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Two Factors

Determine where Google displays a web page on
the Search Engine Results Page:

1. PageRank (links)

A page has high PageRank
If many pages with high PageRank link to it

2. Hypertext Analysis (page contents)

Text, fonts, subdivisions, location of words,
contents of neighbouring pages



PageRank

An objective measure of the citation importance of
a web page [Brin & Page 1998]

Assigns a rank to every web page

Influences the order in which Google displays
search results

Based on link structure of the web graph
Does not depend on contents of web pages
Does not depend on query



More PageRank More Visitors
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PageRank

. . . continues to provide the basis for all of our web
search tools http://www.google.com/technology/

“Links are the currency of the web”
Exchanging & buying of links

BO (backlink obsession)

Search engine optimization



Overview

Mathematical Model of Internet
Computation of PageRank

Is the Ranking Correct?
Floating Point Arithmetic Issues



Mathematical Model of Internet

1. Represent internet as graph
2. Represent graph as stochastic matrix

3. Make stochastic matrix more convenient
—> Google matrix

4. dominant eigenvector of Google matrix
— PageRank



The Internet as a Graph

Link from one web page to another web page

o0

Web pages = nodes
Links = edges

Web graph:




The Internet as a Graph
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The Web Graph as a Matrix
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Properties of Matrix S

Row ¢ of S: Links from page 2 to other pages
Column 2 of S Links into page 2

S Is a stochastic matrix:
All elements in [0, 1]

Elements in each row sumto 1
Dominant left eigenvector:

wiS=wl w>0 |lwl|l1 =1

w; IS probability of visiting page
But: w not unique



Google Matrix

Convex combination

G=aS+(1—a)lv’
|

rank 1

® Stochastic matrix S

® Damping factor0 < a« < 1
e.g. o = .85

® Column vector of all ones 11

® Personalization vector v > 0
Models teleportation

Jv]l1 =1



PageRank

G=aS+(1—oao)lv’
G Is stochastic, with eigenvalues:

1> a|Aa(8)] > a|As(S)] > ...

Unique dominant left eigenvector:
G =nt T >0 ||| = 1
7; IS PageRank of web page 2

[Haveliwala & Kamvar 2003, Eldén 2003,
Serra-Capizzano 2005]



How Google Ranks Web Pages

® Model:
Internet — web graph — stochastic matrix G

® Computation:
PageRank 7 Is eigenvector of G

7; IS PageRank of page 2
® Display:
If 7v; > . then
page ¢ may” be displayed before page k

* depending on hypertext analysis



Facts

® The anatomy of a large-scale hypertextual web
search engine [Brin & Page 1998]

® US patent for PageRank granted in 2001

® Google indexes 10’s of billions of web pages
(1 billion = 10?)

® Google serves > 200 million queries per day
® Each query processed by > 1000 machines

® All search engines combined process more
than 500 million queries per day

[Desikan, 26 October 2006]



Computation of PageRank

The world’s largest matrix computation
[Moler 2002]

Eigenvector

Matrix dimension is 10’s of billions

The matrix changes often
250,000 new domain names every day

Fortunately: Matrix Is sparse



Power Method

Want: 7w suchthat #«1TG = nt

Power method:

Pick an initial guess (%)
Repeat
)T = (0] G

until “termination criterion satisfied”

Each iteration is a matrix vector multiply



Matrix Vector Multiply

'G = ' |aS+ (1—a)lv']
M
S RS —

Cost: # non-zero elements in S

A power method iteration Is cheap



"Error Reduction in 1 Iteration

G =nt G=aS+(1—-a)lv'

[Clt(k_l_l) . 7_‘_]T — [w(k)]TG . 7TTG

= afz® — 7|Ts

Error: [z* D) — 7)) < alz® — 7|
— ——

iteration k-+1 iteration k




Error iIn Power Method

G =nt G=aS+(1—-a)lv'

Error after k iterations:

la® —w|ly < oF |2 — 7y
N’
<2

[Blanchini, Gori & Scarselli 2003]

Error bound does not depend on matrix dimension



Advantages of Power Method

Simple implementation (few decisions)
Cheap Iterations (sparse matvec)
Minimal storage (a few vectors)
Robust convergence behaviour

Convergence rate independent of matrix
dimension

Numerically reliable and accurate
(no subtractions, no overflow)

But: can be slow



PageRank Computation

Power method

Page, Brin, Motwani & Winograd 1999
Bianchini, Gori & Scarselli 2003

Acceleration of power method
Kamvar, Haveliwala, Manning & Golub 2003
Haveliwala, Kamvar, Klein, Manning & Golub 2003

Brezinski & Redivo-Zaglia 2004, 2006
Brezinski, Redivo-Zaglia & Serra-Capizzano 2005

Aggregation/Disaggregation

Langville & Meyer 2002, 2003, 2006
Ipsen & Kirkland 2006



PageRank Computation

Methods that adapt to web graph

Broder, Lempel, Maghoul & Pedersen 2004 Kamvar,
Haveliwala & Golub 2004

Haveliwala, Kamvar, Manning & Golub 2003

Lee, Golub & Zenios 2003

Lu, Zhang, Xi, Chen, Liu, Lyu & Ma 2004
Ipsen & Selee 2006

Krylov methods

Golub & Greif 2004
Del Corso, Gulli, Romani 2006



PageRank Computation

Schwarz & asynchronous methods

Bru, Pedroche & Szyld 2005
Kollias, Gallopoulos & Szyld 2006

Linear system solution

Arasu, Novak, Tomkins & Tomlin 2002
Arasu, Novak & Tomkins 2003
Bianchini, Gori & Scarselli 2003
Gleich, Zukov & Berkin 2004

Del Corso, Gulli & Romani 2004
Langville & Meyer 2006



PageRank Computation

Surveys of numerical methods:
Langville & Meyer 2004
Berkhin 2005

Langville & Meyer 2006 (book)



Is the Ranking Correct?

ol = (.23 .24 .26 .27)

et = (.27 .26 .24 .23)
|z — 7|0 = .04

Small error, but incorrect ranking

y! = (0 .001 .002 .997)

|y — 7l|loo = 727
Large error, but correct ranking



What is Important?

Numerical value «— ordinal rank

ordinal rank:
position of an element in an ordered list

Very little research on ordinal ranking
Rank-stability, rank-similarity

[Lempel & Moran, 2005]
[Borodin, Roberts, Rosenthal & Tsaparas 2005]



Ordinal Ranking

Largest element gets Orank 1

nl = (.23 .24 .26 .27)
Orank(m4) = 1, Orank(m;) = 4
oz = (.27 .26 .24 .23)
Orank(xz;) =1 # Orank(m;) =4
°*y""' = (0 .001 .002 .997)
Orank(ys) = 1 = Orank(m,)



Problems with Ordinal Ranking

When done with power method:

Popular termination criteria
do not guarantee correct ranking

Additional iterations can destroy ranking

Rank convergence depends on:
o, v, Initial guess, matrix dimension,
structure of web graph

Even If successive iterates have the same
ranking, their ranking may not be correct

[Wills & Ipsen 2007]



Ordinal Ranking Criterion

Given:

Approximation x, x > 0
Error bound 3 > || — ||y

Criterion:  x; > x; + 8 = m; > m;
Why?
|z — |l < 8

7T7;—7Tj

(i — ™) — (xj — 7))

x; — (z; + )
O<$Z’—((Bj—|—6)_—_>0<ﬂ‘i—ﬂ'j

IA A

[Kirkland 2006]



Applicability of Criterion
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Properties of Ranking Criterion

Applies to any approximation,
provided error bound Is available

Requires well-separated elements

Tends to identify ranks of larger elements
Determines partial ranking

Top-k, bucket and exact ranking

Easy to use with power method



Top-k Ranking

Given:

Approximation x to PageRank 7
Permutation P so that x = Px with
T1 > ... > Ty

Write: m = P

Suppose i > 1 + O



- Top-k Ranking

X1 Orank(m,) < k
53]C Orank(ﬁ'k) S k
T
g
l
L1 Orank(7g.1) > k+ 1

T Orank(w,) > k + 1



Exact Ranking

Given:

Approximation x to PageRank 7
Permutation P so that x = Px with
T1 > ... > Ty

Write: m = P

If &1 > . + B and & > T 1 + 3 then
Orank(7g) = k



act Ranking
EX

< k



Bucket Ranking

Given:

Approximation x to PageRank 7
Permutation P so that x = Px with
T1 > ... > Ty

Write: m = P
Suppose Ty_; > T+ B and Ty > T + O

7 1S In bucket of widthz 4+ 7 — 1



“Bucket Ranking
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Experiments

n | # buckets | 1. bucket | last bucket

9,914 4,307 1 7%

3,148,440 34,911 1 95%
n | exact rank | exact top 100 | lowest rank
9,914 32% 79 9,215
3,148,440 0.76% 100 151,794




Buckets for Small Matrix
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Power Method Ranking

Simple error bound:

(k) _ k
|z |1 Sz\g/

Simple ranking criterion:

|f az,gk) > wg-k) + 2a* then 7; > T

But: 2a® is too pessimistic (not tight enough)



Power Method Ranking

Tighter error bound:

(87
o® = wll; < = [la® — &),
— X
N—————
B

More effective ranking criterion:

k k
|f:E§ ) >a:§-)—|—6then7r7;>7rj



Floating Point Ranking

k k
Ifzcg ) > wg ) + (O then m; > m;
(87
B=———le® -2, +e
1l — o
e is round off error from single matvec
IEEE double precision floating point arithmetic:

e ~ cml10~1°

m =~ max # links into any web page



Expensive Implementation

To prevent accumulation of round off

Explicit normalization of iterates
) = g /|l

Compute norms, inner products, matvecs
with compensated summation

Limited by round off error from single matvec

Analysis for matrix dimensions n < 10
in IEEE arithmetic (e =~ 10719)



Difficulties for XLARGE Problems

Catastrophic cancellation when computing

(87
g = fa® — 2tV 4 e

Bound 3 dominated by round off e

Compensated summation insufficient to reduce
higher order round off O (ne?)

Doubly compensated summation too
expensive: O(n logn) flops



Possible Remedies

® | ump dangling nodes [Ipsen & Selee 2006]
Web pages w/o outlinks:

pdf & image files, protected pages, web frontier
Up to 50%-80% of all web pages

® Remove unreferenced web pages

® Use faster converging method
Then 1 power method iteration for ranking

® Relative ranking criteria?



Summary

Google orders web pages according to:
PageRank and hypertext analysis

PageRank = left eigenvector of G
G=aS+(1—a)lv’

Power method: simple, robust, accurate

Convergence rate depends on «
but not on matrix dimension

Criterion for ordinal ranking
Round off serious for XLarge problems



User-Friendly Resources

® Rebecca Wills:
Google’s PageRank: The Math Behind the
Search Engine
Mathematical Intelligencer, 2006

® Amy Langville & Carl Meyer:
Google’s PageRank and Beyond
The Science of Search Engine Rankings
Princeton University Press, 2006

® Amy Langville & Carl Meyer:
Broadcast of On-Air Interview, November 2006
Carl Meyer’s web page
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