







ỹ(t1)− d1
...

ỹ(tM)− dM







Estimate p by solving nonlinear least squares problem

min
p

R(p)TR(p)/2



Numerical Experiments: Assumptions

(1 + 10−3 δ)y ′′ + (c1 + c2)y
′ + k y = 2 sin (5t)

Highly accurate Jacobians:
Compute columns of J from sensitivities ∂y/∂p

Zero residual:
Data d from exact parameters p∗ =

(

1.23 1 0 1
)T

Initial guess p0 =
(

0 1 1 .3
)T

Singular values of initial Jacobian:

40.1 12.9 7.4 · 10−4 6.21 · 10−16

One zero singular value by design: ∂R
∂c1

= ∂R
∂c2

Need to recover c1 + c2 = 1



Numerical Experiments: Zero Residual

Assumptions for subset selection:

Rank K = 3 of Jacobian is known

Subset selection applied only to initial Jacobian

All Levenberg-Marquardt iterations work with same K
columns

Parameters corresponding to N −K = 1 non-selected columns
set to nominal values

Exact parameters p∗ =
(

1.23 1 0 1
)T

Truncated SVD: p =
(

1.22 .5 .5 1
)T

Subset selection: p =
(

1.23 .5 .5 1
)T

A little more accurate



Convergence History: Zero Residual
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Subset selection converges faster and slightly more accurate
than truncated SVD



Numerical Experiments: Non-Zero Residual

(1 + 10−3δ)y ′′ + (c1 + c2)y
′ + k0y = 2 sin(5t)

Non-zero residual
Componentwise relative perturbation of data d by 10−4

Singular values of Jacobian have not changed:

40.1 12.9 7.4 · 10−4 6.21 · 10−16

Exact parameters p∗ =
(

1.23 1 0 1
)T

Truncated SVD: p =
(

.09 .5 .5 .998
)T

δ completely wrong

Subset selection: p =
(

1.28 0 1 1
)T

Much more accurate



Truncated SVD ←→ Subset Selection

What is really going on?



General Least Squares Problems

min
x
‖Ax − b‖ A is M × N, M ≥ N

Singular values σ1 ≥ · · · ≥ σK≫ σK+1 ≥ · · · ≥ σN > 0

Least squares problem with illconditioned matrix

Truncated SVD
Singular values σ1 ≥ · · · ≥ σK≫ σK+1 = · · · = σN = 0
Least squares problem now ill-posed

Subset Selection: K columns of A selected by strong RRQR

Singular values σ1 ≥ · · · ≥ σK/
√

1+K(N−k)≫ 0

Least squares problem with wellconditioned matrix



The Problem with Truncated SVD

minx ‖Ax − b‖
A has singular values σ1 ≥ · · · ≥ σk ≥ · · · ≥ σr > 0
s = A†b is minimal norm solution

Truncated SVD: minx ‖Atx − b‖
At has singular values σ1 ≥ · · · ≥ σk
st = A†

tb is minimal norm solution, residual rt = b − Ast

Relative error
‖st − s‖
‖st‖

≤ σ1
σr

‖rt‖
‖A‖ ‖st‖

Small residual does not imply that st accurate
Bound independent of how many singular values truncated



Summary

Parameter estimation with nonlinear dependences

Expressed as nonlinear least squares problem

Solved by Levenberg-Marquardt trust region algorithm

Rank deficient Jacobians

Errors in Jacobian evaluation, non-zero residuals

How to regularize Jacobian:

Truncated SVD: NO
Subset selection: Yes


