Numerical Accuracy and Sensitivity of Monte Carlo Matrix Multiplication

llse Ipsen

North Carolina State University Raleigh, NC, USA

Joint work with: John Holodnak

Randomized Matrix Multiplication

Existing Work:

Cohen & Lewis 1997, 1999 Frieze, Kannan & Vempala 1998 Drineas & Kannan 2001 Sarlós 2006 Drineas, Kannan & Mahoney 2006 Belabbas & Wolfe 2008

Applications:

Importance sampling strategy for query matching (*SIAM J. Sci. Comput., to appear*)

Overview:

Relative error due to randomization Sensitivity to perturbations

Randomized Inner Product

[Drineas, Kannan & Mahoney 2006]

Input: real vectors
$$a = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}^T$$
 $b = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix}^T$
probabilities $p_k > 0$, $\sum_{k=1}^n p_k = 1$
number c

Output: Approximation X to $a^T b$ from c randomly sampled element pairs a_k , b_k

$$X = 0$$

for $t = 1 : c$ do
Sample k_t from $\{1, ..., n\}$ with probability p_{k_t}
independently and with replacement
 $X = X + \frac{a_{k_t} b_{k_t}}{c p_{k_t}}$
end for

Output of Randomized Inner Product

• Random variable
$$X_t \equiv \frac{a_{k_t} b_{k_t}}{c p_{k_t}}$$

- X_t takes on value $\frac{a_k b_k}{c p_k}$ with probability p_k
- Expected value ("average")

$$E[X_t] = \sum_{k=1}^{n} p_k \frac{a_k b_k}{c p_k} = \sum_{k=1}^{n} \frac{a_k b_k}{c} = \frac{a^T b}{c}$$

• Output $X = X_1 + \cdots + X_c$

$$E[X] = E[X_1] + \dots + E[X_c] = \sum_{t=1}^{c} \frac{a^T b}{c} = a^T b$$

• Unbiased estimator: Expected value = exact value

Absolute Error due to Randomization

[Drineas, Kannan & Mahoney 2006]

• Uniform probabilities: $p_k = 1/n$, $1 \le k \le n$

For every $\delta > 0$ with probability at least $1-\delta$

$$\left|X-a^{\mathsf{T}}b\right| \leq n \max\{\|a\|_{\infty}, \|b\|_{\infty}\}^{2} \sqrt{\frac{8\ln(2/\delta)}{c}}$$

• Identical products: $a_k b_k = \gamma$, $1 \le k \le n$

$$X = \underbrace{\frac{n}{c}\gamma + \dots + \frac{n}{c}\gamma}_{c} = n\gamma = a^{T}b$$

Randomized algorithm gives exact result for any *c* Bound is too pessimistic

Relative Error due to Randomization

General probabilities: $p_k > 0$, $\sum_k p_k = 1$

Deviation from identical products:

$$\operatorname{osc}\left(\frac{ab}{p}\right) \equiv \max_{j} \frac{a_{j}b_{j}}{p_{j}} - \min_{k} \frac{a_{k}b_{k}}{p_{k}}$$

[Lynn & Timlake 1969, Deutsch & Zenger 1971]

For every $\delta > 0$ with probability at least $1 - \delta$

$$\left|\frac{X-a^{T}b}{a^{T}b}\right| \leq \frac{\operatorname{osc}\left(\frac{ab}{p}\right)}{|a^{T}b|} \sqrt{\frac{\ln(2/\delta)}{2c}}$$

For every $\delta > 0$ with probability at least $1-\delta$

$$\left|\frac{X - a^{T}b}{a^{T}b}\right| \leq \underbrace{\frac{\operatorname{osc}\left(\frac{ab}{p}\right)}{|a^{T}b|}}_{Condition} \underbrace{\sqrt{\frac{\ln(2/\delta)}{2\,c}}}_{Algorithm}$$

Relative Error vs Bound

 a_k , b_k iid uniform [0, 1], $n = 10^5$, uniform probabilities

Relative errors $|X - a^T b| / |a^T b|$ for every c Bound with probability .99

Relative Error vs Bound

 a_k , b_k iid uniform [-.5, .5], $n = 10^5$, uniform probabilities

Relative errors $|X - a^T b| / |a^T b|$ for every c Bound with probability .99

Randomized Matrix Multiplication

[Drineas, Kannan & Mahoney 2006]

$$A = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \qquad B = \begin{pmatrix} b_1^T \\ \vdots \\ b_n^T \end{pmatrix}$$

Sum of outer products $AB = a_1 b_1^T + \cdots + a_n b_n^T$

• Random variable
$$X_t = \frac{a_{k_t}b'_{k_t}}{cp_{k_t}}$$

•
$$X_t$$
 takes on value $\frac{a_k b_k^T}{cp_k}$ with probability $p_k > 0$

• Output
$$X = X_1 + \cdots + X_d$$

Normwise Error due to Randomization

A is $m \times n$, B is $n \times q$

$$\mathcal{O}_{ij} \equiv \max_{k} \frac{a_{ik}b_{kj}}{p_k} - \min_{k} \frac{a_{ik}b_{kj}}{p_k}$$

for $1 \leq i \leq m$ and $1 \leq j \leq q$

For every $\delta > 0$ with probability at least $1-\delta$

$$\frac{\|X - AB\|}{\|AB\|} \le \frac{\|\mathcal{O}\|}{\|AB\|} \sqrt{\frac{\ln(2 mq/\delta)}{2c}}$$

in the 1, ∞ and F norms

Bound depends on dimensions of A and B

Relative Error vs Bound

Elements of A, B iid uniform [0, 1], m = 50, n = 1000, q = 80 uniform probabilities

Relative errors $||X - AB||_1 / ||AB||_1$ for every c Bound with probability .99

Multiplying Rank One Matrices

$$A = fa^{T} \quad B = bd^{T} \qquad AB = \underbrace{(a^{T}b)}_{inner \ product} fd^{T}$$

Random variable $X_t = \frac{a_{k_t} b_{k_t}}{c p_{k_t}} f d^T$

For every $\delta > 0$ with probability at least $1 - \delta$

in the 1, ∞ and F norms

Same condition number as inner product but bound must hold for all *mq* elements of *X*

Error due to Randomization

Our bounds with probability .99

- Capture worst case error
- Informative even for small matrix dimensions
- Tight for inner products where all products are identical
- Recognize rank one matrices

How to pick good probabilities p_k :

- Minimize variance (importance sampling) [Drineas, Kannan & Mahoney 2006]
- Minimize $\|\mathcal{O}\|$

Sensitivity of Randomized Inner Product

- Exact inputs: a, b Desired result: $a^T b$
- Randomized algorithm Fix c, fix probabilities p_k Output from some run: $X = \sum_{t=1}^{c} \frac{a_{k_t} b_{k_t}}{c p_{k_*}}$
- Perturbed inputs: \hat{a} , \hat{b}

Same c, same probabilities p_k Output from some run: $\hat{X} = \sum_{t=1}^{c} \frac{\hat{a}_{i_t} \hat{b}_{i_t}}{cp_{i_t}}$

• What to compare?

 \hat{X} and $a^T b$: No info about sensitivity of algorithm \hat{X} from some run, and X from another run: Too pessimistic \hat{X} and X from same run

Sensitivity Bound: Numerator

Relative perturbations

$$\hat{a}_k = a_k(1+lpha_k) \qquad \hat{b}_k = b_k(1+eta_k) \qquad |lpha_k|, |eta_k| \leq \epsilon$$

• Outputs from same run

$$X = \sum_{t=1}^{c} \frac{a_{k_t} b_{k_t}}{c p_{k_t}} \qquad \hat{X} = \sum_{t=1}^{c} \frac{\hat{a}_{k_t} \hat{b}_{k_t}}{c p_{k_t}}$$

• For every $\delta > 0$ with probability at least $1-\delta$

$$|\hat{X} - X| \le 3 \left[|a|^T |b| + \operatorname{osc} \left(\frac{|ab|}{p} \right) \sqrt{\frac{\ln(2/\delta)}{2c}} \right] \epsilon$$

Sensitivity Bound

$$\frac{|\hat{X} - X|}{|X|} \le 3 \frac{\left[|a|^{T}|b| + \operatorname{osc}\left(\frac{|ab|}{p}\right) \sqrt{\frac{\ln(2/\delta)}{2c}}\right]}{|X|} \epsilon$$

Difficulties:

- Denominator |X| unknown, can take on $\mathcal{O}(n^c)$ different values
- Bound |X| in terms of $|a^T b|$? Too pessimistic.
- Bound |X| in terms of $\min_{k_1,...,k_c} \left| \sum_{t=1}^{c} \frac{a_{k_t} b_{k_t}}{c p_{k_t}} \right|$?

Too pessimistic. Too unwieldy.

Low Sensitivity

 a_k , b_k iid uniform [0, 1], $n = 10^5$, $\epsilon = 10^{-8}$, $c = 10^3$ uniform probabilities

Relative errors $|\hat{X} - X|/|X|$ over 1000 runs Sensitivity bound with probability .99

Bound almost constant \Rightarrow low sensitivity to perturbations

High Sensitivity

 a_k , b_k iid uniform [-.5, .5], $n = 10^5$, $\epsilon = 10^{-8}$, $c = 10^3$ uniform probabilities

Relative errors $|\hat{X} - X|/|X|$ over 1000 runs Sensitivity bound with probability .99

Bound oscillates \Rightarrow high sensitivity to perturbations

Interpretation of Sensitivity Bound

Assumptions:

 \hat{X} and X from same run Same c, same probabilities p Relative perturbations $\leq \epsilon$

With probability at least $1-\delta$

$$\frac{|\hat{X} - X|}{|X|} \le \frac{constant(a, b, p, c, \delta)}{|X|} \epsilon$$

Two factors influence sensitivity:

$$constant(a, b, p, c, \delta) = \mathcal{O}\left(|a|^{T}|b| + osc\left(\frac{|ab|}{p}\right)\right)$$

"Variance" of $|X|$ |X| has $\mathcal{O}(n^{c})$ different values

Summary

- Randomized algorithm for matrix multiplication from [Drineas, Kannan & Mahoney 2006]
- Relative error due to randomization Tighter bounds, apply to all probabilities Predictive even for small matrix dimensions
- Sensitivity of randomized inner product
 Number of different outputs is exponential: O(n^c)
 Capture variation across all of these outputs