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Existing methods and determinant inequalities
Our idea

Diagonal approximations

Sequence of higher order approximations
Zone determinant expansions

Extension of existing determinant inequalities



Quantum simulation of nuclear matter on lattice
Determinant — nucleon interactions

Computing determinants

Monte Carlo: not accurate

Gaussian elimination: too expensive
Sparse approximate inverses: too limited
Diagonal approximations



If M is Hermitian positive definite
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then

0 < det(M) < det(My) det(Mo)



If M is Hermitian positive definite
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then
O < det(M) < Hm]‘j
J



Upper bounds on determinant

For Hermitian positive-definite matrices
(Almost) no error bounds

Not for indefinite or non-Hermitian matrices
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det(M) — 1.2 > 1 = mqi1moe



Write det(M) = exp(trace(log(M)))
Expand
Diagonal approximation is first term



Write det(M) = exp(trace(log(M)))
Expand
Diagonal approximation is first term
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Why Does This Make Sense?

. 61115 - 6111 a+In 3
trace(log(M))

0= (" 1)




If X nonsingular then X = exp(WW) for some W
det(X) = det(exp(W))



If X nonsingular then X = exp(WW) for some W
det(X) = det(exp(W))
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If X nonsingular then X = exp(WW) for some W
det(X) = det(exp(W))
Use det(exp(W)) = exp(trace(W))
det(X) = det(exp(WW)) = exp(trace(WW))
Setlog(X) =W
det(X) = exp(trace(log(X)))



Expansion

+ A), where A= D10




Expansion

[ + A), where A= D10
- exp(trace(log(l + A)))




M=D+0O=D(+A),where A= D10
det(M) = det(D) - exp(trace(log(l + A)))

1 1
log([+A):A—§A2+§A3—--- if p(A) < 1



M=D+0O=D(+A),where A= D10
det(M) = det(D) - exp(trace(log(l + A)))

1 1
log(I+A):A—§A2+§A3—--- if p(A) < 1

det(M) = det(D) - e“, where

1 1
a = trace(A) — ) trace(AQ) + 3 trace(AS) __ P



First Approximation

1
e(A%) + 3 trace(A4%) — - - -




A = det(D) - exp(trace(A))
det(M) = A - e7, where

1 1
2= trace(A%) + ) trace(A4°) — - - -

Relative error

det(M) — A
A

=1-¢




M = D + O of order n
A = det(D) - exp(trace(D'0))

If p = p(D'0) < 1then

det(M) — A
A

< cpe”

where c = —nln (1 — p)



M = D + O of order n

()

If p= p(D'0) < 1then
det(M) — det(D)

det(D)

where c = —nlIn (1 — p)

< cpe®



M = D + O of order n




M =D + O of order n

A, = det(D) - exp[gzl (_pl)p trace((D~O)P)]

If p = p(D~'0) < 1 then

det(M) — A,
Ap,

where c = —nlIn (1 — p)



M =D + O of order n

A, = det(D) - exp[ﬁjj1 (_pl)p trace((D~O)P)]

If cp™< 1 then

det(M) — A, Zi -
A, I —p




New method for lattice simulation
of finite temperature nuclear matter

New expansion of nucleon matrix determinant
In powers of boundary hopping parameter

Simulations accelerated by factor 10° — 107
1/p(D'0O) ~ size of spatial zone
trace((D'0)P) = 0 for p odd



Realistic lattice simulation of interactions between
neutrons and neutral pions

[ det(M)| ~ 10°...10%
p=p(D70) =~ 5
Once cp” < 1 then

det(M) — A,
Ay,

S An pm—H




n = 3888,

0~ 5122,

Complex non-Hermitian matrix

cp'< 1 form > 12

65.8009 — 0.72502

51.3988 — 0.78331
66.0028 — 0.72187
65.8289 — 0.7243¢
65.7926 — 0.72531
65.8026 — 0.72492




M = D + O of order n

InA,, = In(det(D)) + ﬁ_l: (_pl)p trace((DO)?)
|In (det(M)) — In (A,,)] < iy Pl 5

Numerical experiments:

[In (det(M)) — In (A,,)|~ 1077



* 0 *x
D = ( * ) O = (* 0 *)
* x % 0
If det(M) and det(D) real, D non-singular

A\i(D7'O) > —1 real then
0 <det(M) < det(D) or det(D)<det(M) <0



det(M) = exp(trace(log(M))))
Diagonal approximations det(M) ~ det(D)
Sequence of higher order approximations

Relative error bounds

New method in guantum physics:
Zone determinant expansion

Extension of Fischer's and Hadamard’s
iInequalities
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