Several Methods for Computing Determinants of Large Sparse Matrices

llse Ipsen

North Carolina State University

Joint Work with Dean Lee (Physics)

Overview

Large sparse complex matrix M of order nWant: $\ln \det(M)$ or $\det(M)^{1/n}$

- Block-Diagonal Approximations
- Zone Determinant Expansion
- Principal Minors of Inverses
- Sparse Inverse Approximations
- Properties
- Numerical Experiments

Literature

Sparse Hermitian positive-definite matrices

- Sparse Approximate Inverses Reusken 2002
- Monte Carlo Reusken 2002
- Hybrid Monte Carlo

Duane, Kennedy, Pendelton, Roweth 1987 Gottlieb, Liu, Toussaint, Renke, Sugar 1987 Scalettar, Scalapino, Sugar 1986

 Gaussian Quadrature Bai & Golub 1997

M = D + O

Is det(D) a good approximation for det(M)?

If M = D + O is Hermitian positive-definite then

- Hadamard-Fischer: $det(M) \le det(D)$
- Relative error:

$$0 < \frac{\det(D) - \det(M)}{\det(D)} \le c\rho \, e^{c\rho}$$

where $\rho \equiv \max_{j} |\lambda_{j}(D^{-1}O)|$ $c \equiv -n \ln(1-\rho)$, *n* is order of *M*

M = D + O with $\rho \equiv \max_j |\lambda_j(D^{-1}O)| < 1$

$$\frac{|\det(D) - \det(M)|}{|\det(D)|} \le c\rho \, e^{c\rho}$$

where $c \equiv -n \ln (1 - \rho)$, n is order of M

Block-diagonal approximation det(D) good if eigenvalues of $D^{-1}O$ close to zero

Diagonal Approximation

 ${\cal M}$ strictly row diagonally dominant

$$\frac{\left|\prod m_{ii} - \det(M)\right|}{\left|\prod m_{ii}\right|} \le c\rho \ e^{c\rho}$$

where

$$\rho \le \max_{i} \sum_{j \ne i} \left| \frac{m_{ij}}{m_{ii}} \right|$$

Product of diagonal elements good approximation if M strongly diagonally dominant

[Lee & II 2003]

If D non-singular and $\rho(D^{-1}O) < 1$ then

$$det(M) = det(D + O) = det(D) \underbrace{det(I + D^{-1}O)}_{expand}$$

$$\det(I + D^{-1}O) = \exp\left(\operatorname{trace}(\log(I + D^{-1}O))\right)$$
$$= \exp\left(\sum_{i=1}^{\infty} \frac{(-1)^{i}}{i} \operatorname{trace}((D^{-1}O)^{i})\right)$$

M = D + O with $\rho \equiv \max_j |\lambda_j(D^{-1}O)| < 1$

$$Z_m \equiv \ln \det(D) + \sum_{i=1}^{m} \frac{(-1)^i}{i} \operatorname{trace}((D^{-1}O)^i)$$

Bound for Logarithm:

$$\left|\ln(\det(M)) - Z_m\right| \le c\rho^m$$

where $c \equiv -n \ln(1 - \rho)$

M = D + O with $\rho \equiv \max_j |\lambda_j(D^{-1}O)| < 1$

$$Z_m \equiv \ln \det(D) + \sum_{i=1}^{m} \frac{(-1)^i}{i} \operatorname{trace}((D^{-1}O)^i)$$

$$\frac{|\det(M) - e^{Z_m}|}{|e^{Z_m}|} \le c\rho^m \ e^{c\rho^m}$$

where $c \equiv -n \ln(1 - \rho)$

Summary: Zone Determinant Exp.

M = D + O with D block diagonal $\rho \equiv \max_j |\lambda_j(D^{-1}O)| < 1$

$$Z_m \equiv \ln \det(D) + \sum_{i=1}^m \frac{(-1)^i}{i} \operatorname{trace}((D^{-1}O)^i)$$
$$Z_0 = \ln \det(D) \quad \text{block diagonal approximation}$$

 $Z_m \approx \ln \det(M) \quad e^{Z_m} \approx \det(M) \quad \text{Error } \sim \rho^m e^{\rho^m}$

Principal Minors of Inverses

 ${\cal M}$ Hermitian positive-definite, of order n

$$M = \begin{pmatrix} M_{n-1} & * \\ * & * \end{pmatrix} \qquad M^{-1} = \begin{pmatrix} * & * \\ * & \sigma \end{pmatrix}$$
$$\det(M) = \frac{1}{\sigma} \det(M_{n-1})$$

Cholesky:
$$M = LL^*$$
 $\frac{1}{\sigma} = L_{nn}^2$

Cholesky Factorization

$$M = LL^* = \begin{pmatrix} L_{11} \\ * & L_{22} \\ * & * & L_{33} \end{pmatrix} \begin{pmatrix} L_{11} & * & * \\ L_{22} & * \\ & & L_{33} \end{pmatrix}$$
$$M^{-1} = L^{-*}L^{-1} = \begin{pmatrix} \frac{1}{L_{11}} & * & * \\ & \frac{1}{L_{22}} & * \\ & & \frac{1}{L_{33}} \end{pmatrix} \begin{pmatrix} \frac{1}{L_{11}} & \\ * & \frac{1}{L_{22}} \\ * & * & \frac{1}{L_{33}} \end{pmatrix}$$
$$\sigma = (M^{-1})_{33} = \left(\frac{1}{L_{33}}\right)^2$$

Principal Minors of Inverses

$$M = \begin{pmatrix} M_{n-1} & * \\ * & * \end{pmatrix} \qquad M^{-1} = \begin{pmatrix} * & * \\ * & \sigma_n \end{pmatrix}$$
$$\det(M) = \det(M_{n-1})/\sigma_n$$
$$M_{n-1} = \begin{pmatrix} M_{n-2} & * \\ * & * \end{pmatrix} \qquad M_{n-1}^{-1} = \begin{pmatrix} * & * \\ * & \sigma_{n-1} \end{pmatrix}$$
$$\det(M_{n-1}) = \det(M_{n-2})/\sigma_{n-1}$$
$$\det(M) = \frac{1}{\sigma_n} \frac{1}{\sigma_{n-1}} \det(M_{n-2})$$

Summary: Principal Minors

 ${\cal M}$ Hermitian positive-definite, of order n

$$M = \frac{i}{n-i} \begin{pmatrix} M_i & * \\ * & * \end{pmatrix} \qquad M_i^{-1} = \begin{pmatrix} * & * \\ * & \sigma_i \end{pmatrix}$$

$$\det(M) = \prod_{i=1}^{n} \frac{1}{\sigma_i}$$

Cholesky: $M_i = L_i L_i^*$ $\frac{1}{\sigma_i} = ((L_i)_{ii})^2$

Sparse Inverse Approximations

[Reusken 2002], [Lee & II 2004] Hermitian positive-definite M

- Exact: $det(M) = \prod \frac{1}{\sigma_i}$ σ_i last diagonal element of M_i^{-1} $M_i = M(1:i,1:i)$
- Approximate: $\Delta = \prod \frac{1}{\sigma_i}$ σ_i last diagonal element of S_i^{-1} S_i principal submatrix of M_i

Diagonal Approximation

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & m_{66} \end{pmatrix}$$

$$S_i = M_{ii}$$
 $\det(M) \approx \prod_i M_{ii}$

i = 1:

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$$

 $S_1 = M_{11}$ $\sigma_1 = 1/M_{11}$

$$i = 2$$
:

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$$

 $S_2 = M_{22}$ $\sigma_2 = 1/M_{22}$

i = 3:

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$$

$$S_3 = \begin{pmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{pmatrix} \qquad \sigma_3 = (S_3^{-1})_{22}$$

 $M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$

 $S_4 = \begin{pmatrix} M_{22} & M_{23} & M_{24} \\ M_{32} & M_{33} & M_{34} \\ M_{42} & M_{43} & M_{44} \end{pmatrix}$

i = 4:

$$\sigma_4 = (S_4^{-1})_{33}$$

$$i = 5$$
:

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$$

 $S_5 = M_{55}$ $\sigma_5 = 1/M_{55}$

$$i = 6$$
:

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\ M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\ M_{41} & M_{42} & M_{43} & M_{44} & M_{54} & M_{46} \\ M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\ M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66} \end{pmatrix}$$

$$S_6 = \begin{pmatrix} M_{55} & M_{56} \\ M_{65} & M_{66} \end{pmatrix} \qquad \sigma_6 = (S_6^{-1})_{22}$$

Observing Sparsity

$$T_3 = \begin{pmatrix} 3/2 & -1 \\ -1 & 3/2 & -1 \\ & -1 & 3/2 \end{pmatrix} \qquad \frac{\det(T_3)}{8} = \frac{3}{8}$$

$$\begin{pmatrix} 3/2 & -1 \\ -1 & 3/2 & -1 \\ & -1 & 3/2 \end{pmatrix} \begin{pmatrix} 3/2 & -1 \\ -1 & 3/2 & -1 \\ & -1 & 3/2 \end{pmatrix} \begin{pmatrix} 3/2 & -1 \\ -1 & 3/2 & -1 \\ & -1 & 3/2 \end{pmatrix}$$

$$\Delta = \frac{3}{2} \left(\frac{5}{6}\right)^2 = \det(T_3) + \frac{2}{3}$$

Summary: Sparse Inverse Approx.

$$M = \begin{pmatrix} M_i & * \\ * & * \end{pmatrix}$$

Hermitian positive-definite

For $i = 1 \dots n$

- S_i is principal submatrix of M_i (must contain row and column *i* of M_i)
- σ_i is trailing diagonal element of S_i^{-1}

$$\Delta = \prod_{i=1}^{n} \frac{1}{\sigma_i}$$

Properties

M Hermitian positive-definite

• Any sparse inverse approximation $\Delta = \prod \frac{1}{\sigma_i}$ is an upper bound for $\det(M)$

$$\det(M) \le \Delta$$

Monotonicity

$$S_{n \times n} = \begin{pmatrix} * & * \\ * & S_{m \times m} \end{pmatrix} \qquad \frac{1}{(S_{n \times n}^{-1})_{nn}} \le \frac{1}{(S_{m \times m}^{-1})_{mm}}$$

Properties

M Hermitian positive-definite

• Larger submatrix \Rightarrow better approximation

$$M = \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & \hat{S}_n \end{pmatrix} \qquad S_n \equiv \begin{pmatrix} * & * \\ * & \hat{S}_n \end{pmatrix}$$

 $\hat{\Delta}$ uses last diagonal element of \hat{S}_n^{-1} Δ uses last diagonal element of S_n^{-1}

 $\det(M) \le \Delta \le \hat{\Delta}$

Properties

M = D + O Hermitian positive-definite

• Any sparse inverse approximation $\Delta = \prod \frac{1}{\sigma_i}$ at least as accurate as diagonal approximation

$$\det(M) \le \Delta \le \prod_i M_{ii}$$

 Sparse inverse approximations can be less accurate than a block diagonal approximation

 $det(M) \le det(D) \le \Delta$ is possible

Tridiagonal Toeplitz Matrices

$$T_n = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix} \qquad \det(T_n) = n+1$$

- Sparse Inverse: $S_1 = 2$, $S_i = T_2$, $\Delta = 2 \left(\frac{3}{2}\right)^{n-1}$
- Blockdiagonal: $T_n = D + O$, $det(D) = \left(\frac{n}{k} + 1\right)^k$
- Block diagonal better for blocks of order ≥ 4 $\det(M) \leq \det(D) \leq \Delta$ for $n/k \geq 4$

2D Laplacian

$$M = \begin{pmatrix} T_m & -I_m & & \\ -I_m & T_m & \ddots & \\ & \ddots & \ddots & -I_m \\ & & -I_m & T_m \end{pmatrix} \qquad m^2 \times m^2$$
$$T_m = \begin{pmatrix} 4 & -1 & & \\ -1 & 4 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 4 \end{pmatrix}$$

Relative Errors

Block diagonal D, blocks of order m Sparse inverse approximation Δ

n	$\ln \det(M)$	error	error	error	error
		$\ln(D)$	$\ln(\Delta)$	$D^{1/n}$	$\Delta^{1/n}$
900	1.1e+3	0.11	0.06	0.15	0.07
10000	1.2e+4	0.12	0.07	0.16	0.09
40000	4.7e+4	0.13	0.07	0.16	0.09

Accuracy for both methods: 1 digit

Neutron Matter Simulations

Interaction matrix M

LU Decomposition

With complete pivoting

Interaction Matrix \boldsymbol{M}

order	n = 512		
# non-zeros	9n		
structure	complex non-Hermitian		
norm	$ M _F \approx 49.5$		
condition number	$ M _1 M^{-1} _1 \approx 177$		
non-normality	$\ M^*M - MM^*\ _F \approx 57$		
eigenvalues	complex		
determinant	$\det(M) = 8.5 \cdot 10^{65} + 1.4 \cdot 10^{64} i$		
	$\ln(\det(M)) = 151.8 + 0.02i$		

${\bf Eigenvalues \ of} \ M$

Non-Zero 8×8 blocks of M

448 non-zero blocks, 24 non-zero entries/block

M = D + O

- **D** block diagonal, blocks of size 8×8
- $D^{-1}O$ is checkerboard matrix $trace(D^{-1}O)^j = 0$ for odd j
- Spectral radius $\rho(D^{-1}O) \approx .66$

Expansions:

 $\mathbf{Z}_{\mathbf{0}} = \ln \det(D)$

 $Z_{j} = \ln \det(D) + \sum_{i=1}^{j} \frac{(-1)^{i}}{i} \operatorname{trace}((D^{-1}O)^{i})$

$D^{-1}O$ And $(D^{-1}O)^2$

Accuracy

j	error	error	error		error
	$\Re(Z_j)$	$\Im(Z_j)$	Z_{j}	$ ho^j$	e^{Z_j}
0	5.100	0.0017	5.100		163.0282
2	0.482	0.0025	0.482	0.44	0.3823
4	0.091	0.0016	0.091	0.19	0.0951
6	0.023	0.0008	0.023	0.08	0.0223
8	0.007	0.0003	0.007	0.04	0.0066

Absolute error for $Z_j \approx \ln \det(M)$ Relative error for $e^{Z_j} \approx \det(M)$

$$M = D + O, \ \rho = \rho(D^{-1}O)$$

- Error in logarithm: $|\ln \det(M) Z_j| < \rho^j$
- Accuracy:
 1 digit for Z₀ = ln det(D), 3 digits for Z₂
 1 digit for e^{Z₂} ≈ det(M)
- Storage: Z₂: 49n non-zeros
 GE with complete pivoting: 162 non-zeros
 GE with partial pivoting: 342 non-zeros

Summary

- Two methods for computing determinants: Zone determinant expansion
 Sparse inverse approximation
- Sparse inverse approximation: only Hermitian positive-definite matrices
- Zone determinant expansion: relative error bounds efficient for neutron matter simulations
- 2D Laplacian: Block diagonal approximation competitive with sparse inverse approximation