Analysis and Computation of Google's PageRank

Ilse Ipsen

North Carolina State University, USA

Joint work with Rebecca S. Wills

PageRank

An objective measure of the citation importance of a web page [Brin & Page 1998]

... continues to provide the basis for all of our web search tools http://www.google.com/technology/

- Assigns a rank to every web page
- Influences the order in which Google displays search results
- Based on link structure of the web graph

Overview

- PageRank
- Computation of PageRank
- Termination Criterion
- Ranking

Simple Web Model

Construct matrix S

- Page *i* has $d \ge 1$ outgoing links: If page *i* has link to page *j* then $s_{ij} = 1/d$ else $s_{ij} = 0$
- Page *i* has 0 outgoing links: (dangling node)
- $s_{ij} = 1/n$

 s_{ij} : probability that surfer moves from page i to page j

Google Matrix

S is stochastic: $0 \le s_{ij} \le 1$ S1 = 1

Google Matrix: convex combination

$$G = \alpha S + (1 - \alpha) 1 v^T$$

Damping factor $0 < \alpha < 1$, e.g. $\alpha = .85$ Personalization vector $v \ge 0$ $\|v\|_1 = 1$

TrustRank: $v_i = 0$ if page *i* is spam page [Gyöngyi, Garcia-Molina & Pedersen 2004]

[Serra-Capizzano 2004, Horn & Serra-Capizzano 2006]

PageRank Computation

Power method

Page, Brin, Motwani & Winograd 1999

- Acceleration of power method Kamvar, Haveliwala, Manning & Golub 2003 Haveliwala, Kamvar, Klein, Manning & Golub 2003
 Brezinski & Redivo-Zaglia 2004
 Brezinski, Redivo-Zaglia & Serra-Capizzano 2005
- Aggregation/Disaggregation
 Langville & Meyer 2002, 2003, 2004
 Ipsen & Kirkland 2004

PageRank Computation

- Methods that adapt to web graph Broder, Lempel, Maghoul & Pedersen 2004 Kamvar, Haveliwala & Golub 2004 Haveliwala, Kamvar, Manning & Golub 2003 Lee, Golub & Zenios 2003 Lu, Zhang, Xi, Chen, Liu, Lyu & Ma 2004
- Krylov methods Golub & Greif 2004

PageRank Computation

- Linear System Solution Arasu, Novak & Tomkins 2003 Bianchini, Gori & Scarselli 2003 Gleich, Zukov & Berkhin 2004 Del Corso, Gullì & Romani 2004
- Survey

Berkhin 2005

Power Method

Want: π such that $\pi^T G = \pi^T$ Power method: $[x^{(k)}]^T = [x^{(0)}]^T G^k$, $k \ge 1$

- Converges to unique vector
- Vectorizes
- Storage for only a single vector
- Matrix vector multiplication with very sparse matrix
- Accurate (no subtractions)
- Simple (few decisions)

Error in Power Method

$$\pi^T G = \pi^T \qquad G = \alpha S + (1 - \alpha) 1 v^T$$

Forward error in iteration *k*:

$$\|x^{(k)}-\pi\|\leq 2~lpha^k$$

[Bianchini, Gori & Scarselli 2003]

Residual in iteration k:

$$\| [x^{(k)}]^T G - [x^{(k)}]^T \| \leq 2 \ {oldsymbol lpha}^k$$

Norms: 1, ∞

Termination Criterion

Residual:

$$[x^{(k)}]^TG - [x^{(k)}]^T = [x^{(k+1)}]^T - [x^{(k)}]^T$$

Power method:

 $\begin{array}{l} \text{Pick } x^{(0)} \geq 0 \quad \|x^{(0)}\|_1 = 1 \\ \text{Repeat} \quad [x^{(k+1)}]^T = [x^{(k)}]^T G \\ \text{until } \|x^{(k+1)} - x^{(k)}\| \text{ small enough} \end{array}$

After k iterations: $\|x^{(k+1)} - x^{(k)}\| \leq 2 \, lpha^k$

Iteration Counts for Different α

$$G = \alpha S + (1 - \alpha) 1 v^T$$

$\boldsymbol{\alpha}$	n = 281903	n = 683446	bound
.85	69	65	118
.90	107	102	166
.95	219	220	415
.99	1114	1208	2075

bound: k such that $2 \alpha^k \leq 10^{-8}$

Iteration counts independent of matrix size n

Ranking

After k iterations of power method: Residual: $\| [x^{(k)}]^T G - [x^{(k)}]^T \| \le 2 \alpha^k$ Error: $\| x^{(k)} - \pi \| \le 2 \alpha^k$

But: Do the components of $x^{(k)}$ have the same ranking as those of π ?

Rank-stability, rank-similarity: [Lempel & Moran, 2005] [Borodin, Roberts, Rosenthal & Tsaparas 2005]

Absolute Errors versus Ranking

$$\pi^{T} = (.23 \ .24 \ .26 \ .27)$$

• $[x^{(k)}]^{T} = (.27 \ .26 \ .24 \ .23)$
 $\|x^{(k)} - \pi\|_{\infty} = .04$
Small error, but incorrect ranking
• $[x^{(k)}]^{T} = (0 \ .001 \ .002 \ .997)$
 $\|x^{(k)} - \pi\|_{\infty} = .727$
Large error, but correct ranking

Web Graph is a Ring

All Pages are Trusted

S is circulant of order n, $v = \frac{1}{n}1$

- PageRank: $\pi = \frac{1}{n}1$ All pages have same PageRank
- Power method $x^{(0)} = v$: $x^{(0)} = \pi$ correct ranking $x^{(0)} \neq v$: $[x^{(k)}]^T = \frac{1}{n}1^T + \alpha^k \left([x^{(0)}]^T S^k - \frac{1}{n}1 \right)$ Ranking does not converge (in exact arithmetic)

Only One Page is Trusted

 $\boldsymbol{v}^{T} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$

Only One Page is Trusted

$$\pi^T \sim \left(egin{smallmatrix} \mathbf{1} \ \ lpha \ \ lpha^2 \ \ lpha^3 \ \ lpha^4
ight)$$

PageRank decreases with distance from page 1

Only One Page is Trusted

S is circulant of order n, $v = e_1$

- PageRank: $\pi^T \sim \left(1 \ lpha \ \dots \ lpha^{n-1}
 ight)$
- Power method with $x^{(0)} = v$: $[x^{(k)}]^T \sim \left(1 \ \alpha \ \dots \ \alpha^{k-1} \ \frac{\alpha^k}{1-\alpha} \ 0 \ \dots \ 0\right)$ $[x^{(n)}]^T \sim \left(1 + \frac{\alpha^n}{1-\alpha} \ \alpha \ \alpha^2 \ \dots \ \alpha^{n-1}\right)$ Rank convergence in n iterations

Too Many Iterations

Power method with $x^{(0)} = v = e_1$:

- After *n* iterations: $[x^{(n)}]^T \sim \left(1 + \frac{\alpha^n}{1-\alpha} \quad \alpha \quad \alpha^2 \quad \dots \quad \alpha^{n-1}\right)$
- After n + 1 iterations: $[x^{(n+1)}]^T \sim (1 + \alpha^n \quad \alpha + \frac{\alpha^{n+1}}{1-\alpha} \quad \alpha^2 \quad \dots \quad \alpha^{n-1})$ If $\alpha = .85, n = 10$: $\alpha + \frac{\alpha^{n+1}}{1-\alpha} > 1 + \alpha^n$ Additional iterations can destroy a converged ranking

Recovery of Ranking

old S is circulant of order old n

• After *k* iterations:

$$[x^{(k)}]^T = lpha^k \, [x^{(0)}]^T S^k + (1-lpha) v^T \sum_{j=0}^{k-1} lpha^j S^j$$

• After k + n iterations:

$$[x^{(k+n)}]^T = lpha^n [x^{(k)}]^T + (1 - lpha^n) \pi^T$$

If $x^{(k)}$ has correct ranking, so does $x^{(k+n)}$

Any Personalization Vector

S is circulant of order n

- PageRank: $\pi^T \sim v^T \sum_{j=0}^{n-1} lpha^j S^j$
- Power method with $x^{(0)} = \frac{1}{n}1$

For any v: rank convergence after n iterations

Summary

- Google matrix $G = \alpha S + (1 \alpha) 1v^T$
- PageRank π : left eigenvector of G
- Computation of π via power method
- Convergence of residual/error norms: Depends only on α
- Convergence of rank: May never happen
 Depends on: α, v, starting vector, matrix size, graph of S
 A converged ranking can be destroyed