Determinant Approximations

Ilse Ipsen

North Carolina State University

Joint Work with Dean Lee (Physics)

Overview

- Existing methods and determinant inequalities
- Our idea
- Diagonal approximations
- Sequence of higher order approximations
- Zone determinant expansions
- Extension of existing determinant inequalities

Application

Quantum simulation of nuclear matter on lattice Determinant → nucleon interactions

Computing determinants

- Monte Carlo: not accurate
- Gaussian elimination: too expensive
- Sparse approximate inverses: too limited
- Diagonal approximations

Fischer's Inequality

If M is Hermitian positive definite

$$M=\left(egin{array}{ccc} M_{11} & * \ * & M_{22} \end{array}
ight)$$

then

$$0 \leq \det(M) \leq \det(M_{11}) \det(M_{22})$$

Hadamard's Inequality

If M is Hermitian positive definite

then

$$0 \le \det(M) \le \prod_{j} m_{jj}$$

Diagonal Approximations

- Upper bounds on determinant
- For Hermitian positive-definite matrices
- (Almost) no error bounds
- Not for indefinite or non-Hermitian matrices

$$M = \begin{pmatrix} 1 & \frac{\imath}{2} \\ \frac{\imath}{2} & 1 \end{pmatrix}, \qquad \imath \equiv \sqrt{-1}$$

$$\det(M) = 1.25 > 1 = m_{11}m_{22}$$

Rescuing Diagonal Approximations

- Write det(M) = exp(trace(log(M)))
- Expand
- Diagonal approximation is first term

Rescuing Diagonal Approximations

- Write det(M) = exp(trace(log(M)))
- Expand
- Diagonal approximation is first term

?

Why Does This Make Sense?

$$M = \begin{pmatrix} \alpha & \\ & \beta \end{pmatrix}$$

$$\det(M) = \alpha \cdot \beta
= e^{\ln \alpha} \cdot e^{\ln \beta} = e^{\ln \alpha + \ln \beta}
= e^{\operatorname{trace}(\log(M))}$$

$$\log(M) = \begin{pmatrix} \ln \alpha & \\ & \ln \beta \end{pmatrix}$$

Why Is It Legal?

• If X nonsingular then $X = \exp(W)$ for some W $\det(X) = \det(\exp(W))$

Why Is It Legal?

• If X nonsingular then $X = \exp(W)$ for some W $\det(X) = \det(\exp(W))$

• Use det(exp(W)) = exp(trace(W))

$$det(X) = det(exp(W)) = exp(trace(W))$$

Why is it Legal?

• If X nonsingular then $X = \exp(W)$ for some W $\det(X) = \det(\exp(W))$

• Use
$$det(exp(W)) = exp(trace(W))$$

 $det(X) = det(exp(W)) = exp(trace(W))$

• Set $\log(X) := W$ $\det(X) = \exp(\operatorname{trace}(\log(X)))$

$$M = D + O = D(I + A)$$
, where $A \equiv D^{-1}O$

$$M = D + O = D(I + A)$$
, where $A \equiv D^{-1}O$

$$\det(M) = \det(D) \cdot \exp(\operatorname{trace}(\log(I + A)))$$

$$M = D + O = D(I + A)$$
, where $A \equiv D^{-1}O$

$$\det(M) = \det(D) \cdot \exp(\operatorname{trace}(\log(I + A)))$$

$$\log(I+A) = A - \frac{1}{2}A^2 + \frac{1}{3}A^3 - \dots \quad \text{if } \rho(A) < 1$$

$$M = D + O = D(I + A)$$
, where $A \equiv D^{-1}O$

$$\det(M) = \det(D) \cdot \exp(\operatorname{trace}(\log(I + A)))$$

$$\log(I+A) = A - \frac{1}{2}A^2 + \frac{1}{3}A^3 - \dots \quad \text{if } \rho(A) < 1$$

$$det(M) = det(D) \cdot e^{\alpha}$$
, where

$$\alpha = \operatorname{trace}(A) - \frac{1}{2}\operatorname{trace}(A^2) + \frac{1}{3}\operatorname{trace}(A^3) - \cdots$$

First Approximation

$$\Delta \equiv \det(D) \cdot \exp(\operatorname{trace}(A))$$
 $\det(M) = \Delta \cdot e^z$, where
$$z = -\frac{1}{2}\operatorname{trace}(A^2) + \frac{1}{3}\operatorname{trace}(A^3) - \cdots$$

First Approximation

$$\Delta \equiv \det(D) \cdot \exp(\operatorname{trace}(A))$$
 $\det(M) = \Delta \cdot e^z$, where
$$z = -\frac{1}{2}\operatorname{trace}(A^2) + \frac{1}{3}\operatorname{trace}(A^3) - \cdots$$

Relative error

$$\left| \frac{\det(M) - \Delta}{\Delta} \right| = |1 - e^z|$$

First Approximation

$$M = D + O$$
 of order n
$$\Delta \equiv \det(D) \cdot \exp(\operatorname{trace}(D^{-1}O))$$

If
$$\rho \equiv \rho(D^{-1}O) < 1$$
 then

$$\left| \frac{\det(M) - \Delta}{\Delta} \right| \le c\rho \, e^{c\rho}$$

where
$$c \equiv -n \ln (1 - \rho)$$

Diagonal Approximations

$$M = D + O$$
 of order n

$$D = \begin{pmatrix} * \\ * \end{pmatrix} \qquad O = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

If
$$\rho \equiv \rho(D^{-1}O) < 1$$
 then

$$\left| \frac{\det(M) - \det(D)}{\det(D)} \right| \le c\rho \, e^{c\rho}$$

where
$$c \equiv -n \ln (1 - \rho)$$

"Diagonally Dominant" Matrices

$$M = D + O$$
 of order n

$$D = \begin{pmatrix} * \\ * \end{pmatrix} \qquad O = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

If
$$\rho \equiv \rho(D^{-1}O) < \frac{1}{n+1}$$
 then

$$\left| \frac{\det(M) - \det(D)}{\det(D)} \right| \le \frac{2}{1 - \rho} \rho^2$$

Higher Order Approximations

$$M = D + O$$
 of order n

$$\Delta_{m} \equiv \det(D) \cdot \exp\left[\sum_{p=1}^{m} \frac{(-1)^{p}}{p} \operatorname{trace}((D^{-1}O)^{p})\right]$$

If
$$\rho \equiv \rho(D^{-1}O) < 1$$
 then

$$\left| \frac{\det(M) - \Delta_m}{\Delta_m} \right| \le c \rho^m e^{c \rho^m}$$

where
$$c \equiv -n \ln (1 - \rho)$$

If We Expand Long Enough

$$M = D + O$$
 of order n

$$\Delta_{m} \equiv \det(D) \cdot \exp\left[\sum_{p=1}^{m} \frac{(-1)^{p}}{p} \operatorname{trace}((D^{-1}O)^{p})\right]$$

If $c\rho^m < 1$ then

$$\left| \frac{\det(M) - \Delta_m}{\Delta_m} \right| \le \frac{2n}{1 - \rho} \rho^{m+1}$$

Zone Determinant Expansions

- New method for lattice simulation of finite temperature nuclear matter
- New expansion of nucleon matrix determinant in powers of boundary hopping parameter
- Simulations accelerated by factor $10^5 10^7$
- $1/\rho(D^{-1}O) \simeq$ size of spatial zone
- $\operatorname{trace}((D^{-1}O)^p) = 0$ for p odd

Numerical Experiments

Realistic lattice simulation of interactions between neutrons and neutral pions

- $|\det(M)| \approx 10^6 \dots 10^{29}$
- $\rho = \rho(D^{-1}O) \approx .5$
- Once $c\rho^m < 1$ then

$$\left| \frac{\det(M) - \Delta_m}{\Delta_m} \right| \le 4n \, \rho^{m+1}$$

Numerical Experiments

Complex non-Hermitian matrix

$$n = 3888, \quad \rho \approx .5122, \quad c\rho^m < 1 \text{ for } m \ge 12$$

$\ln(\det(M))$	$65.8009 - 0.7250\imath$
$\ln(\det(D))$	51.3988 - 0.7888i
$\ln(\Delta_2)$	66.0028 - 0.7218i
$\ln(\Delta_4)$	65.8289 - 0.7243i
$\ln(\Delta_6)$	65.7926 - 0.7253i
$\ln(\Delta_8)$	65.8026 - 0.7249i

Logarithm of Determinant

$$M = D + O$$
 of order n

$$\ln \Delta_m = \ln (\det(D)) + \sum_{p=1}^m \frac{(-1)^p}{p} \operatorname{trace}((D^{-1}O)^p)$$

$$|\ln\left(\det(M)\right) - \ln\left(\Delta_m\right)| \le \frac{n}{1-\rho} \rho^{m+1} \approx 5$$

Numerical experiments:

$$|\ln\left(\det(M)\right) - \ln\left(\Delta_m\right)| \approx 10^{-3}$$

Extension of Fischer & Hadamard

$$M = D + O$$

$$D = \begin{pmatrix} * \\ * \\ * \end{pmatrix} \qquad O = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

If $\det(M)$ and $\det(D)$ real, D non-singular $\lambda_j(D^{-1}O) > -1$ real then

$$0 < \det(M) \le \det(D)$$
 or $\det(D) \le \det(M) < 0$

Summary

- $\det(M) = \exp(\operatorname{trace}(\log(M)))$
- Diagonal approximations $det(M) \approx det(D)$
- Sequence of higher order approximations
- Relative error bounds
- New method in quantum physics:
 Zone determinant expansion
- Extension of Fischer's and Hadamard's inequalities