Subset Selection

llse Ipsen

North Carolina State University, USA

Subset Selection

Given: real or complex matrix A integer k

Determine permutation matrix P so that

- Important columns A₁
 Columns of A₁ are 'very' linearly independent "Wannabe basis vectors"
- Redundant columns A₂
 Columns of A₂ are 'well' represented by A₁

Outline

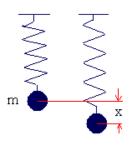
- Two applications
- Mathematical formulation
- Bounds
- Algorithms (two norm)
- Redundant columns (Frobenius norm)
- Randomized algorithms

First application

Joint work with Tim Kelley

- Solution of nonlinear least squares problems
- Levenberg-Marquardt trust-region algorithm
- Difficulties:
 - illconditioned or rank deficient Jacobians errors in residuals and Jacobians
- Improve conditioning with subset selection
- Damped driven harmonic oscillators allow us to construct different scenarios

Harmonic Oscillators



$$m x'' + c x' + k x = 0$$

displacement x(t)
mass m
damping constant c
spring stiffness k

Given: displacement measurements x_i at time t_i

Want: parameters p = (m, c, k)

Nonlinear least squares problem

$$\min_{p} \sum_{i} |x(t_{j},p) - x_{j}|^{2}$$

Nonlinear Least Squares Problem

Residual R(p) =
$$(x(t_1, p) - x_1 \quad x(t_2, p) - x_2 \quad \dots)^T$$

Nonlinear Least Squares Problem

$$\min_{p} f(p) \qquad \text{where} \quad f(p) = \tfrac{1}{2} \, R(p)^\mathsf{T} R(p)$$

• At a minimizer p^* : $\nabla f(p^*) = 0$ Gradient: $\nabla f(p) = R'(p)^T R(p)$ Jacobian: R'(p)

• Solve $\nabla f(p) = 0$ by Levenberg-Marquardt algorithm

$$\mathbf{p}_{\mathsf{new}} = \mathbf{p} - \left(\nu \mathbf{I} + \mathbf{R}'(\mathbf{p})^{\mathsf{T}} \mathbf{R}'(\mathbf{p})\right)^{-1} \mathbf{R}'(\mathbf{p})^{\mathsf{T}} \mathbf{R}(\mathbf{p})$$

Jacobian

Levenberg-Marquardt algorithm

$$p_{\text{new}} = p - \left(\nu I + R'(p)^{\mathsf{T}} R'(p)\right)^{-1} R'(p)^{\mathsf{T}} R(p)$$

But: Jacobian R'(p) does not have full column rank

• m x'' + c x' + k x = 0 for infinitely many p = (m, c, k)

$$x'' + \frac{c}{m} x' + \frac{k}{m} x = 0$$

$$\frac{m}{c} x'' + x' + \frac{k}{c} x = 0$$

$$\frac{m}{k} x'' + \frac{c}{k} x' + x = 0$$

Which parameter to keep fixed?

• Which column in the Jacobian is redundant?

Subset Selection!

Second Application

Scott Pope's Ph.D. thesis (NCState, 2009)

- Cardiovascular and respiratory modeling
- Identify parameters that are important for predicting blood flow and pressure
- Solve nonlinear least squares problem combined with subset selection
- Parameters identified as important:

total systemic resistance cerebrovascular resistance arterial compliance time of peak systolic ventricular pressure

Mathematical Formulation of Subset Selection

Given: real or complex matrix A with n columns integer k

Determine permutation matrix P so that

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n-k}})$$

- Important columns A₁
 Columns of A₁ are 'very' linearly independent
 Smallest singular value of A₁ is 'large'
- Redundant columns A_2 Columns of A_2 are 'well' represented by A_1 $\min_{Z} \|A_1 Z - A_2\|$ is 'small' (two norm)

Singular Value Decomposition (SVD)

 $m \times n$ matrix A, m > n

$$AP = U \Sigma V$$

Singular vectors:

$$U^TU = I_m \qquad V^TV = VV^T = I_n$$

Singular values:

Ideal Matrices for Subset Selection

Singular Value Decomposition

$$AP = (\underbrace{A_1}_{k} \quad \underbrace{A_2}_{n-k}) = U \begin{pmatrix} \Sigma_1 \\ & \Sigma_2 \end{pmatrix} V$$

If exists permutation P so that V = I then

Important columns → large singular values of A

$$\mathsf{A}_1 = \mathsf{U}egin{pmatrix} \mathbf{\Sigma}_1 \ 0 \end{pmatrix} \quad ext{and} \quad \sigma_\mathsf{i}(\mathsf{A}_1) = \sigma_\mathsf{i}(\mathsf{A}) \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

Redundant columns → small singular values of A

$$\mathsf{A}_2 = \mathsf{U} \begin{pmatrix} 0 \\ \Sigma_2 \end{pmatrix} \quad ext{and} \quad \min_{\mathsf{Z}} \|\mathsf{A}_1 \, \mathsf{Z} - \mathsf{A}_2\| = \|\mathsf{A}_2\| = \sigma_{\mathsf{k}+1}(\mathsf{A})$$

Subset Selection Requirements

• Important columns A_1 k columns of A_1 should be 'very' linearly independent Smallest singular value $\sigma_k(A_1)$ should be 'large'

$$\sigma_{\mathsf{k}}(\mathsf{A})/\gamma \leq \sigma_{\mathsf{k}}(\mathsf{A}_1) \leq \sigma_{\mathsf{k}}(\mathsf{A})$$

for some γ

• Redundant columns A_2 Columns of A_2 should be 'well' represented by A_1 $\min_Z \|A_1Z - A_2\|$ should be 'small' (two norm)

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \| \textcolor{red}{\mathsf{A}_1} \, \mathsf{Z} - \textcolor{red}{\mathsf{A}_2} \| \leq \gamma \, \sigma_{\mathsf{k}+1}(\mathsf{A})$$

for some γ

Bounds for Subset Selection

Singular value decomposition

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n-k}}) = \mathsf{U} \begin{pmatrix} \mathsf{\Sigma}_1 \\ \mathsf{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathsf{V}_{11} & \mathsf{V}_{12} \\ \mathsf{V}_{21} & \mathsf{V}_{22} \end{pmatrix}$$

Important columns A₁

$$rac{\sigma_{\mathsf{i}}(\mathsf{A})}{\|\mathsf{V}_{11}^{-1}\|} \leq \sigma_{\mathsf{i}}(\mathsf{A}_1) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \qquad \mathrm{for \ all} \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

Redundant columns A₂

$$\sigma_{k+1}(\textbf{A}) \leq \min_{\textbf{Z}} \|\textbf{A}_{1}\textbf{Z} - \textbf{A}_{2}\| \leq \|\textbf{V}_{11}^{-1}\| \; \sigma_{k+1}(\textbf{A})$$

How Small Can $\|V_{11}^{-1}\|$ Be?

Matrix $(V_{11} \ V_{12})$ is $k \times n$ with orthonormal rows

• If V₁₁ is nonsingular then

$$\|\textbf{V}_{11}^{-1}\| \leq \sqrt{1 + \|\textbf{V}_{11}^{-1}\textbf{V}_{12}\|^2}$$

Follows from $I = V_{11}V_{11}^T + V_{12}V_{12}^T$

• If $|\det(V_{11})|$ is maximal then

$$\|V_{11}^{-1}V_{12}\| \leq \sqrt{k(n-k)}$$

Follows from Cramer's rule: $\left| (\mathsf{V}_{11}^{-1}\mathsf{V}_{12})_{ij} \right| \leq 1$

There exists a permutation such that

$$\|V_{11}^{-1}\| \leq \sqrt{1 + k(n-k)}$$

Bounds for Subset Selection

$$\mathsf{AP} = (\underbrace{ \begin{array}{ccc} \mathsf{A}_1 & \underbrace{ \begin{array}{ccc} \mathsf{A}_2 \\ \mathsf{n} - \mathsf{k} \end{array}}) = \mathsf{U} \begin{pmatrix} \begin{array}{ccc} \mathsf{\Sigma}_1 & \mathsf{V}_{12} \\ & \boldsymbol{\Sigma}_2 \end{pmatrix} \begin{pmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{pmatrix}$$

Permute right singular vectors so that $|\det(V_{11})|$ maximal

Important columns A₁

$$\frac{\sigma_{\mathsf{i}}(\mathsf{A})}{\sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})}} \leq \sigma_{\mathsf{i}}(\mathsf{A}_1) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \qquad \text{for all} \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

Redundant columns A₂

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) \leq \min_{\mathsf{Z}} \|\mathsf{A}_1\mathsf{Z} - \mathsf{A}_2\| \leq \sqrt{1 + \mathsf{k}(\mathsf{n} - \mathsf{k})} \, \sigma_{\mathsf{k}+1}(\mathsf{A})$$

Algorithms for Subset Selection

QR decomposition with column pivoting

$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix} \qquad \mathrm{where} \quad Q^TQ = I$$

Important columns

$$Q\begin{pmatrix} \mathsf{R}_{11} \\ 0 \end{pmatrix} = \mathsf{A}_1 \quad \text{and} \quad \sigma_\mathsf{i}(\mathsf{A}_1) = \sigma_\mathsf{i}(\mathsf{R}_{11}) \quad 1 \le \mathsf{i} \le \mathsf{k}$$

Redundant columns

$$Q \begin{pmatrix} R_{12} \\ R_{22} \end{pmatrix} = A_2 \qquad \min_{Z} \|A_1 Z - A_2\| = \|R_{22}\|$$

QR Decomposition with Column Pivoting

Determines permutation matrix P so that

$$\mathsf{AP} = \mathsf{Q} \begin{pmatrix} \mathsf{R}_{11} & \mathsf{R}_{12} \\ 0 & \mathsf{R}_{22} \end{pmatrix}$$

where

$$R_{11}$$
 well-conditioned $||R_{22}||$ small

- Numerical rank of A is k
- QR decomposition reveals rank

Rank Revealing QR (RRQR) Decompositions

```
Businger & Golub (1965) QR with column pivoting Faddev, Kublanovskaya & Faddeeva (1968) Golub, Klema & Stewart (1976) Gragg & Stewart (1976) Stewart (1984) Foster (1986) T. Chan (1987)
```

Chandrasekaran & Ipsen (1994)

Gu & Eisenstat (1996) Strong RRQR

Strong RRQR (Gu & Eisenstat 1996)

Input: $m \times n$ matrix A, $m \ge n$, integer k

Output:
$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$$
 R_{11} is $k \times k$

R₁₁ is well conditioned

$$\frac{\sigma_{\mathsf{i}}(\mathsf{A})}{\sqrt{1+\mathsf{k}(\mathsf{n}-\mathsf{k})}} \leq \sigma_{\mathsf{i}}(\mathsf{R}_{11}) \leq \sigma_{\mathsf{i}}(\mathsf{A}) \quad 1 \leq \mathsf{i} \leq \mathsf{k}$$

• R₂₂ is small

$$\sigma_{k+j}(A) \leq \sigma_{j}(R_{22}) \leq \sqrt{1 + k(n-k)} \, \sigma_{k+j}(A)$$

Offdiagonal block not too large

$$\left|\left(\mathsf{R}_{11}^{-1}\;\mathsf{R}_{12}\right)_{ij}\right|\leq 1$$

Strong RRQR Algorithm

Compute some QR decomposition with column pivoting

$$AP_{initial} = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$$

Repeat

Exchange a column of $\binom{\mathsf{R}_{11}}{0}$ with a column of $\binom{\mathsf{R}_{12}}{\mathsf{R}_{22}}$ Update permutations P, retriangularize

until $|\det(R_{11})|$ stops increasing

Another Strong RRQR Algorithm

In the spirit of Golub, Klema and Stewart (1976)

Compute SVD

$$A = U \begin{pmatrix} \mathbf{\Sigma_1} & \\ & \mathbf{\Sigma_2} \end{pmatrix} \begin{pmatrix} \mathbf{V_1} \\ \mathbf{V_2} \end{pmatrix}$$

② Apply strong RRQR to V_1 : $V_1P = (\underbrace{V_{11}}_{k} \underbrace{V_{12}}_{n-k})$

$$\frac{1}{\sqrt{1+k(n-k)}} \leq \sigma_i(V_{11}) \leq 1 \qquad 1 \leq i \leq k$$

Summary: Deterministic Subset Selection

$$m \times n$$
 matrix A, $m \ge n$, $AP = (A_1 \longrightarrow A_2)$

Important columns A₁

$$\sigma_k(A)/p(k,n) \leq \sigma_k(A_1) \leq \sigma_k(A)$$

Redundant columns A₂

$$\sigma_{k+1}(A) \leq \min_{Z} \|A_1 Z - A_2\| \leq p(k, n) \sigma_{k+1}(A)$$

p(k, n)

Depends on leading k right singular vectors Best known value: $p(k, n) = \sqrt{1 + k(n - k)}$

- Algorithms: Rank revealing QR decompositions, SVD
- Operation count: $\mathcal{O}\left(mn^2\right)$ for $p(k,n) = \sqrt{1 + nk(n-k)}$

Redundant Columns

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n-k}})$$

RRQR:
$$\min_{\mathbf{Z}} \|\mathbf{A}_1 \mathbf{Z} - \mathbf{A}_2\| \le p(\mathbf{k}, \mathbf{n}) \, \sigma_{\mathbf{k}+1}(\mathbf{A})$$

• Orthogonal projector onto $\operatorname{range}(A_1)$: $A_1A_1^{\dagger}$

$$\min_{\boldsymbol{z}} \|\boldsymbol{A}_{1}\boldsymbol{Z} - \boldsymbol{A}_{2}\| = \|(\boldsymbol{I} - \boldsymbol{A}_{1}\boldsymbol{A}_{1}^{\dagger}) \; \boldsymbol{A}_{2}\|$$

Largest among all small singular values

$$\sigma_{\mathsf{k}+1}(\mathsf{A}) = \|\mathbf{\Sigma}_2\|$$

RRQR:
$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \mathbf{A}_2\| \le p(\mathbf{k}, \mathbf{n}) \|\mathbf{\Sigma}_2\|$$

Subset Selection for Redundant Columns

$$\mathsf{AP} = (\underbrace{\mathsf{A}_1}_{\mathsf{k}} \quad \underbrace{\mathsf{A}_2}_{\mathsf{n-k}})$$

Among all $\binom{n}{k}$ choices find A_1 that minimizes

$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \mathbf{A}_2\|_{\boldsymbol{\xi}}$$

Best bounds:

2 norm

$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \ \mathbf{A}_2\|_2 \le \sqrt{1 + \mathbf{k}(\mathbf{n} - \mathbf{k})} \ \|\mathbf{\Sigma}_2\|_2$$

Frobenius norm

$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \ \mathbf{A}_2\|_{\mathsf{F}} \leq \sqrt{\mathsf{k} + 1} \ \|\mathbf{\Sigma}_2\|_{\mathsf{F}}$$

Frobenius Norm

There exist k columns A₁ so that

$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^\dagger) \ \mathbf{A}_2\|_F^2 \leq (\mathbf{k} + \mathbf{1}) \sum_{j > k+1} \sigma_j(\mathbf{A})^2$$

Idea: Volume sampling

Deshpande, Rademacher, Vempala & Wang 2006

•
$$\|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \ \mathbf{A}_2\|_F^2 = \sum_{j \ge k+1} \|(\mathbf{I} - \mathbf{A}_1 \mathbf{A}_1^{\dagger}) \ \mathbf{a}_j\|_2^2$$

Volume

$$\operatorname{Vol}(a_j) = \|a_j\|_2 \qquad \operatorname{Vol}(A_1 \ a_j) = \operatorname{Vol}(A_1) \| (I - A_1 A_1^{\dagger}) a_j \|_2$$

Volume and singular values

$$\sum_{i_1 < \ldots < i_k} \operatorname{Vol} \left(\mathsf{A}_{i_1 \ldots i_k} \right)^2 = \sum_{i_1 < \ldots < i_k} \sigma_{i_1}(\mathsf{A})^2 \ldots \sigma_{i_k}(\mathsf{A})^2$$

Maximizing Volumes Is Really Hard

Given: matrix A with n columns of unit norm $\frac{\mathsf{integer}\;\mathsf{k}}{\mathsf{real}\;\mathsf{number}\;\nu\in[0,1]}$

• Finding k columns A₁ of A such that

$$Vol(A_1) \geq \nu$$

is NP-hard

There is no polynomial time approximation scheme

[Civril & Magdon-Ismail, 2007]

Randomized Subset Selection

Frieze, Kannan & Vempala 2004
Deshpande, Rademacher, Vempala & Wang 2006
Liberty, Woolfe, Martinsson, Rokhlin & Tygert 2007
Drineas, Mahoney & Muthukrishnan 2006, 2008
Boutsidis, Mahoney & Drineas 2009
Civril & Magdon-Ismail 2009

Applications

Statistical data analysis:

feature selection principal component analysis

Pass efficient algorithms for large data sets

2-Phase Randomized Algorithm

Boutsidis, Mahoney & Drineas 2009

- Randomized Phase: Sample small number (≈ k log k) of columns
- Deterministic Phase: Apply rank revealing QR to sampled columns

With 70% probability:

Two norm

$$\min_{\boldsymbol{Z}} \|\boldsymbol{A}_1\boldsymbol{Z} - \boldsymbol{A}_2\|_2 \leq \mathcal{O}\left(k^{3/4}\log^{1/2}k\left(n-k\right)^{1/4}\right)\|\boldsymbol{\Sigma}_2\|_2$$

Frobenius norm

$$\min_{\boldsymbol{Z}} \|\boldsymbol{A}_1 \boldsymbol{Z} - \boldsymbol{A}_2\|_F \leq \mathcal{O}\left(k \log^{1/2} k\right) \|\boldsymbol{\Sigma}_2\|_F$$

2-Phase Randomized Algorithm

Compute SVD

$$A = U \begin{pmatrix} \Sigma_1 & \\ & \Sigma_2 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

Randomized phase:

Scale: $V_1 \rightarrow V_1 D$

Sample c columns:
$$(V_1D) P_s = (V_s)$$

Apply RRQR to
$$V_s$$
: $V_s P_d = (V_d *)$

$$Output: AP_sP_d = (A_1 A_2)$$

Randomized Phase (Frobenius Norm)

Sampling

- Column i of V₁ sampled with probability p_i
- "Probabilities"

$$p_i = c \left(\frac{\|(V_1)_i\|_2}{\|V_1\|_F} \right)^2$$
 $1 \le i \le n$

Scaling

- Scaling matrix D = diag $(1/\sqrt{p_1} \dots 1/\sqrt{p_n})$
- Scaled matrix V₁D

All columns have the same norm Columns sampled with probability 1/n

 Purpose of scaling makes sampling "uniform" makes expected values easier to compute

Analysis of 2-Phase Algorithm

3 Sample c columns (VD)
$$P_s = \begin{pmatrix} V_{1s}D_s & * \\ V_{2s}D_s & * \end{pmatrix}$$

- ② RRQR selects k columns $(V_{1s}D_s) P_d = (V_d *)$
 - Perturbation theory

$$\min_{Z} \| \mathbf{A_1} Z - \mathbf{A_2} \|_F \leq \| \mathbf{\Sigma_2} \|_F + \frac{\| \mathbf{\Sigma_2} \ \mathbf{V_{2s}} \mathbf{D_s} \|_F}{\sigma_k(\mathbf{V_d})}$$

RRQR

$$\sigma_{\mathsf{k}}(\mathsf{V}_{\mathsf{d}}) \geq \frac{\sigma_{\mathsf{k}}(\mathsf{V}_{1\mathsf{s}}\mathsf{D}_{\mathsf{s}})}{\sqrt{1 + \mathsf{k}(\hat{\mathsf{c}} - \mathsf{k})}}$$

With "high" probability

$$\sigma_{k}(V_{1s}D_{s}) \ge 1/2$$
 $\|\Sigma_{2} V_{2s}D_{s}\|_{F} \le 4\|\Sigma_{2}\|_{F}$

• $c \approx k \log k$

$$\min_{Z} \| \textbf{A}_1 \textbf{Z} - \textbf{A}_2 \|_F \leq \mathcal{O}\left(k \log^{1/2} k\right) \| \boldsymbol{\Sigma}_2 \|_F$$

Expected Values of Frobenius Norms

If $D_{ii} = 1/\sqrt{p_i}$ then

$$\mathsf{E}\left(\|\mathsf{X}\ \mathsf{D}\|_\mathsf{F}^2\right) = \|\mathsf{X}\|_\mathsf{F}^2$$

Frobenius norm

$$\|\mathbf{X} \mathbf{D}\|_{\mathsf{F}}^2 = \operatorname{trace}(\mathbf{X} \mathbf{D}^2 \mathbf{X}^{\mathsf{T}})$$

Linearity

$$\mathsf{E}\left[\|\mathsf{X} \ {\overset{\,\,}{\mathsf{D}}}\|_{\mathsf{F}}^2\right] = \operatorname{trace}(\mathsf{X} \ \underbrace{\mathsf{E}\left[{\overset{\,\,}{\mathsf{D}}}^2\right]}_{} \ \mathsf{X}^\mathsf{T})$$

Scaling

$$E\left[D_{ii}^{2}\right] = p_{i} * \frac{1}{p_{i}} + (1 - p_{i}) * 0 = 1$$

From Expected Values to Probability

$$\mathsf{E}\left(\|\mathsf{X}\;\mathsf{D}\|_{\mathsf{F}}^{2}\right) = \|\mathsf{X}\|_{\mathsf{F}}^{2}$$

Markov's inequality

$$\operatorname{Prob}\left(\mathsf{x}\geq\mathsf{a}\right)\leq \frac{\mathsf{E}(\mathsf{x})}{\mathsf{a}}$$

- $x = ||XD||_F^2$, a = 10 E(x)
- With probability at most 1/10

$$\|XD\|_F^2 \ge 10 \|X\|_F^2$$

• With probability at least 9/10

$$\|XD\|_F^2 \leq 10 \|X\|_F^2$$

Issues with Randomized Algorithms

- How to choose c: 10^{-3} k log k, k log k, 17 k log k, ...?
- We don't know the number of sampled columns ĉ
- Number of sampled columns can be too small: $\hat{c} < k$
- No information about singular values of important columns
- How often does one have to run the algorithm to get a good result?
- How accurately do the singular vectors and singular values have to be computed?
- How sensitive is the algorithm to the choice of probabilities?
- How does the randomized algorithm compare to the deterministic algorithms: accuracy, run time?

Summary

Given: real or complex matrix A, integer k

Want:
$$AP = (\underbrace{A_1}_{k} \underbrace{A_2}_{n-k})$$

- Important columns A₁
 Singular values close to k largest singular values of A
- Redundant columns A₂
 ||Proj. of A₂ on range(A₁)[⊥]||_{2,F} ≈ smallest singular values of A
- Bounds depend on dominant k right singular vectors
- Deterministic algorithms: RRQR, SVD
- Randomized algorithm:2 phases: 1. randomized sampling, 2. RRQR on samples
- Exact subset selection is hard