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Subset Selection

Given: real or complex matrix A
integer k

Determine permutation matrix P so that

AP = (A; A,)
<

o Important columns A;
Columns of A; are 'very’ linearly independent

“Wannabe basis vectors”

@ Redundant columns A,
Columns of A, are ’well’ represented by A;
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First application

Joint work with Tim Kelley

(]

Solution of nonlinear least squares problems

Levenberg-Marquardt trust-region algorithm

Difficulties:
illconditioned or rank deficient Jacobians
errors in residuals and Jacobians

(]

Improve conditioning with subset selection

(]

Damped driven harmonic oscillators
allow us to construct different scenarios



Harmonic Oscillators

mx’"+cx’+kx=0

displacement x(t)
mass m

damping constant c
spring stiffness k
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Given: displacement measurements x; at time t;
Want: parameters p = (m,c, k)

Nonlinear least squares problem

min > Ix(tj p) — x|
i
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Nonlinear Least Squares Problem
. T
Residual R(p) = (x(t1,p) — x1 x(t2,p) —x2 ...)
@ Nonlinear Least Squares Problem

minf(p)  where f(p) = 3 R(p)"R(p)

@ At a minimizer p*: Vf(p*) =0

Gradient: Vf(p) = R’(p)"R(p)
Jacobian: R’(p)

@ Solve Vf(p) = 0 by Levenberg-Marquardt algorithm

poew = P — (11 +R'(D)R'(p)) R'(p)" R(p)



Jacobian

o Levenberg-Marquardt algorithm

Poew = P — (11 +R'(D)R'()) R'(p)" R(p)

But: Jacobian R’(p) does not have full column rank

o mx” + cx’ + kx = 0 for infinitely many p = (m, c, k)
x/! + 5 + x=0
x4+ X+ E x=10
x4+ x4+ x=0
Which parameter to keep fixed?
@ Which column in the Jacobian is redundant?

Subset Selection!



Second Application

Scott Pope’s Ph.D. thesis (NCState, 2009)

o Cardiovascular and respiratory modeling

o ldentify parameters that are important for predicting
blood flow and pressure

@ Solve nonlinear least squares problem combined with
subset selection
@ Parameters identified as important:
total systemic resistance
cerebrovascular resistance
arterial compliance
time of peak systolic ventricular pressure



Mathematical Formulation of Subset Selection

Given: real or complex matrix A with n columns
integer k

Determine permutation matrix P so that

AP =(A; A))
~— =~
k n—k

o Important columns A;

Columns of A; are 'very’ linearly independent
Smallest singular value of A; is ’large’

@ Redundant columns A,
Columns of A, are ’well’ represented by A;

mingz ||A1Z — Ay|| is "'small’ (two norm)



Singular Value Decomposition (SVD)

m X n matrix A, m > n

AP=UXV

@ Singular vectors:

vlu =1, Viv=vwvT =,

@ Singular values:

o1

On



Ideal Matrices for Subset Selection

Singular Value Decomposition

2,
AP =(A A)=U Vv
(\/1'/ \/"2 ) < ZZ)
k n—k

If exists permutation P so that V = | then

o Important columns — large singular values of A

A;=U <}f]1> and oi(A)) =oi(A) 1<i<k

@ Redundant columns — small singular values of A

0 .
A2 =U <22> and mzm ||A1 Z— Az” = ||A2|| = a’k+1(A)



Subset Selection Requirements

o Important columns A;
k columns of A; should be 'very’ linearly independent

Smallest singular value o (A1) should be ’large’

o (A)/v < o(A1) < ok(A)

for some v

@ Redundant columns A,
Columns of A; should be 'well’ represented by A;

minz ||A1Z — A;|| should be 'small’ (two norm)

o+1(A) < min |A1 Z — Az|| < v oks1(A)

for some v



Bounds for Subset Selection
Singular value decomposition

2, Vi1 Vi
AP = (A =U
(\,1/ \,2/) < 22> <V21 V22>
k n—k

o Important columns A;

ai(A)
-1
IVi7 |l

< oi(A1) < oi(A) forall 1<i<k

@ Redundant columns A,

or1(A) < min [|[A1Z — Az|| < [[V1'[| owr1(A)



How Small Can ||V{;'|| Be?

Matrix (V11 Vi2) is k X n with orthonormal rows

o If Vy; is nonsingular then

VI < /1 + VG Va2

Follows from | = V11V'1"1 + V12V'1"2

o If | det(V11)| is maximal then
IV Vil < v(n — k)

Follows from Cramer’s rule: ‘(vl—llvlz)i,- <1

@ There exists a permutation such that

IVEY < 1+ k(n — k)



Bounds for Subset Selection

pX| Vi1 Vi2
AP=(A A ) =
(AL A2) < Zz) <V21 V22>

Permute right singular vectors so that | det(V11)| maximal

@ Important columns A,

\/% < oi(A1) < oi(A)  forall 1<i<k

@ Redundant columns A,

Gs1(A) < min [|A,Z — Al| < /T +k(n — K) os1(A)



Algorithms for Subset Selection

QR decomposition with column pivoting

AP = Q Rii Ria where QTQ =1
0 R2

@ Important columns

Q <R(;1> =A; and oi(A1)) =0i(Rn1) 1<i<k

@ Redundant columns

R .
Q <R12> =A, min ||A1Z — Az|| = ||R22||
22 z



QR Decomposition with Column Pivoting

@ Determines permutation matrix P so that

R11 R12>

AP=Q<0 Ras

where
R11 well-conditioned
||IR22|| small

@ Numerical rank of A is k

@ QR decomposition reveals rank



Rank Revealing QR (RRQR) Decompositions

Businger & Golub (1965) QR with column pivoting
Faddev, Kublanovskaya & Faddeeva (1968)

Golub, Klema & Stewart (1976)

Gragg & Stewart (1976)

Stewart (1984)

Foster (1986)

T. Chan (1987)

Hong & Pan (1992)
Chandrasekaran & Ipsen (1994)
Gu & Eisenstat (1996)  Strong RRQR



Strong RRQR (Gu & Eisenstat 1996)

Input: m X n matrix A, m > n, integer k
Output: AP =Q Rii Ri Ri1 isk X k
0 R

@ Rj; is well conditioned

\/% < oi(Ru) < oi(A) 1<i<k

@ Ryj is small

oi+j(A) < 0j(R22) < /1 + k(n — k) oi4j(A)

o Offdiagonal block not too large

‘(Rl_ll R12> <1

i



Strong RRQR Algorithm

© Compute some QR decomposition with column pivoting

o Ri1 Ri2
APlnltlaI - Q < 0 R22>
O Repeat

Exchange a column of <R61> with a column of <:§12>
22

Update permutations P, retriangularize
until | det(R11)| stops increasing

Q 0utput: APsfinal = ( Aq A; )
NN
k n—k

Operation count: O (mnz) until | det(R11)| stops increasing by v/n



Another Strong RRQR Algorithm
In the spirit of Golub, Klema and Stewart (1976)

@ Compute SVD
_ 2, Vi
A=l < Zz) <V2>

© Apply strong RRQR to Vi: VP = (Vi1 Vo)
—~— =~
k n—k

<oi(Vi1)) <1 1<i<k

1
JI+k(n—k) =

Output: AP=(A A
@ Outpu (A \3)



Summary: Deterministic Subset Selection

m X n matrix A, m >n, AP =(A; Ay)
~— =~
k n—k

@ Important columns A;
ok(A)/p(k,n) < (A1) < o (A)
@ Redundant columns A,
oies1(A) < min [|A1Z = As| < p(k, n) oics1(A)
o p(k,n)

Depends on leading k right singular vectors

Best known value: p(k,n) = /1 + k(n — k)

@ Algorithms: Rank revealing QR decompositions, SVD
e Operation count: O (mn?)  for p(k,n) = /1 + nk(n — k)



Redundant Columns

AP = (A Ay)
—~— =~
k n—k

RRQR: minz ||A1Z — A;|| < p(k,n) oks1(A)
@ Orthogonal projector onto range(A): AlAi
min||A1Z — Al = [|(1 — ALA]) Ag
o Largest among all small singular values

or+1(A) = [[Z2|

RRQR:  ||(1 — A;A]) As|| < p(k,n) [ ]|



Subset Selection for Redundant Columns
AP =(A; Ay)
O

Among all () choices find A; that minimizes

(1 — ALAT) Ayl

Best bounds:

@ 2 norm

(10— A1AD) Asll2 < VI HKk(n — K) |22

@ Frobenius norm

11— ALAD) Aglle < Vi + 1| Z2lr



Frobenius Norm

There exist k columns A; so that

10— ALAD) Azl2 < (k+1) > o(A)?
i>k+1

Idea: Volume sampling
Deshpande, Rademacher, Vempala & Wang 2006

o [|(1 = A1A]) Az12 = Sjsips (1 — A1A]) 3513
@ Volume

Vol(aj) = [[ajll2 Vol (A; aj) = Vol(A1)[|(1 — AA])aj]l2
@ Volume and singular values

Y Vol(Ai.i) = Y. oi(A)?...0;(A)

i1<...<ig i1<...<ig



Maximizing Volumes Is Really Hard

Given: matrix A with n columns of unit norm
integer k
real number v € [0, 1]

@ Finding k columns A; of A such that
Vol(A1) > v

is NP-hard
@ There is no polynomial time approximation scheme

[Civril & Magdon-Ismail, 2007]



Randomized Subset Selection

Frieze, Kannan & Vempala 2004

Deshpande, Rademacher, Vempala & Wang 2006
Liberty, Woolfe, Martinsson, Rokhlin & Tygert 2007
Drineas, Mahoney & Muthukrishnan 2006, 2008
Boutsidis, Mahoney & Drineas 2009

Civril & Magdon-Ismail 2009

Applications
o Statistical data analysis:

feature selection
principal component analysis

o Pass efficient algorithms for large data sets



2-Phase Randomized Algorithm

Boutsidis, Mahoney & Drineas 2009

© Randomized Phase:
Sample small number (= klog k) of columns

Q@ Deterministic Phase:
Apply rank revealing QR to sampled columns

With 70% probability:
@ Two norm
min | A1Z — Azl < O (k¥ log"/2k (n — K)'/*) |22
@ Frobenius norm

min [|A1Z — Azlle < O (klog!/?k) | E2|r



2-Phase Randomized Algorithm

© Compute SVD

© Randomized phase:
Scale: V; — V;D
Sample c columns: (ViD) Ps = (Vs %)
~—

© Deterministic phase:
Apply RRQR to Vi: Vo Pgq= (Vg %)
~—~

© Output: APPy = (A Ay)



Randomized Phase (Frobenius Norm)

Sampling
@ Column i of V; sampled with probability p;
o “Probabilities”

V)illa\ 2
o = ¢ (M> 1<i<n
IV1llF

Scaling
o Scaling matrix D = diag (1/y/p1 ... 1//pPn)
@ Scaled matrix V1D

All columns have the same norm
Columns sampled with probability 1/n

@ Purpose of scaling

makes sampling “uniform”
makes expected values easier to compute



Analysis of 2-Phase Algorithm

Vlst *
VasDs  *

O RRQR selects k columns  (V1Ds) Pg = (Vg *)

© Sample c columns (VD) Ps = (

o Perturbation theory

[|Z2 VasDs||¢
min |A1Z — Aslle < || Z2lf + ———
z Uk(Vd)
¢ RRQR
VD
O'k(Vd) 2 Uk( lsA s)
1+ k(€ —k)

@ With “high” probability
ok(VisDs) > 1/2 |Z2 VasDs|lr < 4||Z2|[F
o c = klogk
min [ A1Z — Azl < O (klog!/?k) | E2|r



Expected Values of Frobenius Norms
If D; = l/ﬁ then

E(IX DJIZ) = [IX|?

@ Frobenius norm
IX D||2 = trace(X D XT)
@ Linearity

2| = race 2 T
E[IXDJ] =t (XE[ID} XT)

@ Scaling

E[D%}=Pi*l+(1—m)*0=1
P



From Expected Values to Probability

E(IX DJIZ) = IIX|?

@ Markov’s inequality
Prob (x > a) < E(x)/a

o x=||XDJ|2, a=10E(x)
@ With probability at most 1/10

IX DI > 10 1X||2
@ With probability at least 9/10

X D||2 < 10 ||X||2



Issues with Randomized Algorithms

How to choose c: 103 klogk, klogk, 17 klogk, ...?
We don’t know the number of sampled columns ¢
Number of sampled columns can be too small: ¢ < k

No information about singular values of important
columns

How often does one have to run the algorithm to get a
good result?

How accurately do the singular vectors and singular
values have to be computed?

How sensitive is the algorithm to the choice of
probabilities?

How does the randomized algorithm compare to the
deterministic algorithms: accuracy, run time?



Summary

Given: real or complex matrix A, integer k
Want: AP =(A; Ap)
~— =~
k n—k

@ Important columns A;
Singular values close to k largest singular values of A

@ Redundant columns A,
||Proj. of Az on range(A1)"||2,r =~ smallest singular values of A
@ Bounds depend on dominant k right singular vectors
@ Deterministic algorithms: RRQR, SVD
@ Randomized algorithm:
2 phases: 1. randomized sampling, 2. RRQR on samples
o Exact subset selection is hard



