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Two Factors

Determine where Google displays a web page on
the Search Engine Results Page:

1. PageRank (links)

A page has high PageRank
If many pages with high PageRank link to it

2. Hypertext Analysis (page contents)

Text, fonts, subdivisions, location of words,
contents of neighbouring pages



PageRank

An objective measure of the citation importance of
a web page [Brin & Page 1998]

Assigns a rank to every web page

Influences the order in which Google displays
search results

Based on link structure of the web graph
Does not depend on contents of web pages
Does not depend on query



PageRank

. . . continues to provide the basis for all of our web
search tools http://www.google.com/technology/

“Links are the currency of the web”
Exchanging & buying of links

BO (backlink obsession)

Search engine optimization



Overview

Mathematical Model of Internet
Computation of PageRank

Sensitivity of PageRank to Rounding Errors
Addition & Deletion of Links

Web Pages that have no Outlinks

Is the Ranking Correct?



Mathematical Model of Internet

1. Represent internet as graph
2. Represent graph as stochastic matrix

3. Make stochastic matrix more convenient
—> Google matrix

4. dominant eigenvector of Google matrix
— PageRank



The Internet as a Graph

Link from one web page to another web page

o0

Web pages = nodes
Links = edges

Web graph:




The Web Graph as a Matrix
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Elements of Matrix S

Assume: every page ¢ has [; > 1 outlinks

If page 2 has link to page j then s;; = 1/I;
else s;; =0

Probability that surfer moves from page 2 to page 3



Properties of Matrix S

Stochastic: 0<s;;, <1 S11=1

Dominant left eigenvector:
wiS=wl w>0 |lwl|l1 =1

w; IS probability that surfer visits page

But: w not unique
If S has several eigenvalues equal to 1

Remedy: Make the matrix more convenient




Google Matrix

Convex combination

G=aS+(1—a)lv’
|

rank 1

® Stochastic matrix S

® Damping factor0 < a« < 1
e.g. o = .85

® Column vector of all ones 11

® Personalization vector v > 0 ||v|[1 =1
Models teleportation



Properties of Google Matrix G

G =aoS

Stochastic, reducible

Eigenvalues of G-

(1 — a)1lv’

1> a)\z(S) 2 a)\g(S) 2 ¢ o0

Unique dominant left eigenvector:

G ==t

T >0 |7||1 = 1



PageRank

Google Matrix

_ _ T
G = If)zf + (1 — o) 1lw

Personalization
G = 7' T >0 |7|ls =1
7; IS PageRank of web page

PageRank = dominant left eigenvector of G



How Google Ranks Web Pages

® Model:
Internet — web graph — stochastic matrix G

® Computation:
PageRank 7 Is eigenvector of G

7; IS PageRank of page 2
® Display:
If 7v; > . then
page ¢ may” be displayed before page k

* depending on hypertext analysis



History

® The anatomy of a large-scale hypertextual web
search engine

Brin & Page 1998

® US patent for PageRank granted in 2001

® Eigenstructure of the Google Matrix
Haveliwala & Kamvar 2003
Eldén 2003
Serra-Capizzano 2005



Statistics

Google indexes 10s of billions of web pages
“3 times more than any competitor”

Google serves > 200 million queries per day
Each query processed by > 1000 machines

All search engines combined serve a total of
> 500 million queries per day

[Desikan, 26 October 2006]



Computation of PageRank

The world’s largest matrix computation
[Moler 2002]

Eigenvector

Matrix dimension is 10s of billions

The matrix changes often
250,000 new domain names every day

Fortunately: Matrix Is sparse



Power Method

Want: 7w suchthat #«1TG = nt

Power method:

Pick an initial guess (%)
Repeat
2T = (0] G

Each iteration i1s a matrix vector multiply



Matrix Vector Multiply

TG = et laS + (1 — a)1lv’]




An lteration Is Cheap

Google matrix G = aS + (1 — a)1lv’
Vectorx > 0 ||z =1

' G ' [aS + (1 — o)’

ax!'S+(1—a) ' v
=1

ax’S+ (1 —a)v’

Cost: # non-zero elements in S



Error iIn Power Method

G =nt G=aS+(1—-a)lv'

[ilt(k_l_l) . 7_‘_]T — [m(k)]TG . 7TTG
alz®)T's — arTs

= alz® —7|Ts

|zt — 7| < aljlz® — x|
iteration k-+1 iteration k

Norms: 1, co



Error iIn Power Method

G =nt G=aS+(1—-a)lv'

Error after k iterations:

2 —w|| < o |29 — 7|
<2

Norms: 1, oo [Bianchini, Gori & Scarselli 2003]

Error bound does not depend on matrix dimension



lteration Counts for Different «

bound: k such that 2 o* < 1078
Termination based on residual norms vs bound

a || n = 281903 | n = 683446 | bound
.85 69 65 119
90 107 102 166
95 219 220 415
.99 1114 1208 | 2075

Fewer iterations than predicted by bound



Advantages of Power Method

Converges to unigue vector

Convergence rate «

Convergence independent of matrix dimension
Vectorizes

Storage for only a single vector

Sparse matrix operations

Accurate (no subtractions)

Simple (few decisions)

But: can be slow



PageRank Computation

Power method

Page, Brin, Motwani & Winograd 1999
Bianchini, Gori & Scarselli 2003

Acceleration of power method
Kamvar, Haveliwala, Manning & Golub 2003
Haveliwala, Kamvar, Klein, Manning & Golub 2003

Brezinski & Redivo-Zaglia 2004, 2006
Brezinski, Redivo-Zaglia & Serra-Capizzano 2005

Aggregation/Disaggregation

Langville & Meyer 2002, 2003, 2006
Ipsen & Kirkland 2006



PageRank Computation

Methods that adapt to web graph

Broder, Lempel, Maghoul & Pedersen 2004 Kamvar,
Haveliwala & Golub 2004

Haveliwala, Kamvar, Manning & Golub 2003

Lee, Golub & Zenios 2003

Lu, Zhang, Xi, Chen, Liu, Lyu & Ma 2004
Ipsen & Selee 2006

Krylov methods

Golub & Greif 2004
Del Corso, Gulli, Romani 2006



PageRank Computation

Schwarz & asynchronous methods

Bru, Pedroche & Szyld 2005
Kollias, Gallopoulos & Szyld 2006

Linear system solution

Arasu, Novak, Tomkins & Tomlin 2002
Arasu, Novak & Tomkins 2003
Bianchini, Gori & Scarselli 2003
Gleich, Zukov & Berkin 2004

Del Corso, Gulli & Romani 2004
Langville & Meyer 2006



PageRank Computation

Surveys of numerical methods:
Langville & Meyer 2004
Berkhin 2005

Langville & Meyer 2006 (book)



Sensitivity of PageRank

How sensitive Is PageRank 7 to small
perturbations, e.g. rounding errors

C
C
C

nanges in matrix .S
nanges in damping factor o

nanges in personalization vector v



Perturbation Theory

For Markov chains

Schweizer 1968, Meyer 1980
Haviv & van Heyden 1984
Funderlic & Meyer 1986

Golub & Meyer 1986

Seneta 1988, 1991

Ipsen & Meyer 1994

Kirkland, Neumann & Shader 1998
Cho & Meyer 2000, 2001

Kirkland 2003, 2004



Perturbation Theory

For Google matrix

Chien, Dwork, Kumar & Sivakumar 2001

Ng, Zheng & Jordan 2001

Bianchini, Gori & Scarselli 2003

Boldi, Santini & Vigna 2004, 2005

Langville & Meyer 2004

Golub & Greif 2004

Kirkland 2005, 2006

Chien, Dwork, Kumar, Simon & Sivakumar 2005
Avrechenkov & Litvak 2006



Changes in the Matrix S

Exact:

G =nt G =aS+ (1—o)lv’
Perturbed:
TG = 7T G=aS+E)+(1—a)lv?

Error:




Changesin a and v

® Change in amplification factor:

~

G=(a+p)S+(1~—(ax+p))do"

Error: [|& — wrlls < 2 (1]
[Langville & Meyer 2004]

® Change In personalization vector:

~

G=aS+(1—a)l(v+ )T
Error: |77 — =||1 < || f]|1




Sensitivity of PageRank 7

G =nt G=aS+ (1 —ao)lv’

Changes In
°S: condition number /(1 — o)
° a: condition number 2 /(1 — «)
® v: condition number 1

o = .85. condition numbers < 14
a = .99: condition numbers < 200

PageRank insensitive to rounding errors



Adding an In-Link

O—®

T, > T

Adding an in-link increases PageRank
(monotonicity)

Removing an in-link decreases PageRank

[Chien, Dwork, Kumar & Sivakumar 2001]
[Chien, Dwork, Kumar, Simon & Sivakumar 2005]



“Adding an Out-Link

1+ o+ o? _1—|—0¢—|—0¢2

T3

T 30tata/2) T 30t a)

Adding an out-link may decrease PageRank



Justification for TrustRank

Adjust personalization vector to combat web spam
[GyOngyi, Garcia-Molina, Pedersen 2004]

Increase v for page 2: v; := v; + ¢
Decrease v for page j3: v; :=v; — @

PageRank of page ¢ increases: w; > m;
PageRank of page j decreases: w; < 7y

Total change in PageRank ||t — || < 2¢



Web Pages that have no Outlinks

Technical term: Dangling Nodes

Examples:

mage files

PDF and PS files

Pages whose links have not yet been crawled
Protected web pages

50%-80% of all web pages
Problem: zero rows in matrix

Popular fix: Insert artificial links



Dangling Node Fix

=N O
=N O
—n O O
M1_2O

0 0 0 0/




Inside the Stochastic Matrix S

Number pages so that dangling nodes are last

5= (o) * (aur)

N——

rank 1

Links from nondangling nodes: H
Dangling node vector w > 0 ||w||; =1

H

Google matrix G = « (leT

) + (1 — a)llo?



Partitioning the Google Matrix

[ G11 G
G = (ﬂur{ ﬂug)

G

/‘\

G @ @ u,
\/

(vl uwl)=  aw' + (1-a)v"

dangling nodes personalization



Lumping

Separate dangling and nondangling nodes
“‘Lump” all dangling nodes into single node

Stochastic matrices:
Kemeny & Snell 1960
Dayar & Stewart 1997
Jernigan & Baran 2003
Gurvits & Ledoux 2005

Google matrix:

Lee, Golub & Zenios 2003
Ipsen & Selee 2006



Example

——: real links
—— artificial links



Lumped Example




Google Lumping

1. “Lump” all dangling nodes into a single node

2. Compute dominant eigenvector of
smaller, lumped matrix
— PageRank of nondangling nodes

3. Determine PageRank of dangling nodes
with one matrix vector multiply




1. Lump Dangling Nodes

Google Matrix G

m Lumped matrix L



1. Lump Dangling Nodes

[ G11 G
G = (ﬂur{ ﬂug)

Lump n — d dangling nodes into a single node

—> Lumped matrix has dimension d + 1

I — (Gflpl G12]1>

T
(I uzjl

Stochastic, same nonzero eigenvalues as G



2. Elgenvector of Lumped Matrix

I — (Gflpl GlZﬂ)

(I ugjl
Lumped matrix with d nondangling nodes
Compute eigenvector of lumped matrix

o'l =o' o>0 |lo|]ls =1

PageRank of nondangling nodes: o1.4



3. Dangling Nodes

Eigenvector of lumped matrix: oL = o

PageRank of dangling nodes:

o
U,

One matrix vector multiply




Summary: Dangling Nodes

n web pages with n — d dangling nodes
Rank o .4 of d nondangling nodes:

Page
from

Page

umped matrix L of dimension d + 1

Rank of dangling nodes:
one matrix vector multiply

Total PageRank

(

\

" r (Giz))
Gl:d o T
—— u,

nondangling N —— ——
dangling




Summary: Dangling Nodes, ctd.

PageRank of nondangling nodes is
iIndependent of PageRank of dangling nodes

PageRank of nondangling nodes can be
computed separately

Power method on lumped matrix L:
same convergence rate as for G
but L much smaller than GG

speed increases with # dangling nodes




Is the Ranking Correct?

ol = (.23 .24 .26 .27)

™1 = (.27 .26 .24 .23)

|2 — || = .04

Small error, but incorrect ranking

z®]T = (0 .001 .002 .997)

2 — || = .727
_arge error, but correct ranking




Is the Ranking Correct?

After k iterations of power method:
Error:  ||lz®) — x| < 2 aF

But: Do the components of (¥) have the same
ranking as those of ?

Rank-stabllity, rank-similarity: [Lempel & Moran, 2005]
[Borodin, Roberts, Rosenthal & Tsaparas 2005]



~ —~
O O = O
O - O O
o - O O O
= O O O O
o O O O
~— _

S =

Web Graph is a Ring

[Ipsen & Wills]



All Pages are Trusted

S is circulant of order n, v = %]l

PageRank: 7 =11

T n

All pages have same PageRank

Power method
0 =v: 20 =7 correct ranking

0 #£ v [T~ 10T 4 ok ([2O)78F - L11)
Ranking does not converge (in exact arithmetic)



Only One Page Is Trusted




Only One Page Is Trusted

PageRank decreases with distance from page 1



Only One Page Is Trusted

S iIs circulant of order n, v = eq

PageRank: 7'~ (1 a ... a™ 1)

bower method with (?) = v:
FT ~ (1 a ... a2 o ... O)

:az(n)]TN (1 | 1‘ina a o ... a”_l)

Rank convergence Iin n Iterations



Too Many Iterations

Power method with (?) = v = ey:

After n iterations:

[z(™]T ~ (1 + ‘ina a o ... a"_l)

1

After n + 1 Iterations:

fa=.85 n=10: « o™
1—o

Additional iterations can destroy
a converged ranking

> 1




Recovery of Ranking

S Is circulant of order n

e After Lk iterations:

k—1
[N = o [D)1TS8* + (1 — a)vT Z o’ §9

j=0
e After k + n iterations:

[m(k—l—n)]T — a” [aj(k)]T i (1 L an)ﬂ_T

If £(*) has correct ranking, so does x(*+™)



Any Personalization Vector

S IS circulant of order n
PageRank: 7l ~ vT Y ") i S

Power method with () = %]l

o™
[m(n)]T — (1 . an)ﬂ'T i _le
scalar &’_/

constant vector

For any v: rank convergence after n iterations



Problems with Ranking

Ranking may never converge
Additional iterations can destroy ranking
Small error does not imply correct ranking

Rank convergence depends on:
o, v, Initial guess, matrix dimension,
structure of web graph

How do we know when the ranking Is correct?

Even If successive iterates have the same
ranking, their ranking may not be correct



Summary

Google orders web pages according to:
PageRank and hypertext analysis

PageRank = left eigenvector of G
G=aS+(1—a)lv’

Power method: simple and robust

Error in iteration k bounded by o*

Convergence rate largely independent of
dimension and eigenvalues of G



“Summary, ctd

® PageRank insensitive to rounding errors
® Adding in-links increases PageRank
® Adding out-links may decrease PageRank

® Dangling nodes = pages w/o outlinks
Rank one change to hyperlink matrix

® | umping:
PageRank of nondangling nodes computed
separately from PageRank of dangling nodes

® Ranking problem: DIFFICULT




User-Friendly Resources

® Rebecca Wills:
Google’s PageRank: The Math Behind the
Search Engine
Mathematical Intelligencer, 2006

® Amy Langville & Carl Meyer:
Google’s PageRank and Beyond
The Science of Search Engine Rankings
Princeton University Press, 2006

® Amy Langville & Carl Meyer:
Broadcast of On-Air Interview, November 2006
Carl Meyer’s web page
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