Rank-Deficient Nonlinear Least Squares Problems and Subset Selection

Ilse Ipsen

North Carolina State University Raleigh, NC, USA

Joint work with: Tim Kelley and Scott Pope

Overview

Motivating Application

Modeling cardiovascular systems Extract biomarkers: Nonlinear parameter estimation Nonlinear dependencies among parameters

Computation

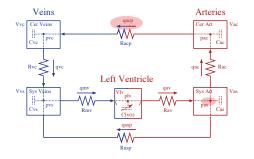
Solution of nonlinear least squares problem by Levenberg-Marquardt trust region algorithm Rank deficient Jacobians Errors in Jacobian evaluation

How to "regularize" the Jacobian? *Truncated SVD: NO Column subset selection: YES*

Modeling Cardiovascular Systems

Goal: Identify parameters that regulate blood flow

Cardiovascular system = lumped 5-compartment model Blood flow, volume, pressure, resistance, compliance



[Pope, Olufsen, Ellwein, Novak, Kelley]

Computation

• System of 5 ODEs with N = 16 parameters

$$y' = F(t, y; p)$$
 $y(0) = y_0$

Parameter vector $p \in R^N$

- Observations d_j at M time points $t_j \qquad M \gg N$
- Nonlinear residual

$$R(p) = \begin{pmatrix} y(t_1, p) - d_1 \\ \vdots \\ y(t_M, p) - d_M \end{pmatrix}$$

 Identify parameters p that minimize difference between measured and computed quantities

$$\min_{p} R(p)^{T} R(p)/2$$

Nonlinear Least Squares Problem

 $\min_{p} R(p)^{T} R(p)/2$

Jacobian $J_n \equiv R'(p_n)$ at current iterate p_n

• Levenberg-Marquardt trust region algorithm For n = 0, 1, 2...

$$p_{n+1} = p_n - \left(\nu_n I + J_n^T J_n\right)^{-1} J_n^T R(p_n)$$

• $\nu_n = 0$ and J_n full column rank: Gauss Newton

• Here: $\nu_n \ge 0$ and J_n rank deficient

Levenberg-Marquardt Algorithm

• Inside a Levenberg-Marquardt Step:

While iterate has not changed Trial step $s = -(\nu_n I + J_n^T J_n)^{-1} J_n^T R(p_n)$ Trial iterate $p_t = p_n + s$ if p_t good enough then $p_{n+1} = p_t, \nu_{n+1} \leftarrow$ keep or decrease ν_n else $\nu_{n+1} \leftarrow$ increase ν_n

• Ideally:

 $u_n \rightarrow 0, \text{ or at least } u_n \text{ bounded}$ $p_n \text{ converge to minimizer, or at least stationary point}$

• But here:

Poor convergence (Levenberg-Marquardt stagnates) Gradient at "solution" not small Accuracy of "solution" ???

Convergence Analysis

- Near solution manifold
- Assuming exact arithmetic

Nonlinear iterations with rank deficient Jacobians: Ben-Israel 1966, Boggs 1976, Deuflhard & Heindl 1979, Schaback 1985

Behavior of Levenberg-Marquardt Iterates

Assumptions

- Initial iterate p_0 close enough to a solution p^*
- J(p) Lipschitz continuous
- $R(p^*)$ small but not necessarily zero

Then we can show

- Levenberg-Marquardt parameters ν_n remain bounded
- Iterates *p_n* approach solution manifold
- If p_n converge then they converge to some solution (Cauchy sequence)

Still need to show that p_n converge

Convergence of Levenberg-Marquardt Iterates

Model nonlinear dependence among parameters:

$$R(p) = \tilde{R}(B(p)) \qquad B: \mathbb{R}^M \to \mathbb{R}^K$$

If K = N then Jacobian J has full column rank

Assumptions: Sufficiently close to a solution p^*

- \tilde{R} and B uniformly Lipschitz continuously differentiable
- All K singular values of B' uniformly bounded away from 0
- All K singular values of \tilde{R}' uniformly bounded away from 0
- $\tilde{R}(b)^T \tilde{R}(b)/2$ has unique minimizer

Then: p_n converge to a solution r-linearly

Summary: Convergence Analysis

Assumptions:

- Near solution manifold Initial iterate p₀ sufficiently close to a solution p^{*}
- Nonlinear residual $R(p^*)$ small but not necessarily zero
- Dependence among parameters:

$$R(\rho) = \tilde{R}(B(\rho)) \qquad B: \mathbb{R}^M \to \mathbb{R}^K$$

- Jacobians B' and \tilde{R}' have rank K
- All Jacobians sufficiently smooth

Then: Iterates p_n converge to some solution

But this assumes exact arithmetic! What happens in finite precision?

Finite Precision Issues

- Computation of trial step
- Effect of errors in computed Jacobian
- Regularization of Jacobian: Truncated SVD ↔ subset selection

Singular vector perturbations: Stewart 1973

Computation of Trial Step

 $p_{n+1} = p_n + s$

Trial step

$$s = -\left(\nu I + J^{\mathsf{T}}J\right)^{\dagger}J^{\mathsf{T}}R$$

Works for $\nu = 0$ and rank deficient J

• Computed as minimum norm solution to linear least squares problem $\min_{x} ||Ax - b||$

$$A = \begin{pmatrix} J \\ \sqrt{\nu}I \end{pmatrix} \qquad b = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Illconditioned or illposed if ν small, J rank deficient

Full Rank Jacobian

• J has full column rank: $s = -(\nu I + J^T J)^{-1} J^T R$ Condition number $\kappa_{\nu}(J) := \left\| (\nu I + J^T J)^{-1} J^T \right\| \|J\|$

• $\tilde{J} = J + E$ has full column rank, $||E|| \le \epsilon ||J||$

$$ilde{s} = -\left(
u I + ilde{J}^{ op} ilde{J}
ight)^{-1} ilde{J}^{ op} R$$

Relative error in trial step

$$rac{\| ilde{s}-s\|}{\| ilde{s}\|} \leq \kappa_
u(J) \, \left(1+rac{\|R\|}{\|J\| \, \| ilde{s}\|}
ight) \, \epsilon$$

Error in J amplified by conditioning of J and nonlinear residual R

Rank Deficient Jacobian: Regularization

- Exact trial step $s = -(\nu I + J^T J)^{\dagger} J^T R$
- Truncate SVD of J: Truncated Jacobian J_t has singular values

$$\sigma_1 \geq \cdots \geq \sigma_K > \sigma_{K+1} = \cdots = \sigma_N = 0$$

• "Truncated" trial step is

$$s_t = -\left(
u I + J_t^T J_t\right)^{\dagger} J_t^T R$$

• Computed as minimum norm solution of $\min_{x} \|A_t x - b\|$

$$A_t = \begin{pmatrix} J_t \\ \sqrt{\nu}I \end{pmatrix} \quad b = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Linear least squares problem still ill-conditioned or ill-posed

Truncated SVD: Errors in Jacobian

SVD of exact Jacobian: J = UΣV^T rank(J) = K
 Nonzero singular values σ₁ ≥ · · · ≥ σ_K > 0

$$\kappa_
u(J) := \sigma_1 \max_{\sigma_K \leq \sigma \leq \sigma_1} rac{\sigma}{
u + \sigma^2}$$

- SVD of perturbed Jacobian: $J + E = \tilde{U}\tilde{\Sigma}\tilde{V}^{T}$, $||E||_{F} \le \epsilon ||J||$ \tilde{U}, \tilde{V} rotations of U, V by angles $\le \theta$
- \tilde{J}_t truncated SVD of J + E rank $(\tilde{J}_t) = K$
- Trial step of truncated perturbed Jacobian

$$\tilde{s}_t = -\left(\nu I + \tilde{J}_t^T \tilde{J}_t\right)^\dagger \tilde{J}_t^T R$$

Relative Error for Truncated SVD

For ϵ sufficiently small

$$\frac{\|\tilde{s}_t - s\|}{\|\tilde{s}_t\|} \leq \kappa_{\nu}(J) \left[1 + (1 + 2\|J\|\tan\theta) \frac{\|R\|}{\|J\| \|\tilde{s}_t\|}\right] \epsilon + \mathcal{O}(\epsilon^2)$$

- $\tan \theta$: Accuracy of singular vectors of truncated Jacobian J_t
- Error in J_t amplified by

Conditioning of J Inaccuracy of singular vectors Nonlinear residual R

Trial step from truncated SVD not accurate if

J close to matrix of rank K - 1: $\kappa_{\nu}(J) \gg 1$ Singular vectors have low accuracy: $\tan \theta \gg 0$ Nonlinear residual R large

Alternative Regularization: Subset Selection

• Choose K "very" linearly independent columns J_1 from J

$$J = \begin{pmatrix} J_1 & J_2 \end{pmatrix}$$

• Trial step

$$\hat{\mathbf{s}} = -\left(\nu \mathbf{I} + \mathbf{J}_1^T \mathbf{J}_1\right)^{-1} \mathbf{J}_1^T \mathbf{R}$$

• Computed as solution of $\min_{x} \|A_1x - b\|$

$$A_1 = \begin{pmatrix} J_1 \\ \sqrt{\nu}I \end{pmatrix} \qquad b = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Linear least squares problem now well-conditioned

Subset Selection: Errors in Jacobian

• J₁ selected by strong RRQR [Gu & Eisenstat 1996]

$$\frac{\sigma_j}{\sqrt{1+\kappa(N-\kappa)}} \le \sigma_j (J_1) \le \sigma_j \qquad 1 \le j \le \kappa$$

Singular values of J_1 close to largest singular values of J

- Perturbed Jacobian $\tilde{J} = J + E$ rank $(J + E) \ge K$, $||E|| \le \epsilon ||J||$
- Select same columns for \tilde{J}_1 and J_1 : $(\tilde{J}_1 \quad \tilde{J}_2)$

$$\tilde{s} = -\left(\nu I + \tilde{J}_1^T \tilde{J}_1\right)^{-1} \tilde{J}_1^T R$$

Subset Selection: Relative Error

Condition number

$$\widetilde{\kappa}_{\nu}(J_1) = \sigma_1 \max_{\widetilde{\sigma}_K \leq \sigma \leq \sigma_1} \frac{\sigma}{\nu + \sigma^2} \qquad \widetilde{\sigma}_K = \sigma_K / \sqrt{1 + \kappa(N - \kappa)}$$

Relative error in subset selection trial step

$$\frac{\|\tilde{\boldsymbol{s}}-\hat{\boldsymbol{s}}\|}{\|\tilde{\boldsymbol{s}}\|} \leq \tilde{\kappa}_{\nu}(J_1) \, \left(1+\frac{\|R\|}{\|J\| \, \|\tilde{\boldsymbol{s}}\|}\right) \, \epsilon$$

Error in J amplified by conditioning of J_1 and nonlinear residual R Same as full rank bound applied to J_1

Numerical Experiments

Goal: Design simplest possible setting to reproduce failures from truncated SVD observed in cardiovascular model

Numerical Experiments

Driven harmonic oscillator

 $(1+10^{-3} \delta)y'' + (c_1 + c_2)y' + k y = 2\sin(5t)$

$$y(0) = y_0, y'(0) = y'_0$$

- 4 parameters $p = \begin{pmatrix} \delta & c_1 & c_2 & k \end{pmatrix}^T$
- Numerical solution $\tilde{y}(t_j)$ from Matlab ode15s
- Nonlinear residual

$$R(p) = egin{pmatrix} ilde{y}(t_1) - d_1 \ dots \ ilde{y}(t_M) - d_M \end{pmatrix}$$

• Estimate p by solving nonlinear least squares problem $\min_{p} R(p)^{T} R(p)/2$

Numerical Experiments: Assumptions

$$(1+10^{-3} \delta)y'' + (c_1 + c_2)y' + k y = 2\sin(5t)$$

• Highly accurate Jacobians:

Compute columns of J from sensitivities $\partial y / \partial p$

• Zero residual:

Data *d* from exact parameters $p^* = \begin{pmatrix} 1.23 & 1 & 0 & 1 \end{pmatrix}^{\prime}$

- Initial guess $p_0 = \begin{pmatrix} 0 & 1 & 1 & .3 \end{pmatrix}^T$
- Singular values of initial Jacobian:

$$40.1 \quad 12.9 \quad 7.4 \cdot 10^{-4} \quad 6.21 \cdot 10^{-16}$$

• One zero singular value by design: $\frac{\partial R}{\partial c_1} = \frac{\partial R}{\partial c_2}$ Need to recover $c_1 + c_2 = 1$

Numerical Experiments: Zero Residual

Assumptions for subset selection:

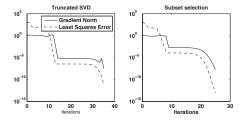
- Rank K = 3 of Jacobian is known
- Subset selection applied only to initial Jacobian
- All Levenberg-Marquardt iterations work with same *K* columns
- Parameters corresponding to N K = 1 non-selected columns set to nominal values

• Exact parameters
$$p^* = egin{pmatrix} 1.23 & 1 & 0 \end{bmatrix}^T$$

• Truncated SVD:
$$p = \begin{pmatrix} 1.22 & .5 & .5 \end{pmatrix}'$$

• Subset selection: $p = (1.23 \ .5 \ .5 \ 1)^T$ A little more accurate

Convergence History: Zero Residual



Subset selection converges faster and slightly more accurate than truncated SVD

Numerical Experiments: Non-Zero Residual

$$(1+10^{-3}\delta)y'' + (c_1 + c_2)y' + k_0y = 2\sin(5t)$$

Non-zero residual

Componentwise relative perturbation of data d by 10^{-4}

• Singular values of Jacobian have not changed:

$$40.1 \quad 12.9 \quad 7.4 \cdot 10^{-4} \quad 6.21 \cdot 10^{-16}$$

• Exact parameters $p^* = \begin{pmatrix} 1.23 & 1 & 0 & 1 \end{pmatrix}^T$

• Truncated SVD:
$$p = (.09 \ .5 \ .5 \ .998)'$$

 δ completely wrong

• Subset selection:
$$p = (1.28 \quad 0 \quad 1 \quad 1)^T$$

Much more accurate

Truncated SVD \longleftrightarrow Subset Selection

What is really going on?

General Least Squares Problems

$$\min_{x} \|Ax - b\| \qquad A \text{ is } M \times N, \quad M \ge N$$

Singular values $\sigma_1 \ge \cdots \ge \sigma_K \gg \sigma_{K+1} \ge \cdots \ge \sigma_N > 0$ Least squares problem with illconditioned matrix

Truncated SVD

Singular values $\sigma_1 \ge \cdots \ge \sigma_K \gg \sigma_{K+1} = \cdots = \sigma_N = 0$ Least squares problem now ill-posed

• Subset Selection: K columns of A selected by strong RRQR Singular values $\sigma_1 \ge \cdots \ge \sigma_K / \sqrt{1 + K(N-k)} \gg 0$ Least squares problem with wellconditioned matrix

The Problem with Truncated SVD

• $\min_x ||Ax - b||$

A has singular values $\sigma_1 \ge \cdots \ge \sigma_k \ge \cdots \ge \sigma_r > 0$ $s = A^{\dagger}b$ is minimal norm solution

- Truncated SVD: $\min_{x} ||A_{t}x b||$ A_{t} has singular values $\sigma_{1} \ge \cdots \ge \sigma_{k}$ $s_{t} = A_{t}^{\dagger}b$ is minimal norm solution, residual $r_{t} = b - As_{t}$
- Relative error

$$\frac{\|\boldsymbol{s}_t - \boldsymbol{s}\|}{\|\boldsymbol{s}_t\|} \leq \frac{\sigma_1}{\sigma_r} \frac{\|\boldsymbol{r}_t\|}{\|\boldsymbol{A}\| \|\boldsymbol{s}_t\|}$$

Small residual does not imply that s_t accurate Bound independent of how many singular values truncated

Summary

- Parameter estimation with nonlinear dependences
- Expressed as nonlinear least squares problem
- Solved by Levenberg-Marquardt trust region algorithm
- Rank deficient Jacobians
- Errors in Jacobian evaluation, non-zero residuals
- How to regularize Jacobian:

Truncated SVD: NO Subset selection: Yes