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This Talk

Given:

Real m × n matrix Q with orthonormal columns, QTQ = In

Real c ×m “sampling” matrix S with c ≪ m

Want: Probability that

1 SQ has full column rank (rank(SQ) = n)

2 Condition number: Given η

κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2 ≤ 1 + η

Analysis:

Probabilistic bound for eigenvalues of (SQ)T (SQ)
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Motivation: Blendenpik

A Randomized Preconditioned
Least Squares Solver



Existing Work

Solve minz ‖Az − b‖2
A is m × n with rank(A) = n

Apply QR to sampled rows from (preprocessed) A

Drineas, Mahoney & Muthukrishnan 2006
Drineas, Mahoney, Muthukrishnan & Sarlós 2006
Boutsidis & Drineas 2009

Preconditioned iterative methods
Rokhlin & Tygert 2008
Blendenpik: Avron, Maymounkov & Toledo 2010
LSRN: Meng, Saunders & Mahoney 2011

Survey papers

Halko, Martinsson & Tropp 2011
Mahoney 2011



Blendenpik [Avron, Maymounkov & Toledo 2010]

Solve minz ‖Az − b‖2
A is m × n, rank(A) = n and m ≫ n

{Construct preconditioner}
Sample c ≥ n rows of A → SA
Thin QR decomposition SA = QsRs

{Solve preconditioned problem}
LSQR miny ‖AR−1

s y − b‖2
Solve Rs z = y

Idea: AR−1
s is almost orthonormal

LSQR converges fast if κ(AR−1
s ) ≈ 1



From Sampling to Condition Numbers

[Avron, Maymounkov & Toledo 2010]

Computed
QR decomposition of sampled matrix: SA = QsRs

Conceptual
QR decomposition of full matrix: A = QR

Sampling rows of A ≡ Sampling rows of Q

κ(AR−1
s ) = κ(SQ)

Preconditioned matrix AR−1
s = QR R−1

s → RR−1
s

Sampled orthonormal matrix

S Q = S AR−1

= SA R−1 = QsRs R
−1 → RsR

−1



From Preconditioned to Orthonormal Matrices

[Avron, Maymounkov & Toledo 2010]

Blendenpik computes:
QR decomposition of sampled matrix SA = QsRs

Conceptual aid:
QR decomposition of whole matrix A = QR

Condition number of preconditioned matrix:

κ(AR−1
s ) = κ(SQ)

We analyze κ(SQ)
Sampled matrices with orthonormal columns



Sampling Rows from

Matrices with Orthonormal Columns



Different Sampling Procedures

Want to uniformly sample c rows from m rows

1 Sampling without replacement

Each row is sampled at most once
Number of sampled rows is equal to c

2 Sampling with replacement (Exactly(c))

A row may be sampled more than once
Number of sampled rows is equal to c

3 Bernoulli sampling

Each row is sampled at most once
Number of sampled rows not known in advance
Expected value of number of sampled rows equals c



Uniform Sampling without Replacement

[Gittens & Tropp 2011, Gross & Nesme 2010]

Choose random permutation k1, . . . , km of 1, . . . ,m

Sampling matrix S =







eTk1
...
eTkc







S is c ×m, and samples exactly c rows

Expected value E(STS) = c
m
Im



Uniform Sampling with Replacement (Exactly(c))

[Drineas, Kannan & Mahoney 2006]

for t = 1 : c do
Sample kt from {1, . . . ,m} with probability 1/m

independently and with replacement
end for

Sampling matrix S =
√

m
c







eTk1
...
eTkc







S is c ×m, and samples exactly c rows

Expected value E(STS) = Im

S can sample a row more than once



Bernoulli Sampling

[Avron, Maymounkov & Toledo 2010, Gittens & Tropp 2011]

S = 0m×m

for j = 1 : m do

Sjj =

{

1 with probability c
m

0 with probability 1− c
m

end for

S is m ×m, and samples each row at most once

Expected value E(STS) = c
m

Im

Expected number of sampled (non zero) rows: c



Comparison of Sampling Strategies

Sampling c rows from m × n matrix Q with QTQ = In
m = 104, n = 5 (30 runs for each value of c)

Sampled matrices SQ from three strategies:

Sampling without replacement
Sampling with replacement (Exactly(c))
Bernoulli sampling

Plots:

1 Two-norm condition number of SQ
κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2 (if SQ has full column rank)

2 Percentage of matrices SQ that are rank deficient



First Comparison
Sampling without replacement

Sampling with replacement (Exactly(c))

Bernoulli sampling



Second Comparison
Sampling without replacement

Sampling with replacement (Exactly(c))

Bernoulli sampling



Comparison of Sampling Strategies

Sampled matrices SQ from three strategies:

Sampling without replacement
Sampling with replacement (Exactly(c))
Bernoulli sampling

Summary

Little difference among the sampling strategies
If SQ has full rank then κ(SQ) ≤ 10

Rest of the talk: Sampling with replacement

Fast: need to generate/inspect only c values
Easy to implement
Replacement does not affect accuracy

(for small amounts of sampling)



Probabilistic Condition Number Bounds



Sampling with Replacement (Exactly(c))

Given: m × n matrix Q with orthonormal columns

Sampling: c ×m matrix

S =

√

m

c







eTk1
...
eTkc







Unbiased estimator: E
[

QTSTSQ
]

= QTQ = In

Sum of c random matrices: QTSTSQ = X1 + · · · + Xc

Xt =
m
c
QT ekte

T
kt
Q, 1 ≤ t ≤ c



Bernstein-Type Concentration Inequality [Recht 2011]

Yt independent random n × n matrices with E[Yt ] = 0

‖Yt‖2 ≤ τ almost surely

ρt ≡ max{‖E[YtY
T
t ]‖2, ‖E[Y T

t Yt ]‖2}
Desired error 0 < ǫ < 1

Failure probability δ = 2n exp
(

−3
2

ǫ2

3
∑

t ρt+τ ǫ

)

With probability at least 1− δ

∥

∥

∥

∥

∥

∑

t

Yt

∥

∥

∥

∥

∥

2

≤ ǫ {Deviation from mean}



Applying the Concentration Inequality

Sampled matrix:

QTSTSQ = X1 + · · ·+ Xc , Xt =
m
c
QT ekt e

T
kt
Q

Zero mean version:

QTSTSQ − In = Y1 + · · ·+ Yc , Yt = Xt − 1
c
In

By construction: E[Yt ] = 0

‖Yt‖2 ≤ m
c
µ, E[Y 2

t ] ≤ m
c2

µ

Largest row norm squared: µ = max1≤j≤m ‖eTj Q‖22

With probability at least 1− δ, ‖(SQ)T (SQ)− In‖2 ≤ ǫ



Condition Number Bound

m × n matrix Q with orthonormal columns

Largest row norm squared: µ = max1≤j≤m ‖eTj Q‖22
Number of rows to be sampled: c ≥ n

0 < ǫ < 1

Failure probability

δ = 2n exp

(

− c

m µ

ǫ2

3 + ǫ

)

With probability at least 1− δ:

κ(SQ) ≤
√

1 + ǫ

1− ǫ



Tightness of Condition Number Bound

Input: m × n matrix Q with QTQ = In with
m = 104, n = 5, µ = 1.5 n/m

1 Exact condition number from sampling with replacement

Little sampling: n ≤ c ≤ 1000
A lot of sampling: 1000 ≤ c ≤ m

2 Condition number bound
√

1+ǫ
1−ǫ

where success probability 1− δ ≡ .99

ǫ ≡ 1

2c

(

ℓ+
√

12cℓ+ ℓ2
)

ℓ ≡ 2
3 (m µ− 1) ln(2n/ δ)



Little sampling (n ≤ c ≤ 1000)
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A lot of sampling (1000 ≤ c ≤ m)
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Condition Number Bound

m × n matrix Q with orthonormal columns

Largest row norm squared: µ = max1≤j≤m ‖eTj Q‖22
Number of rows to be sampled: c ≥ n

0 < ǫ < 1

Failure probability

δ = 2n exp

(

− c

m µ

ǫ2

3 + ǫ

)

With probability at least 1− δ:

κ(SQ) ≤
√

1 + ǫ

1− ǫ

The only distinction among different m × n matrices Q with
orthonormal columns is µ



Conclusions from the Bound

Input: m × n matrix Q with µ = max1≤j≤m ‖eTj Q‖22

Correct magnitude for condition number of sampled matrix,
even for small matrix dimensions

Required number of samples c = O (m µ ln n)

Slightly tighter bound for failure probability

δ ≡ n
{(

e−ǫ (1− ǫ)−(1−ǫ)
)

c/(m µ) +
(

eǫ (1 + ǫ)−(1+ǫ)
)

c/(m µ)
}

use [Tropp 2011]

Similar bounds for
Sampling without replacement
Bernoulli sampling

Important ingredient µ = max1≤j≤m ‖eTj Q‖22



The Important Property:
Coherence



Coherence = Largest Row Norm2

Q is m × n with orthonormal columns: µ = max1≤j≤m ‖eTj Q‖22

Q =













1 0
0 1
0 0
0 0
0 0
0 0













high coherence: µ = 1

Q =













1/
√
6 −1/

√
6

1/
√
6 1/

√
6

1/
√
6 −1/

√
6

1/
√
6 1/

√
6

1/
√
6 −1/

√
6

1/
√
6 1/

√
6













low coherence µ = 1
3



Properties of Coherence

Coherence of m × n matrix Q with QTQ = In

µ = max
1≤j≤m

‖eTj Q‖22

n/m ≤ µ(Q) ≤ 1

Maximal coherence: µ(Q) = 1
At least one column of Q is a canonical vector

Minimal coherence: µ(Q) = n/m
Columns of Q are columns of a Hadamard matrix

Coherence measures “correlation with standard basis”



Coherence in General

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix
by sampling its entries

Mori & Talwalkar 2010, 2011

Estimation of coherence

Avron, Maymounkov & Toledo 2010

Randomized preconditioners for least squares

Drineas, Magdon-Ismail, Mahoney & Woodruff 2011

Fast approximation of coherence



Different Definitions

Coherence of subspace
Q is subspace of Rm of dimension n
P orthogonal projector onto Q

µ0(Q) =
m

n
max

1≤j≤m
‖eTj P‖22 (1 ≤ µ0 ≤ m

n
)

Coherence of full rank matrix
A is m × n with rank(A) = n
Columns of Q are orthonormal basis for R(A)

µ(A) = max
1≤j≤m

‖eTj Q‖22 ( n
m

≤ µ ≤ 1)

Reflects difficulty of recovering the matrix from sampling



Effect of Coherence on Sampling

Input: m × n matrix Q with QTQ = In
m = 104, n = 5

Sampling with replacement

1 Low coherence: µ = 7.5 · 10−4 = 1.5 n/m

2 Higher coherence: µ = 7.5 · 10−2 = 150 n/m



Low Coherence
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Higher Coherence
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Coherence Isn’t Everything

Good =





















1/2 0
1/2 0
1/2 0
1/2 0
0 −1/2
0 −1/2

0 1/
√
2





















Bad =























1/
√
2 0

−1/
√
2 0

0 1/
√
2

0 −1/
√
2

0 0
0 0
0 0























Same coherence: µ(Good ) = µ(Bad ) = 1/2

Sampling with replacement: c = 3

Prob[SGood has full column rank ] ≥ 73%
Prob[SBad has full column rank ]< 35%

Sampled bad matrices more likely to be rank deficient



Generating Matrices

With User-Specified Coherence



Good Matrices with Specified Coherence

Algorithm for generating Hermitian matrices with prescribed
diagonal elements and eigenvalues [Dhillon, Heath, Sustik & Tropp 2005]

Input: Dimensions m and n with m ≥ n
Desired row norms2 ℓj , 1 ≤ j ≤ m

Output: m × n matrix Q with orthonormal columns
Row norms2 ‖eTj Q‖22 = ℓj
Coherence µ = max1≤j≤m ℓj

Initialize Q0 =

(

In
0

)

Rotate rows of Q0 until row norms ℓj achieved



Bad Matrices with Specified Coherence

Idea

Lower bound for coherence: µ ≥ n/m
Given n and µ, minimal number rows is m0 = ⌈n/µ⌉

Algorithm

Initialize m0 = ⌈n/µ⌉
Generate m0 × n matrix Q0 with coherence µ

Set Q =

(

Q0

0(m−m0)×n

)

Q has coherence µ and maximal number of zero rows



Difference between Good and Bad Matrices

Input: m × n matrices Q with QTQ = In
m = 104, n = 5, µ = .05
Sampling with replacement

Two matrices with same coherence

1 Good matrices: No zero rows

2 Bad matrices: 9900 zero rows



Good Matrices
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Bad Matrices
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Improving on Coherence:

Leverage Scores



Distinguishing Good and Bad Matrices with

Same Coherence

Idea: Use all row norms

Q is m × n with orthonormal columns

Leverage scores = row norms2

ℓk = ‖eTk Q‖22, 1 ≤ k ≤ m

Coherence µ = maxk ℓk

Low coherence ≈ uniform leverage scores

Leverage scores of full column rank matrix A:
Columns of Q are orthonormal basis for R(A)

ℓk(A) = ‖eTk Q‖22, 1 ≤ k ≤ m



Statistical Leverage Scores

Hoaglin & Welsch 1978
Chatterjee & Hadi 1986

Identify potential outliers in minx ‖Ax − b‖2
Hb: Projection of b onto R(A) where H = A(ATA)−1AT

Leverage score: Hkk ∼ influence of kth data point on LS fit

QR decomposition: A = QR

Hkk = ‖eTk Q‖22 = ℓk(A)

Application to randomized algorithms: Mahoney & al. 2006–2012



Leverage Score Bound

m × n matrix Q with orthonormal columns

Leverage scores ℓj = ‖eTj Q‖22, µ = max1≤j≤m ℓj

L = diag
(

ℓ1 . . . ℓm
)

Sampling with replacement

0 < ǫ < 1

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m (3 ‖QTLQ‖2 + µ ǫ

)

With probability at least 1− δ: κ(SQ) ≤
√

1+ǫ
1−ǫ



Leverage Scores vs. Coherence

Failure probability

δ = 2n exp

(

−3
2

c ǫ2

m (3 ‖QTLQ‖2 + µ ǫ

)

Bounds in terms of coherence:

µ2 ≤ ‖QTLQ‖2 ≤ µ

Estimation in terms of largest leverage scores
If k = 1/µ is an integer then

‖QTLQ‖2 ≤ µ
k

∑

j=1

ℓ[j ]

where ℓ[1] ≥ · · · ≥ ℓ[m]



Summary

Motivation: Randomized preconditioner for least squares

Preconditioned matrix ∼ sampled orthonormal matrix

Three different sampling strategies:
Essentially the same for small amounts of sampling

Bounds for condition number of sampled orthonormal matrices

Explicit and non-asymptotic
Predictive even for small matrix dimensions

Coherence: Largest row norm2

Algorithms to generate matrices with user-specified coherence

Leverage scores: row norms2

Tighter bounds: Replace coherence by leverage scores


