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Randomized Matrix Multiplication

Existing Work:

Cohen & Lewis 1997, 1999

Frieze, Kannan & Vempala 1998
Drineas & Kannan 2001

Sarlés 2006

Drineas, Kannan & Mahoney 2006
Belabbas & Wolfe 2008

Applications:
Importance sampling strategy for query matching
(SIAM J. Sci. Comput., to appear)

Overview:
Relative error due to randomization
Sensitivity to perturbations



Randomized Inner Product
[Drineas, Kannan & Mahoney 2006]

Input: real vectors a = (a1 ... a,,)T b= (b ... b,,)T
probabilities py >0, >} _; pk =1
number ¢

Output: Approximation X to a’ b
from ¢ randomly sampled element pairs ax, by

X=0
fort =1:cdo
Sample k; from {1,..., n} with probability py,
independently and with replacement

end for



Output of Randomized Inner Product

ks bkt

@ Random variable X; = =
t

@ X; takes on value ik—:;: with probability py

@ Expected value (“average”)

n n
b b Th
Elx) =3 p 22k _y 2k _2 2
C Pk c c
k=1 k=1
o Output X = X1 +--- + Xc
“a’b T
t=1

@ Unbiased estimator: Expected value = exact value



Absolute Error due to Randomization
[Drineas, Kannan & Mahoney 2006]

@ Uniform probabilities: px =1/n, 1<k <n
For every 6 > 0 with probability at least 1 — ¢

8In(2/6
X~ a7b| < n maxlall, 1]1)? 1/ S0

o lIdentical products: axby =7, 1< k<n

n n
X=- i —y=ny=a'b
C’Y+ ‘|‘C’Y y

—_——

Cc

Randomized algorithm gives exact result for any ¢

Bound is too pessimistic



Relative Error due to Randomization

General probabilities: px >0, >, px =1

Deviation from identical products:

(ab) . ajbj . akbk
OSC| — | =maX—— —min ——
p i pj k Pk

[Lynn & Timlake 1969, Deutsch & Zenger 1971]

For every 6 > 0 with probability at least 1 — ¢

b
X —alp| osc (‘%) In(2/9)
<
alb |aT b 2¢

For every 6 > 0 with probability at least 1 — ¢

b
X —alp| osc (‘%) In(2/9)
<
alb | = aTh| 2¢
~—_————

v -
Condition ~ Algorithm



Relative Error vs Bound

ak, by iid uniform [0,1], n = 10%, uniform probabilities
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Relative errors X —a' b|/|a” b| for every c
Bound with probability .99



Relative Error vs Bound

ak, by iid uniform [-.5,.5], n= 10°, uniform probabilities
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Relative errors X —a' b|/|a” b| for every c
Bound with probability .99



Randomized Matrix Multiplication
[Drineas, Kannan & Mahoney 2006]

A:(al a,,) B =

Sum of outer products AB = aib] + -+ + a,b]

.
. dg b

@ Random variable X; = #kkf
t

akb,z—

Pk

@ X; takes on value with probability px > 0

o Output X =Xy +---+ X



Normwise Error due to Randomization

Aismxn, Bisnxgq

aijk by . ajkbyj
Oj = max ——< — min %
ko Pk k Pk

forl1<i<mand1<;<gq

For every 6 > 0 with probability at least 1 — §

|X = AB|| _ 1|O]] " [In(2mq /5)
IAB — [IABI| 2¢

in the 1, oo and F norms

Bound depends on dimensions of A and B



Relative Error vs Bound

Elements of A, B iid uniform [0,1], m = 50, n = 1000, g = 80
uniform probabilities
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relative error
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Relative errors || X — AB||1/||AB]||1 for every ¢
Bound with probability .99



Multiplying Rank One Matrices

A=fa" B=bdT AB= (a'b) fdT
——

inner product

. EP )
Random variable X; = % fdT
t

For every 6 > 0 with probability at least 1 — ¢

b
Ix—agl _ (%) fin@ma/o)

|AB|| — |aTb| 2¢c
Condition Algorithm

in the 1, oo and F norms

Same condition number as inner product
but bound must hold for all mg elements of X



Error due to Randomization

Our bounds with probability .99

o Capture worst case error
@ Informative even for small matrix dimensions
@ Tight for inner products where all products are identical

@ Recognize rank one matrices

How to pick good probabilities py:

@ Minimize variance (importance sampling)
[Drineas, Kannan & Mahoney 2006]

@ Minimize |O||



Sensitivity of Randomized Inner Product

@ Exact inputs: a, b Desired result: a’ b

@ Randomized algorithm
Fix ¢, fix probabilities py

b
Output from some run: X = > "7, aﬁ;ktkf
@ Perturbed inputs: 3, b
Same ¢, same probabilities py
& 3, b
Output from some run: X =57 | acfp’,tf

@ What to compare?
X and a”b: No info about sensitivity of algorithm

X from some run, and X from another run: Too pessimistic

X and X from same run



Sensitivity Bound: Numerator

@ Relative perturbations
dk=ac(l+ak)  Be=be(l+080) ol |B] <e

@ Outputs from same run
Cc

X — zc: aktbkt ),\( _ Z aktgkt

=1 Pk =1 Pk

@ For every § > 0 with probability at least 1 — §

X — X §3[|3|T|b|+osc (!a_b) M] €
p 2c



Sensitivity Bound

. T Jabl) . /in(2/0)
K—x [| 75| + osc (1221) /G ]
<3 c

X1~ X]

Difficulties:

@ Denominator | X| unknown, can take on O(n) different values

@ Bound |X| in terms of |a” b|? Too pessimistic.

zc A, b,
t=1 "cpy,

@ Bound |X] in terms of miny, . ?

Too pessimistic. Too unwieldy.



Low Sensitivity

ak, by iid uniform [0,1], n= 10°, e = 1078, c = 103
uniform probabilities

relative error

107

0 100 200 300 400 500 600 700 800 900 1000
c

Relative errors | X — X|/|X| over 1000 runs
Sensitivity bound with probability .99

Bound almost constant = low sensitivity to perturbations



High Sensitivity

ak, by iid uniform [—.5,.5], n= 10°, e =108, c =103
uniform probabilities

relative error
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Relative errors | X — X|/|X| over 1000 runs
Sensitivity bound with probability .99

Bound oscillates = high sensitivity to perturbations



Interpretation of Sensitivity Bound

Assumptions:

X and X from same run
Same c, same probabilities p
Relative perturbations < €

With probability at least 1 — §

|)A( — X| _ constant(a, b, p, c,?)
Xl X

Two factors influence sensitivity:

constant(a, b, p,c,6) = O (]a]T]b\ +osc (%))

“Variance” of | X| | X| has O(n€) different values



Summary

@ Randomized algorithm for matrix multiplication
from [Drineas, Kannan & Mahoney 2006]

@ Relative error due to randomization
Tighter bounds, apply to all probabilities
Predictive even for small matrix dimensions

@ Sensitivity of randomized inner product

Number of different outputs is exponential: O(n®)
Capture variation across all of these outputs



