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Overview

Motivating Application

Modeling cardiovascular systems
Extract biomarkers: Nonlinear parameter estimation
Nonlinear dependencies among parameters

Computation

Solution of nonlinear least squares problem

by Levenberg-Marquardt trust region algorithm
Rank deficient Jacobians

Errors in Jacobian evaluation

How to ‘“regularize” the Jacobian?

Truncated SVD: NO
Column subset selection: YES



Modeling Cardiovascular Systems

Goal: ldentify parameters that regulate blood flow

Cardiovascular system = lumped 5-compartment model
Blood flow, volume, pressure, resistance, compliance
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Computation

@ System of 5 ODEs with N = 16 parameters
y'=F(t.yip)  y(0)=yo

Parameter vector p € RV

@ Observations d; at M time points t; M> N
@ Nonlinear residual
y(t1,p) — d1
R(p) = :
y(tm, p) — dum

@ |dentify parameters p that minimize difference between
measured and computed quantities

min R(p)"R(p)/2



Nonlinear Least Squares Problem

min R(p)"R(p)/2

Jacobian J, = R'(p,) at current iterate p,

@ Levenberg-Marquardt trust region algorithm
Forn=0,1,2...

—1
Pasr = pa— (vl + 7 ,) ] R(pn)

® v, = 0 and J, full column rank: Gauss Newton

@ Here: v, > 0 and J, rank deficient



Levenberg-Marquardt Algorithm

@ Inside a Levenberg-Marquardt Step:
While iterate has not changed
Trial step s = — (vnl + J,;’-Jn)_1 JT R(py)
Trial iterate pr = pp+ s
i f pr good enough then
Pn+1 = Pt, Vny1 < keep or decrease v,
else vpy1 < increase v,

o ldeally:
v, — 0, or at least v,, bounded
pn converge to minimizer, or at least stationary point

o But here:
Poor convergence (Levenberg-Marquardt stagnates)
Gradient at “solution” not small
Accuracy of “solution” 777



Convergence Analysis

@ Near solution manifold

@ Assuming exact arithmetic

Nonlinear iterations with rank deficient Jacobians:
Ben-Israel 1966, Boggs 1976, Deuflhard & Heindl 1979, Schaback 1985



Behavior of Levenberg-Marquardt lterates

Assumptions
@ Initial iterate py close enough to a solution p*
@ J(p) Lipschitz continuous

@ R(p*) small but not necessarily zero

Then we can show
@ Levenberg-Marquardt parameters v, remain bounded
@ lterates p, approach solution manifold

@ If p, converge then they converge to some solution
(Cauchy sequence)

Still need to show that p, converge



Convergence of Levenberg-Marquardt Iterates

Model nonlinear dependence among parameters:
R(p)=R(B(p))  B:RM 5 R¥
If K = N then Jacobian J has full column rank

Assumptions: Sufficiently close to a solution p*
@ R and B uniformly Lipschitz continuously differentiable
@ All K singular values of B” uniformly bounded away from 0
@ All K singular values of R’ uniformly bounded away from 0

o R(b)TR(b)/2 has unique minimizer

Then: p, converge to a solution r-linearly



Summary: Convergence Analysis

Assumptions:

@ Near solution manifold
Initial iterate pg sufficiently close to a solution p*

@ Nonlinear residual R(p*) small but not necessarily zero
@ Dependence among parameters:

R(p)=R(B(p) B:RY - R¥

@ Jacobians B’ and R’ have rank K

@ All Jacobians sufficiently smooth

Then: lterates p, converge to some solution

But this assumes exact arithmetic!
What happens in finite precision?



Finite Precision Issues

@ Computation of trial step
@ Effect of errors in computed Jacobian

@ Regularization of Jacobian:
Truncated SVD < subset selection

Singular vector perturbations: Stewart 1973



Computation of Trial Step
Pn+1 =pPn+S

@ Trial step

T
SZ—(V/+JTJ) JTR
Works for v = 0 and rank deficient J

@ Computed as minimum norm solution to linear least squares
problem miny ||Ax — b||

(1) ()

Illconditioned or illposed if v small, J rank deficient



Full Rank Jacobian

@ J has full column rank: s=— (I// + JTJ)_1 JTR

Condition number £, (J) := H(V/ + JTJ)f1 JTH | J]]

o J = J+ E has full column rank, ||E| < €|J||

§:—(ul+3T:I)_1:ITR

@ Relative error in trial step

15— s ( IRl >
~ S Ry J 1 + = €
e = e

Error in J amplified by conditioning of J and nonlinear residual R




Rank Deficient Jacobian: Regularization

o Exact trial step s = — (l// + JTJ)T JTR

@ Truncate SVD of J: Truncated Jacobian J; has singular values

@ “Truncated” trial step is
T\ T
se=— (ul—i—Jt Jt) JTR
@ Computed as minimum norm solution of min, |[[A:x — b||

() (9

Linear least squares problem still ill-conditioned or ill-posed



Truncated SVD: Errors in Jacobian

@ SVD of exact Jacobian: J = UXVT rank(J) =K

Nonzero singular values o1 > --- > o >0

o
ky(J) =01 max ——
ox<o<o1 V + O

@ SVD of perturbed Jacobian:  J+E = USVT, ||E||r < e|J||
U, V rotations of U, V by angles < 6

o J; truncated SVD of J+ E rank(jt) =K
@ Trial step of truncated perturbed Jacobian

e \T ~
§t:—<yl+JtTJt) JT R



Relative Error for Truncated SVD

For e sufficiently small

R
< Ky (J) 1—|—(1—|—2HJHtan9)% e+ O(e?)

18 — s
3

@ tanf: Accuracy of singular vectors of truncated Jacobian J;

@ Error in J; amplified by

Conditioning of J
Inaccuracy of singular vectors
Nonlinear residual R

@ Trial step from truncated SVD not accurate if
J close to matrix of rank K —1: k,(J) > 1
Singular vectors have low accuracy: tan@ >0
Nonlinear residual R large



Alternative Regularization: Subset Selection

@ Choose K “very” linearly independent columns J; from J
J= (J1 Jz)

@ Trial step
-1
§:—<VI+J1TJ1) HR
@ Computed as solution of miny [|[A1x — b||

() o0

Linear least squares problem now well-conditioned



Subset Selection: Errors in Jacobian

@ J; selected by strong RRQR [Gu & Eisenstat 1996]

Singular values of J; close to largest singular values of J

@ Perturbed Jacobian J = J+ E
rank(J+ E) > K, | E| < €|J]

@ Select same columns for .71 and Ji: (:11 32)

~a~ N1 o
s=—(v1+3%) IR



Subset Selection: Relative Error

@ Condition number

g

Gk = 0k [\/I+K(N=K)

Ry(J1) = o1 _ max 5
ox<o<o1 V + O

@ Relative error in subset selection trial step

Is—8l _ . ( IRl )
= < H’V(Jl) 1+ — = €
3] 111 1151l

Error in J amplified by conditioning of J; and nonlinear residual R

Same as full rank bound applied to J;



Numerical Experiments

Goal: Design simplest possible setting to reproduce failures from
truncated SVD observed in cardiovascular model



Numerical Experiments

@ Driven harmonic oscillator
(1+10730)y” 4 (c1 + @)y’ + k y = 2sin (5t)
y(0) = yo, y'(0) = y5
® 4 parameters p=(§ a o k)T

@ Numerical solution y(t;) from Matlab ode15s
@ Nonlinear residual
y(t) —
R(p) = :
y(tm) — dm

@ Estimate p by solving nonlinear least squares problem

min R(p)"R(p)/2



Numerical Experiments: Assumptions

(1+10730)y” 4 (c1 + @)y’ + ky = 2sin (5t)

Highly accurate Jacobians:
Compute columns of J from sensitivities dy/0p

Zero residual:

Data d from exact parameters p* = (1.23 10 l)T

Initial guess py = (0 11 .3)T
Singular values of initial Jacobian:
40.1 129 7.4-107* 6.21-107'°

One zero singular value by design: 9 = be
Need to recover ¢; + co =1



Numerical Experiments: Zero Residual

Assumptions for subset selection:
@ Rank K = 3 of Jacobian is known
@ Subset selection applied only to initial Jacobian

o All Levenberg-Marquardt iterations work with same K
columns

@ Parameters corresponding to N — K = 1 non-selected columns
set to nominal values

o Exact parameters p* =(1.23 1 0 1)T

@ Truncated SVD: p = (1.22 b5 5 l)T

@ Subset selection: p = (1.23 5 5 l)T
A little more accurate



Convergence History: Zero Residual

Truncated SVD Subset selection

Gradient Norm
~ - { - - - Least Squares Error
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Iterations. Iterations

Subset selection converges faster and slightly more accurate
than truncated SVD



Numerical Experiments: Non-Zero Residual

(1+10738)y" + (c1 + @)y’ + koy = 2sin(5t)

@ Non-zero residual
Componentwise relative perturbation of data d by 10~*

Singular values of Jacobian have not changed:
40.1 129 7.4-107% 6.21-1071°

o Exact parameters p*=(1.23 1 0 1)T

@ Truncated SVD: p = (.09 5 5 .998)T
0 completely wrong

Subset selection: p= (1.28 0 1 1)T
Much more accurate



Truncated SVD <— Subset Selection

What is really going on?



General Least Squares Problems

min|Ax—b| AisMxN, M>N
X

Singular values 01> --->0ox> o1 > - > oy >0

Least squares problem with illconditioned matrix

@ Truncated SVD
Singular values 01> --->0ok> oks1=---=0ony =0
Least squares problem now ill-posed

@ Subset Selection: K columns of A selected by strong RRQR

Singular values o1 > -+ > ok /\/1+K(N—k) > 0
Least squares problem with wellconditioned matrix



The Problem with Truncated SVD

@ min, |[Ax — b||
A has singular values 01 > - >0 > --- >0, >0
s = Ath is minimal norm solution

@ Truncated SVD:  miny ||A:x — b||

A: has singular values g1 > - -+ > oy
St = Aib is minimal norm solution, residual ry = b — As;

@ Relative error
Ise —sll _ o1 el

Isell = o AL sl

Small residual does not imply that s; accurate
Bound independent of how many singular values truncated



Summary

Parameter estimation with nonlinear dependences
Expressed as nonlinear least squares problem

Solved by Levenberg-Marquardt trust region algorithm
Rank deficient Jacobians

Errors in Jacobian evaluation, non-zero residuals

How to regularize Jacobian:

Truncated SVD: NO
Subset selection: Yes



