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This Talk

Given:

Real m × n matrix Q with orthonormal columns, QTQ = I

Real c ×m “sampling” matrix S with c ≪ m

Desired error 0 < ǫ < 1

Want: Probability that

‖(SQ)T (SQ)− I‖2 ≤ ǫ

κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2 ≤
√

1+ǫ

1−ǫ

Motivation: Randomized preconditioned LS solver Blendenpik
[Avron, Maymounkov & Toledo 2010]

κ(SQ) = Condition number of preconditioned matrix
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Exactly(c) Sampling [Drineas, Kannan & Mahoney 2006]

for t = 1 : c do
Sample kt from {1, . . . ,m} with probability 1/m

independently and with replacement
end for

Sampling matrix S =
√

m
c







eTk1
...
eTkc







S is c ×m, and samples exactly c rows

Expected value E(STS) = I

S can sample a row more than once



Sampling from Matrices with Orthonormal Columns

Example: m = 6, n = 2, c = 3

Q =













1 0
0 1
0 0
0 0
0 0
0 0













Prob[SQ has full rank ] ≈ 11%
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Prob[SQ has full rank ] = 50%



Coherence = Largest Row Norm Squared

Q is m × n with orthonormal columns: µ = max1≤k≤m ‖eTk Q‖22

Q =













1 0
0 1
0 0
0 0
0 0
0 0













high coherence: µ = 1

Q =
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low coherence µ = 1
3



Properties of Coherence

Coherence of m × n matrix Q with QTQ = I

µ = max
1≤k≤m

‖eTk Q‖22

n/m ≤ µ(Q) ≤ 1

Maximal coherence: µ(Q) = 1
At least one column of Q is a canonical vector

Minimal coherence: µ(Q) = n/m
Columns of Q are columns of a Hadamard matrix

Coherence measures “correlation with canonical basis”



Coherence in General

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix

by sampling its entries

Mori & Talwalkar 2010, 2011

Estimation of coherence

Avron, Maymounkov & Toledo 2010

Randomized preconditioners for least squares



Different Definitions

Coherence of subspace
Q is subspace of Rm of dimension n

P orthogonal projector onto Q

µ0(Q) =
m

n
max

1≤k≤m
‖eTk P‖22 (1 ≤ µ0(Q) ≤ m

n
)

Coherence of full rank matrix
A is m × n with rank(A) = n

Columns of Q are orthonormal basis for R(A)

µ(A) = max
1≤k≤m

‖eTk Q‖22 ( n
m

≤ µ(A) ≤ 1)

Reflects difficulty of recovering the matrix from sampling



Sampling from Matrices with Orthonormal Columns

Given: m × n matrix Q with orthonormal columns

Sampling: c ×m matrix

S =
√

m
c







eTk1
...
eTkc







Unbiased estimator: E
[

QTSTSQ
]

= QTQ = I

Sum of c random matrices:

QTSTSQ = m
c
QT ek1e

T
k1
Q + · · ·+ m

c
QT ekc e

T
kc
Q



Matrix Bernstein Inequality [Recht 2011]

Xt independent random n × n matrices

Expected value: E[Xt ] = 0

Uniform boundedness: ‖Xt‖2 ≤ τ almost surely

Variance: ρt ≡ max{‖E[XtX
T
t ]‖2, ‖E[XT

t Xt ]‖2}

Desired error 0 < ǫ < 1

Failure probability δ = 2n exp
(

−3
2

ǫ
2

3
∑

t ρt+τ ǫ

)

With probability at least 1− δ

∥

∥

∥

∥

∥

∑

t

Xt

∥

∥

∥

∥

∥

2

≤ ǫ



Assumptions for Our Problem

m × n matrix Q with orthonormal columns

Coherence µ = max1≤k≤m ‖eTk Q‖22
Sum of c matrices

(SQ)T (SQ)− I =
c

∑

t=1

Xt Xt =
m
c
QT ekte

T
kt
Q − 1

c
I

Expected value: E[Xt ] = 0

Uniform boundedness: ‖Xt‖2 ≤ m µ/c

Variance: E[X 2
t ] ≤ m µ/c2



Condition Number Bound

Desired error 0 < ǫ < 1

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m µ (3 + ǫ)

)

With probability at least 1− δ: ‖(SQ)T (SQ)− I‖2 ≤ ǫ

This implies

With probability at least 1− δ: κ(SQ) ≤
√

1+ǫ

1−ǫ



Implications of Bound

Coherence must be sufficiently low

µ < 3
8

c

m ln(2n/δ)

{Follows from ǫ < 1}

Amount of sampling must be sufficiently large

c ≥ 8
3

m µ

ǫ2
ln(2n/ δ)

Minimal coherence µ = n/m:

c & (n ln n)/ǫ2



Tightness of Condition Number Bound

Q is m × n with orthonormal columns, m = 104, n = 5
Coherence µ = 1.5n/m, success probability 1− δ = .99

Little sampling: n ≤ c ≤ 1000
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Algorithm 2
3.13

Bound holds for c ≥ 144 ≈ 8
3

mµ

ǫ2
ln (2n/δ)

Predictive for c ≥ 200



Coherence is not Enough

Good =





















1/2 0
1/2 0
1/2 0
1/2 0
0 −1/2
0 −1/2
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Bad =
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Same coherence: µ(Good ) = µ(Bad ) = 1/2

Sampling c = 3 rows

Prob[SGood has full rank ] ≥ 73%
Prob[SBad has full rank ]< 35%

Sampled Bad matrices more likely to be rank deficient



Good Matrices

Q is m × n with orthonormal columns, m = 104, n = 5

Coherence µ = .05 = 100n/m
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If SQ has full rank, then κ(SQ) ≪ 10
Low percentage of rank deficient SQ for c ≥ n



Bad Matrices

Q is m × n with orthonormal columns, m = 104, n = 5

Coherence µ = .05 = 100n/m
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High percentage of rank deficient SQ for c ≤ 2000 = m/n



Distinguishing Good and Bad Matrices with

Same Coherence

Idea: Use all row norms

Q is m × n with orthonormal columns

Leverage scores = row norms squared

ℓk = ‖eTk Q‖22, 1 ≤ k ≤ m

Coherence µ = maxk ℓk

Low coherence ≈ uniform leverage scores

Leverage scores of full column rank matrix A:
Columns of Q are orthonormal basis for R(A)

ℓk(A) = ‖eTk Q‖22, 1 ≤ k ≤ m



Statistical Leverage Scores

Hoaglin & Welsch 1978

Chatterjee & Hadi 1986

Identify potential outliers in minx ‖Ax − b‖2
Orthogonal projector onto R(A): H = A(ATA)−1AT

Leverage score Hkk : Influence of kth data point on LS fit



Statistical Leverage Scores

Hoaglin & Welsch 1978

Chatterjee & Hadi 1986

Identify potential outliers in minx ‖Ax − b‖2
Orthogonal projector onto R(A): H = A(ATA)−1AT

Leverage score Hkk : Influence of kth data point on LS fit

QR decomposition: A = QR

Hkk = ‖eTk Q‖22 = ℓk(A)

Application to randomized algorithms:
Drineas, Mahoney & al. 2006–2012



Assumptions for Our Problem

m × n matrix Q with orthonormal columns

Leverage scores ℓk = ‖eTk Q‖22, µ = max1≤k≤m ℓk

L = diag
(

ℓ1 . . . ℓm
)

Sum of c matrices

(SQ)T (SQ)− I =

c
∑

t=1

Xt Xt =
m
c
QT ekte

T
kt
Q − 1

c
I

Expected value: E[Xt ] = 0

Uniform boundedness: ‖Xt‖2 ≤ m µ/c

Variance: E[X 2
t ] ≤ m ‖QTLQ‖2/c2



Condition Number Bound with Leverage Scores

Desired error 0 < ǫ < 1

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m (3 ‖QTLQ‖2 + µ ǫ

)

With probability at least 1− δ: ‖(SQ)T (SQ)− I‖2 ≤ ǫ

This implies

With probability at least 1− δ: κ(SQ) ≤
√

1+ǫ

1−ǫ



Leverage Scores vs. Coherence

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m (3 ‖QTLQ‖2 + µ ǫ

)

Bounds in terms of coherence:

µ2 ≤ ‖QTLQ‖2 ≤ µ

Estimation in terms of largest leverage scores
If k = 1/µ is an integer then

‖QTLQ‖2 ≤ µ
k

∑

j=1

ℓ[j ]

where ℓ[1] ≥ · · · ≥ ℓ[m]



Summary

Randomized sampling of rows from matrices with
orthonormal columns

Sampling strategy: Exactly(c)
{Bernoulli sampling is very similar}

Coherence: Largest row norm squared

Bounds for condition number of sampled matrices

Explicit and non-asymptotic

Realistic even for small matrix dimensions

Leverage scores: Row norms squared

Tighter bounds: Replace coherence by leverage scores

How much tighter???


